Search results for: micro grid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2812

Search results for: micro grid

1042 A Study on Thermodynamic Prototype for Vernacular Dwellings in Perspective of Bioclimatic Architecture

Authors: Zhenzhen Zhang

Abstract:

As major human activity places, buildings consume a large amount of energy, and residential buildings are very important part of it. An extensive research work had been conducted to research how to achieve low energy goals, vernacular dwellings and contemporary technologies are two prime parameters among them. On one hand, some researchers concentrated on vernacular dwellings which were climate-response design and could offer a better living condition without mechanic application. On the other hand, a series concepts appeared based on modern technologies, surplus energy house, bioclimatic architecture, etc. especially thermodynamic architecture which integrates the micro-climate, human activity, thermal comfort, and energy efficiency into design. How to blend the two parameters is the key research topic now, which would act as the key to how to integrate the ancient design wise and contemporary new technologies. By several cases study, this paper will represent the evolution of thermodynamic architecture and then try to develop one methodology about how to produce a typical thermodynamic prototype for one area by blending the ancient building wise and contemporary concepts to achieve both low energy consumption and surplus energy.

Keywords: vernacular dwelling, thermodynamic architecture, bioclimatic architecture, thermodynamic prototype, surplus energy

Procedia PDF Downloads 290
1041 Bacterial Contamination of Kitchen Sponges and Cutting Surfaces and Disinfection Procedures

Authors: Hayyan I Al Taweil

Abstract:

Background: The most common of bacterium in kitchen sponges and cutting surfaces which can play a task within the cross-contamination of foods, fomites and hands by foodborne pathogens. Aims and Objectives: This study investigated the incidence of bacterium in kitchen Sponge, and cutting surfaces. Material and methods: a complete of twenty four kitchen Sponges were collected from home kitchens and therefore the numbers of mesotrophic microorganism, coliform microorganism, E. coli, Salmonella, genus {pseudomonas|bacteria genus} and staphylococci in every kitchen Sponges were determined. Microbiological tests of all sponges for total mesophilic aerobic microorganism, S. aureus, Pseudomonas, Salmonella spp., and E. coli were performed on days 3, 7, and 14 by sampling. The sponges involved in daily use in kitchens countenosely with the dishwasher detergent a minimum of doubly daily Results: Results from the overall mesophilic aerobic microorganism, indicate a major increase within the variety of log CFU/ml. the amount of E. coli was reduced, Salmonella spp. was stabled, S. aureus was enhanced from the sponges throughout fourteen days. Genus Pseudomonas was enhanced and was the dominant micro flora within the sponges throughout fourteen days.

Keywords: Kitchen Sponges, Microbiological Contamination, Disinfection; cutting surface; , Cross-Contamination

Procedia PDF Downloads 145
1040 The Effects of Microstructure of Directionally Solidified Al-Si-Fe Alloys on Micro Hardness, Tensile Strength, and Electrical Resistivity

Authors: Sevda Engin, Ugur Buyuk, Necmettin Marasli

Abstract:

Directional solidification of eutectic alloys attracts considerable attention because of microhardness, tensile strength, and electrical resistivity influenced by eutectic structures. In this research, we examined processing of Al–Si–Fe (Al–11.7wt.%Si–1wt.%Fe) eutectic by directional solidification. The alloy was prepared by vacuum furnace and directionally solidified in Bridgman-type equipment. During the directional solidification process, the growth rates utilized varied from 8.25 m/s to 164.80 m/s. The Al–Si–Fe system showed an eutectic transformation, which resulted in the matrix Al, Si and Al5SiFe plate phases. The eutectic spacing between (λ_Si-λ_Si, λ_(Al_5 SiFe)-λ_(Al_5 SiFe)) was measured. Additionally, the microhardness, tensile strength, and electrical resistivity of the alloy were determined using directionally solidified samples. The effects of growth rates on microhardness, tensile strength, and electrical resistivity for directionally solidified Al–Si–Fe eutectic alloy were investigated, and the relationships between them were experimentally obtained. It was found that the microhardness, tensile strength, and electrical resistivity were affected by both eutectic spacing and the solidification parameter.

Keywords: directional solidification, aluminum alloy, microstructure, electrical properties, tensile test, hardness test

Procedia PDF Downloads 295
1039 Integrated Flavor Sensor Using Microbead Array

Authors: Ziba Omidi, Min-Ki Kim

Abstract:

This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications.

Keywords: optical sensor, semiconductor manufacturing, smell sensor, taste sensor

Procedia PDF Downloads 439
1038 Structural Optimization of Shell and Arched Structures

Authors: Mitchell Gohnert, Ryan Bradley

Abstract:

This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: arches, economy of stresses, material strength, optimization, shells

Procedia PDF Downloads 116
1037 Effect of Naphtha on the Composition of a Heavy Crude, in Addition to a Cycle Steam Stimulation Process

Authors: A. Guerrero, A. Leon, S. Munoz, M. Sandoval

Abstract:

The addition of solvent to cyclic steam stimulation is done in order to reduce the solvent-vapor ratio at late stages of the process, the moment in which this relationship increases significantly. The study of the use of naphtha in addition to the cyclic steam stimulation has been mainly oriented to the effect it achieves on the incremental recovery compared to the application of steam only. However, the effect of naphtha on the reactivity of crude oil components under conditions of cyclic steam stimulation or if its effect is the only dilution has not yet been considered, to author’s best knowledge. The present study aims to evaluate and understand the effect of naphtha and the conditions of cyclic steam stimulation, on the remaining composition of the improved oil, as well as the main mechanisms present in the heavy crude - naphtha interaction. Tests were carried out with the system solvent (naphtha)-oil (12.5° API, 4216 cP @ 40° C)- steam, in a batch micro-reactor, under conditions of cyclic steam stimulation (250-300 °C, 400 psi). The characterization of the samples obtained was carried out by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and NMR (Nuclear Magnetic Resonance) techniques. The results indicate that there is a rearrangement of the microstructure of asphaltenes, resulting in a decrease in these and an increase in lighter components such as resins.

Keywords: composition change, cyclic steam stimulation, interaction mechanism, naphtha

Procedia PDF Downloads 136
1036 Study on The Model of Microscopic Contact Parameters for Grinding M300 Using Elastic Abrasive Tool

Authors: Wu Xiaojun, Liu Ruiping, Yu Xingzhan, Wu Qian

Abstract:

In precision grinding, utilizing the elastic matrix ball has higher processing efficiency and better superficial quality than traditional grinding. The diversity of characteristics which elastic abrasive tool contact with bend surface results in irregular wear abrasion,and abrasive tool machining status get complicated. There is no theoretical interpretation that parameters affect the grinding accuracy.Aiming at corrosion resistance, wear resistance and other characteristics of M 300 material, it is often used as a material on aerospace precision components. The paper carried out grinding and polishing experiments by using material of M 300,to theoretically show the relationship between stress magnitude and grinding efficiency,and predict the optimal combination of grinding parameter for effective grinding, just for the high abrasion resistance features of M 300, analyzing the micro-contact of elastic ball abrasive tool (Whetstone), using mathematical methods deduce the functional relationship between residual peak removal rate and the main parameters which impact the grinding accuracy on the plane case.Thus laying the foundation for the study of elastic abrasive prediction and compensation.

Keywords: flexible abrasive tool, polishing parameters, Hertz theory, removal rate

Procedia PDF Downloads 545
1035 Effect of Additives on Post-hydrogen Decompression Microstructure and Mechanical Behaviour of PA11 Involved in Type-IV Hydrogen Tank Liners

Authors: Mitia Ramarosaona, Sylvie Castagnet, Damien Halm, Henri-Alexandre Cayzac, Nicolas Dufaure, Philippe Papin

Abstract:

In light of the ongoing energy transition, 'Infrastructure developments' for hydrogen transportation and storage raise studies on the materials employed for hyperbaric vessels. Type IV tanks represent the most mature choice for gaseous hydrogen storage at high pressure – 70MPa. These tanks are made of a composite shell and an internal hydrogen-exposed polymer liner. High pressure conditions lead to severe mechanical loading requiring high resistance. Liner is in contact with hydrogen and undergoes compression – decompression cycles during system filling and emptying. Stresses induced by this loading, coupled with hydrogen diffusion, were found to cause microstructural changes and degradation of mechanical behaviour after decompression phase in some studies on HDPE. These phenomena are similar to those observed in elastomeric components like sealing rings, which can affect permeability and lead to their failure. They may lead to a hydrogen leak, compromising security and tightness of the tank. While these phenomena have been identified in elastomers, they remain less addressed in thermoplastics and consequences post-decompression damages on mechanical behaviour and to the best of author's knowledge was not studied either. Different additives are also included in liner formulation to improve its behaviour. This study aimed to better understand damage micro-mechanisms in PA11s exposed to hydrogen compression-decompression cycles and understand if additives influence their resistance. Samples of pure, plasticized and impact-modified PA11s are exposed to 1, 3 and 8 pressure cycles including hydrogen saturation at 70MPa followed by severe 15-second decompression. After hydrogen exposure and significantly later than full desorption, the residual mechanical behaviour is characterized through impact and monotonic tensile tests, on plain and notched samples. Several techniques of microstructure and micro-nano damage characterization are carried out to assess whether changes in macroscopic properties are driven by microstructural changes in the crystalline structure (SAXS-WAXS acquisitions and SEM micrographs). Thanks to WAXS acquisition and microscopic observation, the effects due to additives and pressure consequences can be decorrelated. Pure PA11 and PA11 with a low percentage of additives show an increase in stress level at the first yielding point after hydrogen cycles. The amplitude of the stress increase is more important in formulation with additives because of changes in PA11 matrix behavior and environment created by additives actions. Plasticizer modifies chain mobility leading to microstructure changes while other additives, more ductile than PA11, is able to cavitate inside PA11 matrix when undergoing decompression. On plasticized formulation, plasticizer migration are suspected to enhance impact of hydrogen cycling on mechanical behaviour. Compared to the literature on HDPE and elastomers, no damages like cavitation or cracking could be evidenced from SAXS experiments on every PA11 formulation tested. In perspectives, on all formulation, experimental work is underway to confirm influence of residual pressure level after decompression on post-decompression damages level, the aim is to better understand the factors affecting the mechanical behavior of thermoplastics subject to mechanical solicitation from decompression in hydrogen tank liners, not mechanical behaviour of liner in hydrogen tanks directly.

Keywords: additives, hydrogen tank liner, microstructural analysis, PA11

Procedia PDF Downloads 45
1034 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted a high shear and almost zeros moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading

Procedia PDF Downloads 452
1033 Hydroclean Smartbin Solution for Plastic Pollution Crisis

Authors: Anish Bhargava

Abstract:

By 2050, there will be more plastic than fish in our oceans. 51 trillion micro-plastics pollute our waters and contaminate the food on our plates, increasing the risk of tumours and diseases such as cancer. Our product is a solution to the ever-growing problem of plastic pollution. We call it the SmartBin. The SmartBin is a cylindrical device which will float just below the surface of the water, able to move with the aid of 4 water thrusters situated on the sides. As it floats, our SmartBin will suck water into itself and pump it out through the bottom. All waste is collected into a reusable filter including microplastics measuring down to 1.5mm. A speaker emitting sound at a frequency of 9 hertz ensures marine life stays away from the SmartBin. Featured along with our product is a smartphone app which will enable the user to designate an area for the SmartBin to cover on a satellite image. The SmartBin will then return to its start position near the shore, configured through the app. As global pressure to tackle water pollution continues to increase, environmental spending increases too. As our product provides an effective solution to this issue, we can seize the opportunity and scale our company. Our product is unparalleled. It can move at a high speed, covering a wide area rather than being restricted to one position. We target not only oceans and sea-shores, but also rivers, lakes, reservoirs and canals, as they are much easier to access and control.

Keywords: water, plastic, pollution, solution, hydroclean, smartbin, cleanup

Procedia PDF Downloads 206
1032 Integration of Artificial Neural Network with Geoinformatics Technology to Predict Land Surface Temperature within Sun City Jodhpur, Rajasthan, India

Authors: Avinash Kumar Ranjan, Akash Anand

Abstract:

The Land Surface Temperature (LST) is an essential factor accompanying to rise urban heat and climate warming within a city in micro level. It is also playing crucial role in global change study as well as radiation budgets measuring in heat balance studies. The information of LST is very substantial to recognize the urban climatology, ecological changes, anthropological and environmental interactions etc. The Chief motivation of present study focus on time series of ANN model that taken a sequence of LST values of 2000, 2008 and 2016, realize the pattern of variation within the data set and predict the LST values for 2024 and 2032. The novelty of this study centers on evaluation of LST using series of multi-temporal MODIS (MOD 11A2) satellite data by Maximum Value Composite (MVC) techniques. The results derived from this study endorse the proficiency of Geoinformatics Technology with integration of ANN to gain knowledge, understanding and building of precise forecast from the complex physical world database. This study will also focus on influence of Land Use/ Land Cover (LU/LC) variation on Land Surface Temperature.

Keywords: LST, geoinformatics technology, ANN, MODIS satellite imagery, MVC

Procedia PDF Downloads 240
1031 Design and Fabrication of an Electrostatically Actuated Parallel-Plate Mirror by 3D-Printer

Authors: J. Mizuno, S. Takahashi

Abstract:

In this paper, design and fabrication of an actuated parallel-plate mirror based on a 3D-printer is described. The mirror and electrode layers are fabricated separately and assembled thereafter. The alignment is performed by dowel pin-hole pairs fabricated on the respective layers. The electrodes are formed on the surface of the electrode layer by Au ion sputtering using a suitable mask, which is also fabricated by a 3D-printer.For grounding the mirror layer, except the contact area with the electrode paths, all the surface is Au ion sputtered. 3D-printers are widely used for creating 3D models or mock-ups. The authors have recently proposed that these models can perform electromechanical functions such as actuators by suitably masking them followed by metallization process. Since the smallest possible fabrication size is in the order of sub-millimeters, these electromechanical devices are named by the authors as SMEMS (Sub-Milli Electro-Mechanical Systems) devices. The proposed mirror described in this paper which consists of parallel-plate electrostatic actuators is also one type of SMEMS devices. In addition, SMEMS is totally environment-clean compared to MEMS (Micro Electro-Mechanical Systems) fabrication processes because any hazardous chemicals or gases are utilized.

Keywords: MEMS, parallel-plate mirror, SMEMS, 3D-printer

Procedia PDF Downloads 437
1030 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels

Authors: O. Altuntaş, A. Güral

Abstract:

The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.

Keywords: powder metallurgy steel, bainite, cementite, austempering and spheroidization heat treatment

Procedia PDF Downloads 161
1029 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices

Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett

Abstract:

Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.

Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor

Procedia PDF Downloads 219
1028 Design and Radio Frequency Characterization of Radial Reentrant Narrow Gap Cavity for the Inductive Output Tube

Authors: Meenu Kaushik, Ayon K. Bandhoyadhayay, Lalit M. Joshi

Abstract:

Inductive output tubes (IOTs) are widely used as microwave power amplifiers for broadcast and scientific applications. It is capable of amplifying radio frequency (RF) power with very good efficiency. Its compactness, reliability, high efficiency, high linearity and low operating cost make this device suitable for various applications. The device consists of an integrated structure of electron gun and RF cavity, collector and focusing structure. The working principle of IOT is a combination of triode and klystron. The cathode lies in the electron gun produces a stream of electrons. A control grid is placed in close proximity to the cathode. Basically, the input part of IOT is the integrated structure of gridded electron gun which acts as an input cavity thereby providing the interaction gap where the input RF signal is applied to make it interact with the produced electron beam for supporting the amplification phenomena. The paper presents the design, fabrication and testing of a radial re-entrant cavity for implementing in the input structure of IOT at 350 MHz operating frequency. The model’s suitability has been discussed and a generalized mathematical relation has been introduced for getting the proper transverse magnetic (TM) resonating mode in the radial narrow gap RF cavities. The structural modeling has been carried out in CST and SUPERFISH codes. The cavity is fabricated with the Aluminum material and the RF characterization is done using vector network analyzer (VNA) and the results are presented for the resonant frequency peaks obtained in VNA.

Keywords: inductive output tubes, IOT, radial cavity, coaxial cavity, particle accelerators

Procedia PDF Downloads 124
1027 Discrete Element Method Simulation of Crushable Pumice Sand

Authors: Sayed Hessam Bahmani, Rolsndo P. Orense

Abstract:

From an engineering point of view, pumice particles are problematic because of their crushability and compressibility due to their vesicular nature. Currently, information on the geotechnical characteristics of pumice sands is limited. While extensive empirical and laboratory tests can be implemented to characterize their behavior, these are generally time-consuming and expensive. These drawbacks have motivated attempts to study the effects of particle breakage of pumice sand through the Discrete Element Method (DEM). This method provides insights into the behavior of crushable granular material at both the micro and macro-level. In this paper, the results of single-particle crushing tests conducted in the laboratory are simulated using DEM through the open-source code YADE. This is done to better understand the parameters necessary to represent the pumice microstructure that governs its crushing features, and to examine how the resulting microstructure evolution affects a particle’s properties. The DEM particle model is then used to simulate the behavior of pumice sand during consolidated drained triaxial tests. The results indicate the importance of incorporating particle porosity and unique surface textures in the material characterization and show that interlocking between the crushed particles significantly influences the drained behavior of the pumice specimen.

Keywords: pumice sand, triaxial compression, simulation, particle breakage

Procedia PDF Downloads 245
1026 Comparison of Real-Time PCR and FTIR with Chemometrics Technique in Analysing Halal Supplement Capsules

Authors: Mohd Sukri Hassan, Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman

Abstract:

Halal authentication and verification in supplement capsules are highly required as the gelatine available in the market can be from halal or non-halal sources. It is an obligation for Muslim to consume and use the halal consumer goods. At present, real-time polymerase chain reaction (RT-PCR) is the most common technique being used for the detection of porcine and bovine DNA in gelatine due to high sensitivity of the technique and higher stability of DNA compared to protein. In this study, twenty samples of supplements capsules from different products with different Halal logos were analyzed for porcine and bovine DNA using RT-PCR. Standard bovine and porcine gelatine from eurofins at a range of concentration from 10-1 to 10-5 ng/µl were used to determine the linearity range, limit of detection and specificity on RT-PCR (SYBR Green method). RT-PCR detected porcine (two samples), bovine (four samples) and mixture of porcine and bovine (six samples). The samples were also tested using FT-IR technique where normalized peak of IR spectra were pre-processed using Savitsky Golay method before Principal Components Analysis (PCA) was performed on the database. Scores plot of PCA shows three clusters of samples; bovine, porcine and mixture (bovine and porcine). The RT-PCR and FT-IR with chemometrics technique were found to give same results for porcine gelatine samples which can be used for Halal authentication.

Keywords: halal, real-time PCR, gelatine, chemometrics

Procedia PDF Downloads 241
1025 The Effects of Fertilizer in the Workplace on Male Infertility: About Workers of Unit NPK in Complex Fertial Annaba

Authors: B. Loukil, L. Mallem, M. S. Boulakoud

Abstract:

Inorganic fertilizers consist mainly of salts of ammonium nitrate, phosphate and potassium, the combination of primary nutrients NPK including secondary and micro nutrients are essential for plant growth, used for intensive agriculture, ranching, and horticultural crops, to increase soil fertility and ensure sustainable crop production. The manufacture of fertilizers is generally at a high temperature and high pressure, in the presence of several highly hazardous chemicals, dust and gases. These products are absorbed high in the airway, increasing the airway resistance thereby adversely affecting the pulmonary functions of workers. A study was conducted on 34 employees, especially exposed to nitrate derivatives. A questionnaire was prepared and distributed to all employees in the unit. The workers were divided into two groups according to age. Several hormonal parameters Assay were measured. The results of the questionnaire have detected a fertility problem, Concerning the hormones a significant reduction in the concentration of testosterone in both groups and LH in the group aged 30 to 40 year were noted compared to the control. However, an increase in the concentration of prolactin in both groups compared to the control. There was a significant decrease in FSH in the group aged 30 to 40 always in compared with the control group.

Keywords: fertilizers, healthy worker, risk, fertility

Procedia PDF Downloads 399
1024 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis

Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya

Abstract:

The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.

Keywords: failure, mechanical properties, microstructure, Raman spectroscopy

Procedia PDF Downloads 155
1023 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition

Authors: F. Laatar, S. Ktifa, H. Ezzaouia

Abstract:

Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.

Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties

Procedia PDF Downloads 377
1022 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation

Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun

Abstract:

The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.

Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence

Procedia PDF Downloads 332
1021 On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana

Authors: Rafael Alvarenga, Hubert Herbaux, Laurent Linguet

Abstract:

The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach.

Keywords: PV power forecasting, uncertainty quantification, optimal scheduling, power systems

Procedia PDF Downloads 87
1020 Biosynthesis of Natural and Halogenated Plant Alkaloids in Yeast

Authors: Beata J. Lehka, Samuel A. Bradley, Frederik G. Hansson, Khem B. Adhikari, Daniela Rago, Paulina Rubaszka, Ahmad K. Haidar, Ling Chen, Lea G. Hansen, Olga Gudich, Konstantina Giannakou, Yoko Nakamura, Thomas Dugé de Bernonville, Konstantinos Koudounas, Sarah E. O’Connor, Vincent Courdavault, Jay D. Keasling, Jie Zhang, Michael K. Jensen

Abstract:

Monoterpenoid indole alkaloids (MIAs) represent a large class of natural plant products with marketed pharmaceutical activities against a wide range of applications, including cancer and mental disorders. Halogenated MIAs have shown improved pharmaceutical properties; however, characterisation and synthesis of new-to-nature halogenated MIAs remain a challenge in slow-growing plants with limited genetic tractability. Here, we demonstrate a platform for de novo biosynthesis of two bioactive MIAs, serpentine and alstonine, in baker’s yeast Saccharomyces cerevisiae, reaching titers of 8.85 mg/L and 4.48 mg/L, respectively, when cultivated in fed-batch micro bioreactors. Using this MIA biosynthesis platform, we undertake a systematic exploration of the derivative space surrounding these compounds and produce halogenated MIAs. The aim of the current study is to develop a fermentation process for halogenated MIAs.

Keywords: monoterpenoid indole alkaloids, Saccharomyces cerevisiae, halogenated derivatives, fermentation

Procedia PDF Downloads 210
1019 Correlation Mapping for Measuring Platelet Adhesion

Authors: Eunseop Yeom

Abstract:

Platelets can be activated by the surrounding blood flows where a blood vessel is narrowed as a result of atherosclerosis. Numerous studies have been conducted to identify the relation between platelets activation and thrombus formation. To measure platelet adhesion, this study proposes an image analysis technique. Blood samples are delivered in the microfluidic channel, and then platelets are activated by a stenotic micro-channel with 90% severity. By applying proposed correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) was estimated without labeling platelets. In order to evaluate the performance of correlation mapping on the detection of platelet adhesion, the effect of tile size was investigated by calculating 2D correlation coefficients with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient is observed with the optimum tile size of 5×5 pixels. As the area of the platelet adhesion increases, the platelets plug the channel and there is only a small amount of blood flows. This image analysis could provide new insights for better understanding of the interactions between platelet aggregation and blood flows in various physiological conditions.

Keywords: platelet activation, correlation coefficient, image analysis, shear rate

Procedia PDF Downloads 335
1018 The Mechanism of Antimicrobial Activity and Antioxidant Effects of the Essential Oil and the Methanolic Extract of Carum montanum (Coss. et Dur.) Benth. Et Hook. Aerial Parts from Algeria

Authors: Meriem El Kolli, Hocine Laouer, Hayet El Kolli, Salah Akkal

Abstract:

The methanolic extract (ME) of C. montanum obtained by a hydo-alcoholic maceration and its polyphenol content was evaluated by Folin-Ciocalteu method. This extract and C. montanum essential oil were screened for antimicrobial activity against 21 microbial strains by agar diffusion method. MICs of the EO were determined by the broth micro dilution method. The mechanism of action of the EO was determined on the susceptible strains by the time kill assay and the lysis experience. Antioxidant properties were studied by both free DPPH radical scavenging and reducing power techniques. The TPC in the ME showed a high level of 101.50 ± 5.33 mg GAE /mg. B. cereus was the most sensitive strain with MIC of 55.5 µg/ml , then K. pneumoniae (111 µg/ml). A remarkable decrease in a survival rate as well as in the absorbance at 260 nm were recorded, which suggest that the cytoplasm membrane is one of the targets of the EO. Antioxidant effects were concentration dependent and IC50 values were 1.09 ± 0.37 µg/ml for the EO and 65.04 ± 0.00 µg/ml for the ME by DPPH method and a reducing power dose-dependent. In conclusion, C. montanum extracts showed potent which could be exploited in the food industry for food preservation.

Keywords: C. montanum, Apiaceae, essential oils, antimicrobial activity, antioxidant activity, reducing power

Procedia PDF Downloads 237
1017 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics

Authors: Neha Singh

Abstract:

The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.

Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits

Procedia PDF Downloads 261
1016 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow

Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng

Abstract:

The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.

Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling

Procedia PDF Downloads 147
1015 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method

Authors: Ashkan Nazari, Saied Taheri

Abstract:

Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.

Keywords: friction, finite element, multi-scale modeling, rubber

Procedia PDF Downloads 137
1014 Mineralisation and Fluid Inclusions Studies of the Fluorite Deposit at Jebel Mecella, North Eastern Tunisia

Authors: Miladi Yasmine, Bouhlel Salah, Garnit Hechmi, David Banks

Abstract:

The Jebel Mecella F (Ba-Pb-Zn) ore deposits of the Zaghouan district are located in northeastern Tunisia, 60 km south of Tunis. The host rocks belong to the Ressas Formation of Kimmeridgian-Tithonian age and lower Cretaceous layers. Mineralisations occur as stratiform lenses and fracture fillings. The ore mineral assemblage is composed of fluorite, barite, sphalerite galena, and quartz. Primary fluid inclusions in sphalerite have homogenization temperatures ranging from 129 to 145°C final melting temperature range from -14.9 to -10.0, corresponding to salinities of 14.0 to 17.7 wt% NaCl equivalent. Fluid inclusions in fluorite homogenize to the liquid phase between 116 and 160°C. The final ice melting temperature ranges from -23 to -15 °C, corresponding to salinities between 17 and 24 wt% NaCl equivalent. The LAICP-MS analyses of the fluid inclusions in fluorite show that these fluids are dominated by Na>K>Mg. Furthermore, the high K/Na values from fluid inclusions suggest the brine interacted with K-rich rocks in the basement or in siliciclastic sediments in the basins. The ore fluids in Jebel Mecella are highly saline and Na-K dominated with lower Mg concentrations, and come from the leaching of the dolomitic host rocks. These results are compatible with Mississippi-Valley-type mineralizing fluids.

Keywords: Jebel Mecella, fluid inclusions, micro thermometry, LA-ICP-MS

Procedia PDF Downloads 197
1013 Assessment of Forage Utilization for Pasture-Based Livestock Production in Udubo Grazing Reserve, Bauchi State

Authors: Mustapha Saidu, Bilyaminu Mohammed

Abstract:

The study was conducted in Udubo Grazing Reserve between July 2019 and October 2019 to assess forage utilization for pasture-based livestock production in reserve. The grazing land was cross-divided into grids, where 15 coordinates were selected as the sample points. Grids of one-kilometer interval were made. The grids were systematically selected 1 grid after 7 grids. 1 × 1-meter quadrat was made at the coordinate of the selected grids for measurement, estimation, and sample collection. The results of the study indicated that Zornia glochidiatah has the highest percent of species composition (42%), while Mitracarpus hirtus has the lowest percent (0.1%). Urochloa mosambicensis has 48 percent of height removed and 27 percent used by weight, Zornia glochidiata 60 percent of height removed and 57 percent used by weight, Alysicapus veginalis has 55 percent of height removed, and 40 percent used by weight, and Cenchrus biflorus has 40 percent of height removed and 28 percent used by weight. The target is 50 percent utilization of forage by weight during a grazing period as well as at the end of the grazing season. The study found that Orochloa mosambicensis, Alysicarpus veginalis, and Cenchrus biflorus had lower percent by weight which is normal, while Zornia glochidiata had a higher percent by weight which is an indication of danger. The study recommends that the identification of key plant species in pasture and rangeland is critical to implementing a successful grazing management plan. There should be collective action and promotion of historically generated grazing knowledge through public and private advocacies.

Keywords: forage, grazing reserve, live stock, pasture, plant species

Procedia PDF Downloads 89