Search results for: siamese networks
1043 Identification of Landslide Features Using Back-Propagation Neural Network on LiDAR Digital Elevation Model
Authors: Chia-Hao Chang, Geng-Gui Wang, Jee-Cheng Wu
Abstract:
The prediction of a landslide is a difficult task because it requires a detailed study of past activities using a complete range of investigative methods to determine the changing condition. In this research, first step, LiDAR 1-meter by 1-meter resolution of digital elevation model (DEM) was used to generate six environmental factors of landslide. Then, back-propagation neural networks (BPNN) was adopted to identify scarp, landslide areas and non-landslide areas. The BPNN uses 6 environmental factors in input layer and 1 output layer. Moreover, 6 landslide areas are used as training areas and 4 landslide areas as test areas in the BPNN. The hidden layer is set to be 1 and 2; the hidden layer neurons are set to be 4, 5, 6, 7 and 8; the learning rates are set to be 0.01, 0.1 and 0.5. When using 1 hidden layer with 7 neurons and the learning rate sets to be 0.5, the result of Network training root mean square error is 0.001388. Finally, evaluation of BPNN classification accuracy by the confusion matrix shows that the overall accuracy can reach 94.4%, and the Kappa value is 0.7464.Keywords: digital elevation model, DEM, environmental factors, back-propagation neural network, BPNN, LiDAR
Procedia PDF Downloads 1441042 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 4671041 Harmonics and Flicker Levels at Substation
Authors: Ali Borhani Manesh, Sirus Mohammadi
Abstract:
Harmonic distortion is caused by nonlinear devices in the power system. A nonlinear device is one in which the current is not proportional to the applied voltage. Harmonic distortion is present to some degree on all power systems. Proactive monitoring of power quality disturbance levels by electricity utilities is vital to allow cost-effective mitigation when disturbances are perceived to be approaching planning levels and also to protect the security of customer installations. Ensuring that disturbance levels are within limits at the HV and EHV points of supply of the network is essential if satisfactory levels downstream are to be maintained. This paper presents discussion on a power quality monitoring campaign performed at the sub-transmission point of supply of a distribution network with the objective of benchmarking background disturbance levels prior to modifications to the substation and to ensure emissions from HV customers and the downstream MV networks are within acceptable levels. Some discussion on the difficulties involved in such a study is presented. This paper presents a survey of voltage and current harmonic distortion levels at transmission system in Kohgiloye and Boyrahmad. The effects of harmonics on capacitors and power transformers are discussed.Keywords: power quality, harmonics, flicker, measurement, substation
Procedia PDF Downloads 6961040 Self-Disclosure of Location: Influences of Personality Traits, Intrinsic Motivations and Extrinsic Motivations
Authors: Chechen Liao, Sheng Yi Lin
Abstract:
With the popularity of smartphone usage and the flourish of social networks, many people began to use the 'check-in' functions to share their location information and days of live and self-disclosure. In order to increase exposure and awareness, some stores provide discounts and other benefits to attract consumers to 'check-in' in their stores. The purpose of this study was to investigate whether personality traits, intrinsic motivations, extrinsic motivations, and privacy concerns would affect self-disclosure of location for consumers. Research data were collected from 407 individuals that have used Facebook check-in in Taiwan. This study used SmartPLS 2.0 structural equation modeling to validate the model. The results show that information sharing, information storage, enjoyment, self-presentation, get a feedback, economic reward, and keep up with trends had significant positive effects on self-disclosure. While extroversion and openness to use have significant positive effects on self-disclosure, conscientiousness and privacy concerns have significant negative effects on self-disclosure. The results of the study provide academic and practical implications for the future growth of location-based self-disclosure.Keywords: check-in, extrinsic motivation, intrinsic motivation, personality trait, self-disclosure
Procedia PDF Downloads 1701039 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories
Authors: Heba M. Wagih, Hoda M. O. Mokhtar
Abstract:
Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.Keywords: human behavior trajectory, location-based social network, ontology, social network
Procedia PDF Downloads 4521038 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 901037 Posts by Influencers Promoting Water Saving: The Impact of Distance and the Perception of Effectiveness on Behavior
Authors: Sancho-Esper Franco, Rodríguez Sánchez Carla, Sánchez Carolina, Orús-Sanclemente Carlos
Abstract:
Water scarcity is a reality that affects many regions of the world and is aggravated by climate change and population growth. Saving water has become an urgent need to ensure the sustainability of the planet and the survival of many communities, where youth and social networks play a key role in promoting responsible practices and adopting habits that contribute to environmental preservation. This study analyzes the persuasion capacity of messages designed to promote pro-environmental behaviors among youth. Specifically, it studies how the efficacy (effectiveness) of the response (personal response efficacy/effectiveness) and the perception of distance from the source of the message influence the water-saving behavior of the audience. To do so, two communication frameworks are combined. First, the Construal Level Theory, which is based on the concept of "psychological distance", that is, people, objects or events can be perceived as psychologically near or far, and this subjective distance (i.e., social, temporal, or spatial) determines their attitudes, emotions, and actions. This perceived distance can be social, temporal, or spatial. This research focuses on studying the spatial distance and social distance generated by cultural differences between influencers and their audience to understand how cultural distance can influence the persuasiveness of a message. Research on the effects of psychological distance between influencers-followers in the pro-environmental field is very limited, being relevant because people could learn specific behaviors suggested by opinion leaders such as influencers in social networks. Second, different approaches to behavioral change suggest that the perceived efficacy of a behavior can explain individual pro-environmental actions. People will be more likely to adopt a new behavior if they perceive that they are capable of performing it (efficacy belief) and that their behavior will effectively contribute to solving that problem (personal response efficacy). It is also important to study the different actors (social and individual) that are perceived as responsible for addressing environmental problems. Specifically, we analyze to what extent the belief individual’s water-saving actions are effective in solving the problem can influence water-saving behavior since this individual effectiveness increases people's sense of obligation and responsibility with the problem. However, in this regard, empirical evidence presents mixed results. Our study addresses the call for experimental studies manipulating different subtypes of response effectiveness to generate robust causal evidence. Based on all the above, this research analyzes whether cultural distance (local vs. international influencer) and the perception of effectiveness of behavior (personal response efficacy) (personal/individual vs. collective) affect the actual behavior and the intention to conserve water of social network users. An experiment of 2 (local influencer vs. international influencer) x 2 (effectiveness of individual vs. collective response) is designed and estimated. The results show that a message from a local influencer appealing to individual responsibility exerts greater influence on intention and actual water-saving behavior, given the cultural closeness between influencer-follower, and the appeal to individual responsibility increases the feeling of obligation to participate in pro-environmental actions. These results offer important implications for social marketing campaigns that seek to promote water conservation.Keywords: social marketing, influencer, message framing, experiment, personal response efficacy, water saving
Procedia PDF Downloads 621036 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems
Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi
Abstract:
The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.Keywords: mobile databases, synchronization, cache, response time
Procedia PDF Downloads 4051035 Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 2401034 Microporous 3D Aluminium Metal-Organic Frameworks in Chitosan Based Mixed Matrix Membrane for Ethanol/Water Separation
Authors: Madhan Vinu, Yue-Chun Jiang, Yi-Feng Lin, Chia-Her Lin
Abstract:
An effective approach to enhance the ethanol/water pervaporation of mixed matrix membranes prepared from three microporous aluminium based metal-organic frameworks (MOFs), [Al(OH)(BPDC)] (DUT-5), [Al(OH)(NDC)] (DUT-4) and [Al(OH)(BzPDC)] (CAU-8) have been synthesized by employing solvothermal reactions. Interestingly, all Al-MOFs showed attractive surface area with microporous 12.3, 10.2 and 8.0 Å for DUT-5, DUT-4 and CAU-8 MOFs which are confirmed through N₂ gas sorption measurements. All the microporous compounds are highly stable as confirmed by thermogravimetric analysis and temperature-dependent powder X-ray diffraction measurements. Furthermore, the synthesized microporous MOF particles of DUT-5, DUT-4, and CAU-8 were successfully incorporated into biological chitosan (CS) membranes to form DUT-5@CS, DUT-4@CS, and CAU-8@CS membranes. The different MOF loadings such as 0.1, 0.15, and 0.2 wt% in CS networks have been prepared, and the same were used to separate mixtures of water and ethanol at 25ºC in the pervaporation process. In particular, when 0.15 wt% of DUT-5 was loaded, MOF@CS membrane displayed excellent permeability and selectivity in ethanol/water separation than that of the previous literature. These CS based membranes separation through functionalized microporous MOFs reveals the key governing factors that are essential for designing novel MOF membranes for bioethanol purification.Keywords: metal-organic framework, microporous materials, separation, chitosan membranes
Procedia PDF Downloads 2211033 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing
Authors: Brwa Abdulrahman Abubaker
Abstract:
Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning
Procedia PDF Downloads 211032 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan
Authors: Ater Amogpai
Abstract:
Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar photovoltaic (PV) into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300MW; however, the installed capacity is around 212.4M. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2t of carbon dioxide (CO2) annually.Keywords: renewable energy, hydropower, solar energy, photovoltaic, South Sudan
Procedia PDF Downloads 1411031 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 1451030 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 1441029 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution
Abstract:
Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.Keywords: air pollution, commercial microwave links, rainfall, washout
Procedia PDF Downloads 1111028 Antecedents of Knowledge Sharing: Investigating the Influence of Knowledge Sharing Factors towards Postgraduate Research Supervision
Authors: Arash Khosravi, Mohamad Nazir Ahmad
Abstract:
Today’s economy is a knowledge-based economy in which knowledge is a crucial facilitator to individuals, as well as being an instigator of success. Due to the impact of globalization, universities face new challenges and opportunities. Accordingly, they ought to be more innovative and have their own competitive advantages. One of the most important goals of universities is the promotion of students as professional knowledge workers. Therefore, knowledge sharing and transferring at tertiary level between students and supervisors is vital in universities, as it decreases the budget and provides an affordable way of doing research. Knowledge-sharing impact factors can be categorized into three groups, namely: organizational, individual and technical factors. There are some individual barriers to knowledge sharing, namely: lack of time and trust, lack of communication skills and social networks. IT systems such as e-learning, blogs and portals can increase knowledge sharing capability. However, it must be stated that IT systems are only tools and not solutions. Individuals are still responsible for sharing information and knowledge. This paper proposes new research model to examine the effect of individual factors and organisational factors, namely: learning strategy, trust culture, supervisory support, as well as technological factor on knowledge sharing in a research supervision process at the University of Technology Malaysia.Keywords: knowledge management, knowledge sharing, research supervision, knowledge transferring
Procedia PDF Downloads 4451027 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis
Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan
Abstract:
We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.
Procedia PDF Downloads 1391026 Digital Adoption of Sales Support Tools for Farmers: A Technology Organization Environment Framework Analysis
Authors: Sylvie Michel, François Cocula
Abstract:
Digital agriculture is an approach that exploits information and communication technologies. These encompass data acquisition tools like mobile applications, satellites, sensors, connected devices, and smartphones. Additionally, it involves transfer and storage technologies such as 3G/4G coverage, low-bandwidth terrestrial or satellite networks, and cloud-based systems. Furthermore, embedded or remote processing technologies, including drones and robots for process automation, along with high-speed communication networks accessible through supercomputers, are integral components of this approach. While farm-level adoption studies regarding digital agricultural technologies have emerged in recent years, they remain relatively limited in comparison to other agricultural practices. To bridge this gap, this study delves into understanding farmers' intention to adopt digital tools, employing the technology, organization, environment framework. A qualitative research design encompassed semi-structured interviews, totaling fifteen in number, conducted with key stakeholders both prior to and following the 2020-2021 COVID-19 lockdowns in France. Subsequently, the interview transcripts underwent thorough thematic content analysis, and the data and verbatim were triangulated for validation. A coding process aimed to systematically organize the data, ensuring an orderly and structured classification. Our research extends its contribution by delineating sub-dimensions within each primary dimension. A total of nine sub-dimensions were identified, categorized as follows: perceived usefulness for communication, perceived usefulness for productivity, and perceived ease of use constitute the first dimension; technological resources, financial resources, and human capabilities constitute the second dimension, while market pressure, institutional pressure, and the COVID-19 situation constitute the third dimension. Furthermore, this analysis enriches the TOE framework by incorporating entrepreneurial orientation as a moderating variable. Managerial orientation emerges as a pivotal factor influencing adoption intention, with producers acknowledging the significance of utilizing digital sales support tools to combat "greenwashing" and elevate their overall brand image. Specifically, it illustrates that producers recognize the potential of digital tools in time-saving and streamlining sales processes, leading to heightened productivity. Moreover, it highlights that the intent to adopt digital sales support tools is influenced by a market mimicry effect. Additionally, it demonstrates a negative association between the intent to adopt these tools and the pressure exerted by institutional partners. Finally, this research establishes a positive link between the intent to adopt digital sales support tools and economic fluctuations, notably during the COVID-19 pandemic. The adoption of sales support tools in agriculture is a multifaceted challenge encompassing three dimensions and nine sub-dimensions. The research delves into the adoption of digital farming technologies at the farm level through the TOE framework. This analysis provides significant insights beneficial for policymakers, stakeholders, and farmers. These insights are instrumental in making informed decisions to facilitate a successful digital transition in agriculture, effectively addressing sector-specific challenges.Keywords: adoption, digital agriculture, e-commerce, TOE framework
Procedia PDF Downloads 601025 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit
Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang
Abstract:
A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.Keywords: high gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra series
Procedia PDF Downloads 3401024 Presenting Internals of Networks Using Bare Machine Technology
Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha
Abstract:
Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.Keywords: bare machine computing, online research, network technology, visualizing network internals
Procedia PDF Downloads 1721023 A Study on Solutions to Connect Distribution Power Grid up to Renewable Energy Sources at KEPCO
Authors: Seung Yoon Hyun, Hyeong Seung An, Myeong Ho Choi, Sung Hwan Bae, Yu Jong Sim
Abstract:
In 2015, the southern part of the Korean Peninsula has 8.6 million poles, 1.25 million km power lines, and 2 million transformers, etc. It is the massive amount of distribution equipments which could cover a round-trip distance from the earth to the moon and 11 turns around the earth. These distribution equipments are spread out like capillaries and supplying power to every corner of the Korean Peninsula. In order to manage these huge power facility efficiently, KEPCO use DAS (Distribution Automation System) to operate distribution power system since 1997. DAS is integrated system that enables to remotely supervise and control breakers and switches on distribution network. Using DAS, we can reduce outage time and power loss. KEPCO has about 160,000 switches, 50%(about 80,000) of switches are automated, and 41 distribution center monitoring&control these switches 24-hour 365 days to get the best efficiency of distribution networks. However, the rapid increasing renewable energy sources become the problem in the efficient operation of distributed power system. (currently 2,400 MW, 75,000 generators operate in distribution power system). In this paper, it suggests the way to interconnect between renewable energy source and distribution power system.Keywords: distribution, renewable, connect, DAS (Distribution Automation System)
Procedia PDF Downloads 6211022 Agent Based Location Management Protocol for Mobile Adhoc Networks
Authors: Mallikarjun B. Channappagoudar, Pallapa Venkataram
Abstract:
The dynamic nature of Mobile adhoc network (MANET) due to mobility and disconnection of mobile nodes, leads to various problems in predicting the movement of nodes and their location information updation, for efficient interaction among the application specific nodes. Location management is one of the main challenges to be considered for an efficient service provision to the applications of a MANET. In this paper, we propose a location management protocol, for locating the nodes of a MANET and to maintain uninterrupted high-quality service for distributed applications by intelligently anticipating the change of location of its nodes. The protocol predicts the node movement and application resource scarcity, does the replacement with the chosen nodes nearby which have less mobility and rich in resources, with the help of both static and mobile agents, and maintains the application continuity by providing required network resources. The protocol has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. It consumes much less time (response time), gives better location accuracy, utilize less network resources, and reduce location management overhead.Keywords: mobile agent, location management, distributed applications, mobile adhoc network
Procedia PDF Downloads 3941021 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers
Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang
Abstract:
Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction
Procedia PDF Downloads 3311020 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 3031019 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models
Authors: Abdulrahman R. Alenezi
Abstract:
This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation
Procedia PDF Downloads 261018 The Role of KontraS as Track-6 on Multi Track Diplomacy for Conflict Resolution: Case Study Human Rights Crisis in Myanmar in 2015
Authors: Hardi Alunaza, Mauidhotu Rofiq
Abstract:
This research is attempted to describe the role of KontraS as track-6 on multi track diplomacy for conflict resolution in Myanmar in 2015. The researcher took the specific interest on multi track diplomacy and transnational advocacy concepts to analyze the phenomena. Furthermore, this essay is using the descriptive method with a qualitative approach. The data collection technique is literature study consisting of books, journals, and including data from the reliable website in supporting the explanation of this research. The result of this research is divided into two important points in explaining the role of KontraS in cases of human rights crisis in Myanmar. First, KontraS as human rights NGO in Indonesia was able to advocate against human rights violence that occurred in other countries by encouraging Indonesian Government to take part in the resolution of human rights issues affecting the Rohingya people in Burma. Also, KontraS take advantages of transnational advocacy networks as a form of politics and accountabilities responsibility of Non-Governmental Organization against human rights crisis in other countries.Keywords: conflict resolution, human rights crisis, multi track diplomacy, transnational advocacy
Procedia PDF Downloads 3231017 Improving Forecasting Demand for Maintenance Spare Parts: Case Study
Authors: Abdulaziz Afandi
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: neural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 1271016 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 4751015 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks
Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain
Abstract:
As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)
Procedia PDF Downloads 1921014 A Survey of Recognizing of Daily Living Activities in Multi-User Smart Home Environments
Authors: Kulsoom S. Bughio, Naeem K. Janjua, Gordana Dermody, Leslie F. Sikos, Shamsul Islam
Abstract:
The advancement in information and communication technologies (ICT) and wireless sensor networks have played a pivotal role in the design and development of real-time healthcare solutions, mainly targeting the elderly living in health-assistive smart homes. Such smart homes are equipped with sensor technologies to detect and record activities of daily living (ADL). This survey reviews and evaluates existing approaches and techniques based on real-time sensor-based modeling and reasoning in single-user and multi-user environments. It classifies the approaches into three main categories: learning-based, knowledge-based, and hybrid, and evaluates how they handle temporal relations, granularity, and uncertainty. The survey also highlights open challenges across various disciplines (including computer and information sciences and health sciences) to encourage interdisciplinary research for the detection and recognition of ADLs and discusses future directions.Keywords: daily living activities, smart homes, single-user environment, multi-user environment
Procedia PDF Downloads 141