Search results for: soil organic carbon (SOC)
5696 Tokenization of Blue Bonds as an Emerging Green Finance Tool
Authors: Rodrigo Buaiz Boabaid
Abstract:
Tokenization of Blue Bonds is an emerging Green Finance tool that has the potential to scale Blue Carbon Projects to fight climate change. This innovative solution has a huge potential to democratize the green finance market and catalyze innovations in the climate change finance sector. Switzerland has emerged as a leader in the Green Finance space and is well-positioned to drive the adoption of Tokenization of Blue & Green Bonds. This unique approach has the potential to unlock new sources of capital and enable global investors to participate in the financing of sustainable blue carbon projects. By leveraging the power of blockchain technology, Tokenization of Blue Bonds can provide greater transparency, efficiency, and security in the investment process, while also reducing transaction costs. Investments are in line with the highest regulations and designed according to the stringent legal framework and compliance standards set by Switzerland. The potential benefits of Tokenization of Blue Bonds are significant and could transform the way that sustainable projects are financed. By unlocking new sources of capital, this approach has the potential to accelerate the deployment of Blue Carbon projects and create new opportunities for investors to participate in the fight against climate change.Keywords: blue carbon, blue bonds, green finance, Tokenization, blockchain solutions
Procedia PDF Downloads 725695 Geological Engineering Mapping Approach to Know Factor of Safety Distribution and Its Implication to Landslide Potential at Muria Mountain, Kudus, Central Java Province, Indonesia
Authors: Sony Hartono, Azka Decana, Vilia Yohana, Annisa Luthfianihuda, Yuni Faizah, Tati Andriani, Dewi Kania, Fachri Zulfiqar, Sugiar Yusup, Arman Nugraha
Abstract:
Landslide is a geological hazard that is quite common in some areas in Indonesia and have disadvantages impact for public around. Due to the high frequency of landslides in Indonesia, and extensive damage, landslides should be specifically noted. Landslides caused by a soil or rock unit that has been in a state of unstable slopes and not in ideal state again, so the value of ground resistance or the rock been passed by the value of the forces acting on the slope. Based on this fact, authors held a geological engineering mapping at Muria Mountain, Kudus, Central Java province which is known as an agriculture and religion tourism area. This geological engineering mapping is performed to determine landslides potential at Muria Mountain. Slopes stability will be illustrated by a number called the “factor of safety” where the number can describe how much potential a slope to fall. Slopes stability can be different depending on the physical and mechanical characteristics of the soil and slope conditions. Testing of physical and mechanical characteristics of the soil conducted in the geotechnical laboratory. The characteristics of the soil must be same when sampled as well as in the test laboratory. To meet that requirement, authors used "undisturb sample" method that will be guarantee sample will not be distracted by environtment influences. From laboratory tests on soil physical and mechanical properties obtained characteristics of the soil on a slope, and then inserted into a Geological Information Software that would generate a value of factor of safety and give a visualization slope form area of research. Then, as a result of the study, obtained a map of the ground movement distribution map and i is implications for landslides potential areas.Keywords: factor of safety, geological engineering mapping, landslides, slope stability, soil
Procedia PDF Downloads 4195694 Colour and Curcuminoids Removal from Turmeric Wastewater Using Activated Carbon Adsorption
Authors: Nattawat Thongpraphai, Anusorn Boonpoke
Abstract:
This study aimed to determine the removal of colour and curcuminoids from turmeric wastewater using granular activated carbon (GAC) adsorption. The adsorption isotherm and kinetic behavior of colour and curcuminoids was invested using batch and fixed bed columns tests. The results indicated that the removal efficiency of colour and curcuminoids were 80.13 and 78.64%, respectively at 8 hr of equilibrium time. The adsorption isotherm of colour and curcuminoids were well fitted with the Freundlich adsorption model. The maximum adsorption capacity of colour and curcuminoids were 130 Pt-Co/g and 17 mg/g, respectively. The continuous experiment data showed that the exhaustion concentration of colour and curcuminoids occurred at 39 hr of operation time. The adsorption characteristic of colour and curcuminoids from turmeric wastewater by GAC can be described by the Thomas model. The maximum adsorption capacity obtained from kinetic approach were 39954 Pt-Co/g and 0.0516 mg/kg for colour and curcuminoids, respectively. Moreover, the decrease of colour and curcuminoids concentration during the service time showed a similar trend.Keywords: adsorption, turmeric, colour, curcuminoids, activated carbon
Procedia PDF Downloads 4245693 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation
Authors: M. Dehestani, M. Ghasemi-Kooch
Abstract:
In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube
Procedia PDF Downloads 2355692 Advancement in Carbon Based Battery System
Authors: Mohini M. Sain, Vijay Kumar, Tasmia Tabassem, Jimi Tjong
Abstract:
In the recent times, the Lithium-sulfur batteries (LiSBs) have emerged as a highly promising next generation of secondary batteries for their high theoretical specific capacity (1675 mAh/g) and low cost, and they have shown immense possibilities in utilizing in battery operated electric vehicles (BEVs). However, the commercialization of LiSBs is restricted due to the slow redox kinetics of sulfur cathode and shuttling effect of polysulfides during battery operation. Thus, the development of novel host materials is crucial for suppressing the dissolution of polysulfides into electrolyte, and this eventually helps in resolving the long-term cycling problem in LiSBs. This work provides a simple and straightforward method to design carbon materials with optimized nitrogen content with high surface area and thus simultaneously reveals new methods and strategies for realizing high performance host material design for practical LiSBs.Keywords: Li ion battery, graphtitic carbon, electrode fabrication, BeV
Procedia PDF Downloads 5325691 Energy Resilience in the Sustainable Built Environment: the Use of Biogas to Reduce Vulnerabilities and Risks
Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik
Abstract:
The built environment is considered as a key element in transitioning to clean energy, needed to create resilient buildings and cities, enhance their adaptability to changes, and pursue energy saving. For such energy transition, this paper presents biogas as one of the sustainable sources of energy, as it is produced from organic materials often available in both urban and rural areas and can be converted into electrical and thermal energy, or into vehicular energies fuel. The resilience benefits of this fuel is being a localized alternative energy, and also provides tangible benefits for water, air, and soil quality. Through bibliographic and empirical research, this study analyzed the biogas potential and applications in Brazil and in the U.S. The results indicated that biogas emits 85% less CO2 to the atmosphere compared to diesel and could supply 40% of domestic electricity demand and 70% of diesel consumption in Brazil, with a similar scenario for the U.S.Keywords: resilience, sustainability, built environment, energy transition, biogas.
Procedia PDF Downloads 925690 Mechanisms Involved in Biological Control of Fusarium Wilt
Authors: Bensaid Fatiha
Abstract:
The objective of our present work is the description of the antagonistic capacities of one strain of Pseudomonas fluorescens and the nonpathogenic fungic isolate Fusarium oxysporum against phytopathogenic agent Fusarium oxysporum F. Sp. lycopersici. This work has been achieved in two main parts: the first is interested on the in vitro antagonistic activities; the second was interested to study the soil receptiveness of fusarium wilt tomato. The use of strain of fluorescent Pseudomonas and a non-pathogenic strain of F. oxysporum in the different antagonism tests, has allowed assuring a certain bio-protection from the plants of tomatoes opposite to F. oxysporum F. Sp. lycopersici, agent of a wilt of tomato. These antagonistic have shown a substantial in vitro antagonistic activity on the three mediums (KB, PDA, KB+PDA) against F. oxysporum F. Sp. lycopersici, by inhibiting its growth mycelium with rate of inhibition going until 80 % with non-pathogen of Fusarium oxysporum and 60 % with strain of fluorescens Pseudomonas. Soil microbial balance, between the antagonistic population and that of pathogenic, can be modulated through microbiological variations or abiotic additives influencing directly or indirectly the metabolic behavior microbial. In this experiment, addition of glucose or EDTA, could increase or decrease the resistance of soil by activation of pathogenic or antagonists, as a result of modification and modulation in their metabolic activities.Keywords: fluorescents, nonpathogenic, fusarium oxysporum, fusarium wilt, antagonism, biological control, soil receptivity
Procedia PDF Downloads 4615689 Case Study: Geomat Installation against Slope Erosion
Authors: Serap Kaymakci, Dogan Gundogdu, M. Bugra Yagcioglu
Abstract:
Erosion (soil erosion) is a phenomenon in which the soil on the slope surface is exposed to natural influences such as wind, rainfall, etc. in open areas. The most natural solution to prevent erosion is to plant surfaces exposed to erosion. However, proper ground and natural conditions must be provided in order for planting to occur. Erosion is prevented in a fast and natural way and the loss of soil is reduced mostly. Lead to allowing plants to hold onto the soil with its three-dimensional and hollow structure are as follows: The types of geomat called MacMat that is used in a case study in Turkey in order to prevent water carry over due to rainfall. The geosynthetic combined with double twisted steel wire mesh. That consists of 95% Zn–5% Al alloy coated double twisted steel wire based that is a reinforced MacMat (geosynthetic three-dimensional erosion control mat) obtained by a polypropylene consisted (mesh type 8x10-Wire diam. 2.70 mm–95% Zn–5% Al alloy coated). That is developed by the progress of the technology. When using reinforced MacMat on top clay liners, fixing pins should not be used as they will rupture the mats. Mats are simply anchored (J Type) in the top trench and, if necessary, in intermediate berm trenches. If the slope angle greater than 20°, it is necessary to use additional rebar depending soil properties also. These applications may have specific technical and installation requirements. In that project, the main purpose is erosion control after that is greening. There is a slope area around the factory which is located in Gebze, İstanbul.Keywords: erosion, GeoMat, geosynthetic, slope
Procedia PDF Downloads 1765688 Free and Encapsulated (TiO2)2 Dimers into Carbon Nanotubes
Authors: S. Dargouthi, S. Boughdiri, B. Tangour
Abstract:
This work invoked two complementary parts. In the first, we performed a theoretical study of various dimers of molecular of titanium dioxide. Five structures were examined. Three among them, the (T), (C) and (T/P) isomers, may be considered as stable compounds because they represent absolute minima on their potential energy surfaces. (T) and (C) may coexist because they are separted by only 6.5 kcal mol-1 but (T/P) dimer is in a metastable state from an energetic point of view. Non bonded dimer (P) transforms into its homologue (O) which has been considered as transitory specie with low lifetime which evolves to (T) structure. In the second part, we highlight the possible stabilization of (T), (C) and (P) dimers by encapsulation in carbon nanotubes. This indicates the probable role that plays this transitory specie the polymerization process of molecular TiO2. Confinement is suitable to control the fast evolution process and could towards the synthesis of new titanium dioxide nanostructured materials. An alternative description of TiO2 polymorphs (Rutie, anatase et Brookite) is proposed from (T), (C) and (T/P) dimmers motifs.Keywords: titanium dioxide, carbon nanotube, confinement. encapsulation, transitory specie
Procedia PDF Downloads 2915687 The Exploration Targets of the Nanpu Sag: Insight from Organic Geochemical Characteristics of Source Rocks and Oils
Authors: Lixin Pei, Zhilong Huang, Wenzhe Gang
Abstract:
Organic geochemistry of source rocks and oils in the Nanpu Sag, Bohai Bay basin was studied on the basis of the results of Rock-Eval and biomarker. The possible source rocks consist of the third member (Es₃) and the first member (Es₁) of Shahejie formation and the third member of Dongying Formation (Ed₃) in the Nanpu Sag. The Es₃, Es₁, and Ed₃ source rock intervals in the Nanpu Sag all have high organic-matter richness and are at hydrocarbon generating stage, which are regarded as effective source rocks. The three possible source rock intervals have different biomarker associations and can be differentiated by gammacerane/αβ C₃₀ hopane, ETR ([C₂₈+C₂₉]/ [C₂₈+C₂₉+Ts]), C₂₇ diasterane/sterane and C₂₇/C₂₉ steranes, which suggests they deposited in different environments. Based on the oil-source rock correlation, the shallow oils mainly originated from the Es₃ and Es₁ source rocks in the Nanpu Sag. Through hydrocarbon generation and expulsion history of the source rocks, trap development history and accumulation history, the shallow oils mainly originated from paleo-reservoirs in the Es₃ and Es₁ during the period of Neotectonism, and the residual paleo-reservoirs in the Es₃ and Es₁ would be the focus targets in the Nanpu Sag; Bohai Bay Basin.Keywords: source rock, biomarker association, Nanpu Sag, Bohai Bay Basin
Procedia PDF Downloads 3735686 The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L
Authors: Lin Dong-Yih, Yang S. M., Huang B. W., Lian J. A.
Abstract:
Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests.Keywords: complex stainless steel, welding, phase formation, carbon element, sigma phase, delta ferrite
Procedia PDF Downloads 995685 Effect of Bored Pile Diameter in Sand on Friction Resistance
Authors: Ashraf Mohammed M. Eid, Hossam El Badry
Abstract:
The bored pile friction resistance may be affected by many factors such as the method of construction, pile length and diameter, the soil properties, as well as the depth below ground level. These factors can be represented analytically to study the influence of diameter on the unit skin friction. In this research, the Egyptian Code of soil mechanics is used to assess the skin friction capacity for either the ordinary pile diameter as well as for the large pile diameter. The later is presented in the code and through the work of some researchers based on the results of investigations adopted for a sufficient number of field tests. The comparative results of these researchers with respect to the Egyptian Code are used to check the adequacy of both methods. Based on the results of this study, the traditional static formula adopted for piles of diameter less than 60 cm may be continually used for larger piles by correlating the analyzed formulae. Accordingly, the corresponding modified angle of internal friction is concluded demonstrating a reduction of shear strength due to soil disturbance along the pile shaft. Based on this research the difference between driven piles and bored piles constructed in same soil can be assessed and a better understanding can be evaluated for the effect of different factors on pile skin friction capacity.Keywords: large piles, static formula, friction piles, sandy soils
Procedia PDF Downloads 5005684 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 3625683 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System
Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang
Abstract:
Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube
Procedia PDF Downloads 1135682 Olive-Mill Wastewater and Organo-Mineral Fertlizers Application for the Control of Parasitic Weed Phelipanche ramosa L. Pomel in Tomato
Authors: Grazia Disciglio, Francesco Lops, Annalisa Tarantino, Emanuele Tarantino
Abstract:
The parasitic weed specie Phelipanche ramosa (L) Pomel is one of the major constraints in tomato crop in Apulia region (southern Italy). The experimental was considered to investigate the effect of six organic compounds (Olive miller wastewater, Allil isothiocyanate®, Alfa plus K®, Radicon®, Rizosum Max®, Kendal Nem®) on the naturally infested field of tomato growing season in 2016. The randomized block design with 3 replicates was adopted. Tomato seedling were transplant on 19 May 2016. During the growing cycle of the tomato at 74, 81, 93 and 103 days after transplantation (DAT), the number of parasitic shoots (branched plants) that had emerged in each plot was determined. At harvesting on 13 September 2016 the major quanti-qualitative yield parameters were determined, including marketable yield, mean weight, dry matter, soluble solids, fruit colour, pH and titratable acidity. The treatments provided the results show that none of treatments provided complete control against P. ramosa. However, among the products tested Olive miller wastewater, Alfa plus K®, Rizosum Max® and Kendal Nem® products applied to the soil show the number of emerged shoots significantly lower than Radicon® and especially than the Allil isothiocyanate® treatment and the untreated control. Regarding the effect of different treatments on the tomato productive parameters, the marketable yield resulted significantly higher in the same mentioned treatments which gave the lower P. ramosa infestation. No significative differences for the other fruit characteristics were observed.Keywords: processing tomato crop, Phelipanche ramosa, olive-mill wastewater, organic fertilizers
Procedia PDF Downloads 3255681 Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines
Authors: N. E.Sam, S. R.Singh
Abstract:
Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered.Keywords: finite element, pasternak theory, seismic, soil-structure interaction, three-dimensional theory, winkler theory
Procedia PDF Downloads 745680 Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay
Authors: John Trihatmoko, Luky Handoko
Abstract:
A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions.Keywords: curing temperature, organic clay, bagasse ash, calcium carbide residue, unconfined compression strength
Procedia PDF Downloads 1255679 The Amount of Organic Phosphates (Like DPG) Existing in Blood is Determining Factor of Mammal’s Bulk
Authors: Ramin Amirmardfar
Abstract:
Throughout Necessary oxygen should be supplied for all cells of a mammal at any moment through blood to make it possible remain alive all cells the mammal’s body. In case a mammal’s bulk is large, there is a farther distance between cells in different tissues and mammals’ heart. Therefore red blood cells in bulky mammal’s body should be capable of conveying oxygen to farther distances. To make it practical, oxygen should be glued red blood cells tenaciously. In other words, cohesion strength of oxygen to red blood cell of bulky mammal’s blood should be much more than the same of small mammal’s blood. In mammal’s bodies, the controlling factor of amount of cohesion of oxygen to red blood cell, are organic phosphates (like DPG). The less DPG in red blood cells of a mammal, the more cohesion of oxygen to red blood cell (at the same rate). As much as oxygen is glued more tenacious to red blood cells, oxygen could been carried to farther distance and as much as oxygen could be conveyed to farther points of heart, bulk of mammal could be larger at the same rate.Keywords: mammals size, animals size, organic phosphates, DPG, red blood cell, metabolism
Procedia PDF Downloads 3555678 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software
Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor
Abstract:
Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D
Procedia PDF Downloads 3885677 Developing Allometric Equations for More Accurate Aboveground Biomass and Carbon Estimation in Secondary Evergreen Forests, Thailand
Authors: Titinan Pothong, Prasit Wangpakapattanawong, Stephen Elliott
Abstract:
Shifting cultivation is an indigenous agricultural practice among upland people and has long been one of the major land-use systems in Southeast Asia. As a result, fallows and secondary forests have come to cover a large part of the region. However, they are increasingly being replaced by monocultures, such as corn cultivation. This is believed to be a main driver of deforestation and forest degradation, and one of the reasons behind the recurring winter smog crisis in Thailand and around Southeast Asia. Accurate biomass estimation of trees is important to quantify valuable carbon stocks and changes to these stocks in case of land use change. However, presently, Thailand lacks proper tools and optimal equations to quantify its carbon stocks, especially for secondary evergreen forests, including fallow areas after shifting cultivation and smaller trees with a diameter at breast height (DBH) of less than 5 cm. Developing new allometric equations to estimate biomass is urgently needed to accurately estimate and manage carbon storage in tropical secondary forests. This study established new equations using a destructive method at three study sites: approximately 50-year-old secondary forest, 4-year-old fallow, and 7-year-old fallow. Tree biomass was collected by harvesting 136 individual trees (including coppiced trees) from 23 species, with a DBH ranging from 1 to 31 cm. Oven-dried samples were sent for carbon analysis. Wood density was calculated from disk samples and samples collected with an increment borer from 79 species, including 35 species currently missing from the Global Wood Densities database. Several models were developed, showing that aboveground biomass (AGB) was strongly related to DBH, height (H), and wood density (WD). Including WD in the model was found to improve the accuracy of the AGB estimation. This study provides insights for reforestation management, and can be used to prepare baseline data for Thailand’s carbon stocks for the REDD+ and other carbon trading schemes. These may provide monetary incentives to stop illegal logging and deforestation for monoculture.Keywords: aboveground biomass, allometric equation, carbon stock, secondary forest
Procedia PDF Downloads 2845676 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 315675 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement
Authors: M. Mlhem
Abstract:
Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.Keywords: additives, clay, compression strength, epoxy, stabilization
Procedia PDF Downloads 1275674 Experimental Study on Use of Crumb Rubber to Mitigate Expansive Soil Pressures on Basement Walls
Authors: Kwestan Salimi, Jenna Jacoby, Michelle Basham, Amy Cerato
Abstract:
The extreme annual weather patterns of the central United States have increased the need for underground shelters for protection from destructive tornadic activity. However, very few residential homes have basements due to the added construction expense and the prevalence of expansive soils covering the central portion of the United States. These expansive soils shrink and swell, increasing earth pressure on basement walls. To mitigate the effect of expansive soils on basement walls, this study performed bench-scale tests using a common natural expansive soil mitigated with a backfill layer of crumb rubber. The results revealed that at 80% soil compaction, a 1:6 backfill height to total height ratio produced a 66% reduction in swell pressure. However, this percent reduction decreased to 27% for 90% soil compaction. It was also found that there is a strong linear correlation between compaction percentage and reduction in swell pressure when using the same backfill height to total height ratio. Using this correlation and extrapolating to 95% compaction, the percent reduction in swell pressure was approximately 12%.Keywords: expansive soils, swell/shrink, swell pressure, stabilization, crumb rubber
Procedia PDF Downloads 1605673 Marine Fishing and Climate Change: A China’s Perspective on Fisheries Economic Development and Greenhouse Gas Emissions
Authors: Yidan Xu, Pim Martens, Thomas Krafft
Abstract:
Marine fishing, an energy-intensive activity, directly emits greenhouse gases through fuel combustion, making it a significant contributor to oceanic greenhouse gas (GHG) emissions and worsening climate change. China is the world’s second-largest economy and the top emitter of GHG emissions, and it carries a significant energy conservation and emission reduction burden. However, the increasing GHG emissions from marine fishing is an easily overlooked but essential issue in China. This study offers a diverse perspective by integrating the concepts of total carbon emissions, carbon intensity, and per capita carbon emissions as indicators into calculation and discussion. To better understand the GHG emissions-Gross marine fishery product (GFP) relationship and influencing factors in Chinese marine fishing, the relationship between GHG emissions and economic development in marine fishing, a comprehensive framework is developed by combining the environmental Kuznets curve, the Tapio elasticity index, and the decomposition model. Results indicated that (1) The GHG emissions increased from 16.479 to 18.601 million tons in 2001-2020, in which trawlers and gillnetter are the main source in fishing operation. (2) Total carbon emissions (TC) and CI presented the same decline as GHG emissions, while per capita carbon emissions (PC) displayed an uptrend. (32) GHG emissions and gross marine fishery product (GFP) presented an inverted U-shaped relationship in China; the turning point came in the 13th Five-year Plan period (2016-2020). (43) Most provinces strongly decoupled GFP and CI. Still, PC and TC need more effort to decouple. (54) GHG emissions promoted by an industry structure driven, though carbon intensity and industry scale aid in GHG emissions reduced. (5) Compare with TC and PC, CI has been relatively affected by COVID-19 in 2020. The rise in fish and seafood prices during COVID-19 has boosted the GFP.Keywords: marine fishing economy, greenhouse gas emission, fishery management, green development
Procedia PDF Downloads 685672 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles
Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego
Abstract:
Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline
Procedia PDF Downloads 4525671 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning
Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka
Abstract:
In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis
Procedia PDF Downloads 585670 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1495669 Conversion of Atmospheric Carbone Dioxide into Minerals at Room Conditions by Using the Sea Water Plus Various Additives
Authors: Muthana A. M. Jamel Al-Gburi
Abstract:
Elimination of carbon dioxide (CO2) gas from the atmosphere is very important but complicated since there is increasing in the amounts of carbon dioxide and other greenhouse gases in the atmosphere, which mainly caused by some of the human activities and the burning of fossil fuels. So that will lead to global warming. The global warming affects the earth temperature causing an increase to a higher level and, at the same time, creates tornadoes and storms. In this project, we are going to do a new technique for extracting carbon dioxide directly from the air and change it to useful minerals and Nano scale fibers made of carbon by using several chemical processes through chemical reactions. So, that could lead to an economical and healthy way to make some valuable building materials. Also, it may even work as a weapon against environmental change. In our device (Carbone Dioxide Domestic Extractor), we are using Ocean-seawater to dissolve the CO₂ gas and then converted it into carbonate minerals by using a number of additives like Shampoo, clay, and MgO. Note that the atmospheric air includes CO₂ gas, has circulated within the seawater by the air pump. More, that we will use a number of chemicals agents to convert the water acid into useful minerals. After we constructed the system, we did intense experiments and investigations to find the optimum chemical agent, which must be work at the environmental condition. Further to that, we will measure the solubility of CO₂ and other salts in the seawater.Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level
Procedia PDF Downloads 1115668 The Influence of Salt Body of J. Ech Cheid on the Maturity History of the Cenomanian: Turonian Source Rock
Authors: Mohamed Malek Khenissi, Mohamed Montassar Ben Slama, Anis Belhaj Mohamed, Moncef Saidi
Abstract:
Northern Tunisia is well known by its different and complex structural and geological zones that have been the result of a geodynamic history that extends from the early Mesozoic era to the actual period. One of these zones is the salt province, where the Halokinesis process is manifested by a number of NE/SW salt structures such as Jebel Ech-Cheid which represents masses of materials characterized by a high plasticity and low density. The salt masses extrusions that have been developed due to an extension that started from the late Triassic to late Cretaceous. The evolution of salt bodies within sedimentary basins have not only contributed to modify the architecture of the basin, but it also has certain geochemical effects which touch mainly source rocks that surround it. It has been demonstrated that the presence of salt structures within sedimentary basins can influence its temperature distribution and thermal history. Moreover, it has been creating heat flux anomalies that may affect the maturity of organic matter and the timing of hydrocarbon generation. Field samples of the Bahloul source rock (Cenomanan-Tunonian) were collected from different sights from all around Ech Cheid salt structure and evaluated using Rock-eval pyrolysis and GC/MS techniques in order to assess the degree of maturity evolution and the heat flux anomalies in the different zones analyze. The Total organic Carbon (TOC) values range between 1 to 9% and the (Tmax) ranges between 424 and 445°C, also the distribution of the source rock biomarkers both saturated and aromatic changes in a regular fashions with increasing maturity and this are shown in the chromatography results such as Ts/(Ts+Tm) ratios, 22S/(22S+22R) values for C31 homohopanes, ββ/(ββ+αα)20R and 20S/(20S+20R) ratios for C29 steranes which gives a consistent maturity indications and assessment of the field samples. These analyses are carried to interpret the maturity evolution and the heat flux around Ech Cheid salt structure through the geological history. These analyses also aim to demonstrate that the salt structure can have a direct effect on the geothermal gradient of the basin and on the maturity of the Bahloul Formation source rock. The organic matter has reached different stages of thermal maturity, but delineate a general increasing maturity trend. Our study confirms that the J. Ech Cheid salt body have on the first hand: a huge influence on the local distribution of anoxic depocentre at least within Cenomanian-Turonian time. In the second hand, the thermal anomaly near the salt mass has affected the maturity of Bahloul Formation.Keywords: Bahloul formation, depocentre, GC/MS, rock-eval
Procedia PDF Downloads 2405667 Elimination Study of Organic Pollutants from Leachate Technical Landfill; Using Fenton and Photo-Fenton Systems Combined with Biological Treatment
Authors: Belahmadi M. S. O., Abdessemed A., Benchiheub M., Doukali H., Kaid Kasbah K. M.
Abstract:
The aim of this study is to evaluate the quality of leachate generated by the Batna landfill site, and to verify the performance of various advanced oxidation processes, in particular the Fenton and Photo-Fenton systems combined with biological treatment to eliminate the recalcitrant organic matter contained in this effluent, and to preserve reverse osmosis membranes used for leachate treatment. The average values obtained are compared with national and international discharge standards. The results of physico-chemical analyses show that the leachate has an alkaline pH =8.26 and a high organic load with a low oxygen content. Mineral pollution is represented by high conductivity (38.3 mS/cm), high Kjeldahl nitrogen content (1266.504 mg/L) and ammoniacal nitrogen (1098.384 mg/L). The average pollution indicator parameters measured were: BOD5 = 1483.333 mg O2 /L, COD = 99790.244 mg O 2/L, TOC = 22400 mg C/L. These parameters exceed Algerian standards. Hence, there is a necessity to treat this effluent before discharging it into the environment. A comparative study was carried out to estimate the efficiency of two oxidation processes. Under optimum reaction conditions, TOC removal efficiencies of 63.43% and 73.4% were achieved for the Fenton and Photo-Fenton processes, respectively. COD removal rates estimated at 88% and 99.5% for the Fenton and Photo- Fenton processes, respectively. In addition, the Photo-Fenton + bacteria + micro- algae hybrid treatment gave removal efficiencies of around 92.24% for TOC and 99.9% for COD; -0.5 for AOS and 0.01 for CN. The results obtained during this study showed that a hybrid approach combining the PhotoFenton process and biological treatment appears to be a highly effective alternative for achieving satisfactory treatment, which aimed at exploiting the advantages of this method in terms of organic pollutant removal.Keywords: leachate, landfill, advanced oxidation processes, Fenton and Photo-Fenton systems, biological treatment, organic pollutants
Procedia PDF Downloads 67