Search results for: impact models
15113 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck
Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu
Abstract:
In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption
Procedia PDF Downloads 14015112 Impact of Foliar Application of Zinc on Micro and Macro Elements Distribution in Phyllanthus amarus
Authors: Nguyen Cao Nguyen, Krasimir I. Ivanov, Penka S. Zapryanova
Abstract:
The present study was carried out to investigate the interaction of foliar applied zinc with other elements in Phyllanthus amarus plants. The plant samples for our experiment were collected from Lam Dong province, Vietnam. Seven suspension solutions of nanosized zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with different Zn concentration were used. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe, Mn) and macro (Ca, Mg, P and K) nutrients in plant roots, and stems and leaves were determined. It was concluded that the zinc content of plant roots varies narrowly, with no significant impact of ZnHN fertilization. The same trend can be seen in the content of Cu, Mn, and macronutrients. The zinc content of plant stems and leaves varies within wide limits, with the significant impact of ZnHN fertilization. The trends in the content of Cu, Mn, and macronutrients are kept the same as in the root, whereas the iron trends to increase its content at increasing the zinc content.Keywords: Phyllanthus amarus, Zinc, Micro and macro elements, foliar fertilizer
Procedia PDF Downloads 15115111 Exploration of Bullying Perceptions in Adolescents in Sekolah Menengah Kejuruan Negeri 1 Manado
Authors: Madjid Nancy, Rakinaung Natalia, Lumowa Fresy
Abstract:
Background: Bullying becomes one of the problems that concern the world of education, especially in adolescents, which has a negative impact on learning achievement, psychology, and physical health. The psychological impact is shame, depression, distress, fear, sadness, and anxiety, so that if prolonged leave can lead to depression in the victim. While the impact on physical health in the form of bruises on the hit area, blisters, swelling and in more severe cases will lead to death. Objectives: This study aims to explore the perception of bullying in adolescent students Sekolah Menengah Kejuruan (SMK) Negeri 1 Manado and the people associated with that adolescent students. Methods: This research uses descriptive qualitative research design and using thematic analysis, and supported by Urie Bronfenbrenner Ecological Framework. The data collection that will be used is by in-depth interview. Sampling using purposive sampling and snowball techniques. This research was conducted at SMK Negeri 1 Manado. Result: From the analysis obtained three themes with the categories: 1) the perception of bullying with categories are: Understanding of Bullying and The Impact of Bullying, 2) the originator of bullying with categories are: Fulfillment of Youth Development Tasks and Needs, Peers Influence, and Family Communication; 3) the effort to handle bullying with categories are: the Individual Coping and Teacher Role. Conclusion: This research get three themes, those are perception of bullying, bullying’s originator and the effort of handling bullying.Keywords: adolscent, students, bullying, perception
Procedia PDF Downloads 13915110 Social Marketing – An Integrated and Comprehensive Nutrition Communication Strategy to Improve the Iron Nutriture among Preschool Children
Authors: Manjula Kola, K. Chandralekha
Abstract:
Anaemia is one of the world’s most widespread health problems. Prevalence of anemia in south Asia is among the highest in the world. Iron deficiency anemia accounts for almost 85 percent of all types of anemia in India and affects more than half of the total population. Women of childbearing age particularly pregnant women, infants, preschool children and adolescents are at greatest risk of developing iron deficiency anemia. In India, 74 percent children between 6-35 months of age are anemic. Children between 1-6 years in major cities are found with a high prevalence rate of 64.8 percent. Iron deficiency anemia is not only a public health problem, but also a development problem. Its prevention and reduction must be viewed as investment in human capital that will enhance development and reduce poverty. Ending this hidden hunger in the form of iron deficiency is the most important achievable international health goal. Eliminating the underlying problem is essential to the sustained elimination of the iron deficiency anemia. The intervention programmes toward the sustained elimination need to be broadly based so that interventions become accepted community practices. Hence, intervention strategies need to go well beyond traditional health and nutrition systems and based upon empowering people and communities so that they will be capable of arranging for and sustaining an adequate intake of foods with respect to iron, independent of external support. Such strategies must necessarily be multisectoral and integrate interventions with social communications, evaluation and surveillance. The main objective of the study was to design a community based Nutrition intervention using theoretical framework of social marketing to sustain improvement of iron nutriture among preschool children. In order to carryout the study eight rural communities In Chittoor district of Andhra Pradesh, India were selected. A formative research was carryout for situational analysis and baseline data was generated with regard to demographic and socioeconomic status, dietary intakes, Knowledge, Attitude and Practices of the mothers of preschool children, clinical and hemoglobin status of the target group. Based on the formative research results, the research area was divides into four groups as experimental area I,II,III and control area. A community based, integrated and comprehensive social marketing intervention was designed based on various theories and models of nutrition education/ communication. In Experimental area I, Nutrition intervention using social marketing and a weekly iron folic acid supplementation was given to improve iron nutriture of preschool children. In experimental area II, Social marketing alone was implemented and in experimental area III Iron supplementation alone was given. No intervention was given in control area. The Impact evaluation revealed that among different interventions tested, the integrated social marketing intervention resulted best outcomes. The overall observations of the study state that social marketing, an integrated and functional strategy for nutrition communication to prevent and control iron deficiency. Various theoretical frame works / models for nutrition communication facilitate to design culturally appropriate interventions thus achieved improvements in the knowledge, attitude and practices there by resulting successful impact on nutritional status of the target groups.Keywords: anemia, iron deficiency, social marketing, theoretical framework
Procedia PDF Downloads 40515109 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 36915108 Integrated Environmental Management System and Environmental Impact Assessment in Evaluation of Environmental Protective Action
Authors: Moustafa Osman
Abstract:
The paper describes and analyses different good practice examples of protective levels, and initiatives actions (“framework conditions”) and encourages the uptake of environmental management systems (EMSs) to small and medium-sized enterprises (SMEs). Most of industries tend to take EMS as tools leading towards sustainability planning. The application of these tools has numerous environmental obligations that neither suggests decision nor recommends what a company should achieve ultimately. These set up clearly defined criteria to evaluate environmental protective action (EEPA) into sustainability indicators. The physical integration will evaluate how to incorporate traditional knowledge into baseline information, preparing impact prediction, and planning mitigation measures in monitoring conditions. Thereby efforts between the government, industry and community led protective action to concern with present needs for future generations, meeting the goal of sustainable development. The paper discusses how to set out distinct aspects of sustainable indicators and reflects inputs, outputs, and modes of impact on the environment.Keywords: environmental management, sustainability, indicators, protective action
Procedia PDF Downloads 44315107 An Exploration of Athlete Tattoos
Authors: Chen-Yu Chien, Shiow-Fang Shieh
Abstract:
Tattoos are the most intimate form of body art. Unlike other art forms, tattoos emphasize breaking through tradition, innovation, and creativity. The designs created by tattoo artists are often regarded as true works of art. In recent years, there has been a notable increase in athletes with tattoos, thereby amplifying the beliefs and psychological expressions conveyed by tattoos on athletes compared to the past. The primary objectives of this study are 1. to explore and understand the presence and significance of tattoos for athletes and 2. to examine the impact of tattoos on athletes' performance. This study employs a semi-structured, in-depth interview method utilizing purposive sampling. The participants are athletes who have engaged in regular exercise for more than three years and have tattoos. A total of 10 athletes were interviewed, including 9 males and 1 female, aged between 24 and 43 years, each with different sports specializations. The sample was collected using snowball sampling. Results and Discussion: 1. For athletes, tattoos are not merely body decorations but serve to reinforce their inner beliefs, thereby enhancing their athletic performance. 2. Tattoos have a positive impact on the appearance of athletes. 3. The influence of tattoos on athletic performance extends beyond physical appearance, serving as a psychological motivation and support. 4. Individuals with tattoos tend to be more outgoing and extroverted, with higher impulsivity and adventurousness in their athletic endeavors. Conclusion: I. For athletes, tattoos not only have a positive impact on their appearance but also strengthen their internal beliefs. II. Athletes with tattoos exhibit not only greater extroversion and openness but also heightened impulsivity and adventurousness in their athletic performance.Keywords: tattoo, athletes, athletic performance, psychological impact, body art
Procedia PDF Downloads 6115106 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 9815105 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa
Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete
Abstract:
This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model
Procedia PDF Downloads 36915104 Machine Learning-Based Workflow for the Analysis of Project Portfolio
Authors: Jean Marie Tshimula, Atsushi Togashi
Abstract:
We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.Keywords: machine learning, topic modeling, natural language processing, big data
Procedia PDF Downloads 16815103 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 47915102 Fault Analysis of Induction Machine Using Finite Element Method (FEM)
Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi
Abstract:
The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis
Procedia PDF Downloads 30115101 Influence of Building Orientation and Post Processing Materials on Mechanical Properties of 3D-Printed Parts
Authors: Raf E. Ul Shougat, Ezazul Haque Sabuz, G. M. Najmul Quader, Monon Mahboob
Abstract:
Since there are lots of ways for building and post processing of parts or models in 3D printing technology, the main objective of this research is to provide an understanding how mechanical characteristics of 3D printed parts get changed for different building orientations and infiltrates. Tensile, compressive, flexure, and hardness test were performed for the analysis of mechanical properties of those models. Specimens were designed in CAD software, printed on Z-printer 450 with five different build orientations and post processed with four different infiltrates. Results show that with the change of infiltrates or orientations each of the above mechanical property changes and for each infiltrate the highest tensile strength, flexural strength, and hardness are found for such orientation where there is the lowest number of layers while printing.Keywords: 3D printing, building orientations, infiltrates, mechanical characteristics, number of layers
Procedia PDF Downloads 28015100 Exploration of Critical Success Factors in Business and Management in Artificial Intelligence Era
Authors: Najah Kalifah Almazmomi
Abstract:
In the time of artificial intelligence (AI), there is a need to know the determinants of success in business management, which are taking on a new dimension. This research purports to scrutinize the Critical Success Factors (CSFs) that drive and ignite the fire of success to help uncover the subtle and profound dynamics that might be operative in organizations. By means of a systematic literature review and a number of empirical methods, the paper is aimed at determining and assessing the key aspects of CSFs, putting emphasis on their role and meaning in the context of AI technology adoption. Some central features such as leadership ways, innovation models, strategic thinking methodologies, organizational culture transformations, and human resource management approaches are compared and contrasted with the AI-driven revolution. Additionally, this research will explore the interactive effects of these factors and their joint impact on the success, survival, and flexibility of a business in the current environment, which is changing due to AI development. Through the use of different qualitative and quantitative methodologies, the research concludes that the findings are significant in understanding the relative roles of individual CSFs and in studying the interactions between them in such an AI-enabled business environment.Keywords: critical success factors, business and management, artificial intelligence, leadership strategies
Procedia PDF Downloads 3715099 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models
Authors: C. F. Kumru, C. Kocatepe, O. Arikan
Abstract:
In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.Keywords: electric field, energy transmission line, finite element method, pylon
Procedia PDF Downloads 72815098 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 13715097 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches
Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand
Abstract:
Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis
Procedia PDF Downloads 7515096 Impact of Gold and Silver Nanoparticles on Terrestrial Flora and Microorganisms
Authors: L. Steponavičiūtė, L. Steponavičienė
Abstract:
Despite the rapid nanotechnology progress and recognition, its potential impact in ecosystems and health of humans is still not fully known. In this paper, the study of ecotoxicological dangers of nanomaterials is presented. By chemical reduction method, silver (AgNPs) and gold (AuNPs) nanoparticles were synthesized, characterized and used in experiments to examine their impact on microorganisms (Escherichia coli, Staphylococcus aureus and Candida albicans) and terrestrial flora (Phaseolus vulgaris and Lepidium sativum). The results collected during experiments with terrestrial flora show tendentious growth stimulations caused by gold nanoparticles. In contrast to these results, silver nanoparticle solutions inhibited growth of beans and garden cress, compared to control samples. The results obtained from experiments with microorganisms show similarities with ones collected from experiments with terrestrial plants. Samples treated with AuNPs of size 13 nm showed stimulation in the growth of the colonies compared with 3,5 nm size nanoparticles.Keywords: nanomaterials, ecotoxicology, nanoparticles, ecosystems
Procedia PDF Downloads 30815095 Effect of Male and Female Early Childhood Teacher's Educational Practices on Child' Social Adaptation
Authors: Therese Besnard
Abstract:
Internationally in early childhood education (ECE), the great majority of teachers are women. Some groups believe that a greater male teacher presence in ECE would be beneficial for children, specifically for boys as it could offer a positive male model. It is a common belief that children would benefit from being exposed to both male and female models. Some believe that women are naturally better suited to offer quality care to young children comparatively to men. Some authors bring forth that after equivalent training, differences in the educational practices are purely individual and do not depend on the teacher’s gender. Others believe that a greater male presence in ECE would increase the risk of pedophilia or child abuse. The few scientific studies in this area suggest that differences could exist between male and female ECE teacher, in particular when it comes to play which is the mainstay of the ECE educational program. Male teachers describe themselves as being more playful and having a greater tendency to initiate physical and turbulent play comparatively to female teachers, who describe themselves as favoring games that are calmer and focused on social interaction. Observed directly, male teachers appear more actively engaged in play with children and propose more motor play than female teachers. Furthermore children who have both male and female teachers for one year show less behavior difficulties when compared to children with only female teachers. Despite a variety of viewpoints we don’t know if the educational practices of male ECE teachers, (emotional support, classroom organization or instructional support) are different than the educational practices of female teachers and if these practices are linked with children’s adaptation. This study compares the educational practices of 37 ECE teachers (57 % male) and analyses the link with children' social adaptation (n=221). Educational practices were assessed through observational measurements with the Classroom Assessment Scoring System (CLASS) in a natural class environment. Child social adaptation was assessed with the Social Competence and Behavior Evaluation (SCBE). Observational data reveals no differences between men's and women's scale of the CLASS. Results using Multilevel models analyses suggest that the ability to propose good classroom organization and give good instructional support are linked with better child' social adaptation, and that is always true for men and women teachers. The results are discussed on the basis of their potential impact on future educational interventions.Keywords: child social adaptation, early childhood education, educational practices, men teacher
Procedia PDF Downloads 37315094 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 13915093 Numerical Investigation of Embankments for Protecting Rock Fall
Authors: Gökhan Altay, Cafer Kayadelen
Abstract:
Rock fall is a movement of huge rock blocks from dip slopes due to physical effects. It generally occurs where loose tuffs lying under basalt flow or stringcourse is being constituted by limestone layers which stand on clay. By corrosion of some parts, big cracks occur on layers and these cracks continue to grow with the effect of freezing-thawing. In this way, the breaking rocks fall down from these dip slopes. Earthquakes which can induce lots of rock movements is another reason for rock fall events. In Turkey, we have a large number of regions prone to the earthquake as in the World so this increases the possibility of rock fall events. A great number of rock fall events take place in Turkey as in the World every year. The rock fall events occurring in urban areas cause serious damages in houses, roads and workplaces. Sometimes it also hinders transportation and furthermore it maybe kills people. In Turkey, rock fall events happen mostly in Spring and Winter because of freezing- thawing of water in rock cracks frequently. In mountain and inclined areas, rock fall is risky for engineering construction and environment. Some countries can invest significant money for these risky areas. For instance, in Switzerland, approximately 6.7 million dollars is spent annually for a distance of 4 km, to the systems to prevent rock fall events. In Turkey, we have lots of urban areas and engineering structure that have the rock fall risk. The embankments are preferable for rock fall events because of its low maintenance and repair costs. Also, embankments are able to absorb much more energy according to other protection systems. The current design method of embankments is only depended on field tests results so there are inadequate studies about this design method. In this paper, the field test modeled in three dimensions and analysis are carried out with the help of ANSYS programme. By the help of field test from literature the numerical model validated. After the validity of numerical models additional parametric studies performed. Changes in deformation of embankments are investigated by the changes in, geometry, velocity and impact height of falling rocks.Keywords: ANSYS, embankment, impact height, numerical analysis, rock fall
Procedia PDF Downloads 51115092 Abusing Business Rescue Proceedings by a Director and Its Impact on the Ethics of Good Corporate Governance
Authors: Simphiwe Phungula
Abstract:
In the past few years, the impact of Covid 19 in South Africa has given rise to the need for business rescue proceedings where businesses are financially distressed. Even more, the looting unrest and floods in certain parts of South Africa have also played an impact on businesses’ financial stress. To help financially distressed companies in South Africa, the Companies Act (“the Act”) has introduced a business rescue procedure aimed at helping those ailing companies. This mechanism is aimed at rehabilitating financially distressed companies so that they become solvent again and if it is not possible, results in a better return for the company’s creditors or shareholders than would result from the immediate liquidation of the company. Unfortunately, since the introduction of business rescue, evidence has shown that sometimes companies resort to business rescue proceedings to seek refuge from creditors even if the facts do not justify that the company should commence business rescue. In most cases, the abuse of business rescue is done by directors who pass a resolution that the company should embark on business rescue even if evidence shows that the company should not commence the proceedings. This is done notwithstanding the principles of King Code IV which requires ethics and good governance on the part of directors. This paper demonstrates how the abuse of business rescue can impact the principles of good governance and ethics of King Code IV. It argues that directors should rethink their corporate practices, and ethical standards when passing a resolution to commence business rescue proceedings.Keywords: business rescue, king code, corporate governance, ethics
Procedia PDF Downloads 10415091 Impact of Gaming Environment in Education
Authors: Md. Ataur Rahman Bhuiyan, Quazi Mahabubul Hasan, Md. Rifat Ullah
Abstract:
In this research, we did explore the effectiveness of the gaming environment in education and compared it with the traditional education system. We take several workshops in both learning environments. We measured student’s performance by providing a grading score (by professional academics) on their attitude in different criteria. We also collect data from survey questionnaires to understand student’s experiences towards education and study. Finally, we examine the impact of the different learning environments by applying statistical hypothesis tests, the T-test, and the ANOVA test.Keywords: gamification, game-based learning, education, statistical analysis, human-computer interaction
Procedia PDF Downloads 23015090 The Impact of E-Marketing on Consumer Satisfaction
Authors: Nadia Fatima Zahra Malki
Abstract:
The world has witnessed a great revolution in to field of technology and communication, especially after the opening of markets (globalization). This has led to a change from traditional marketing, which depends on direct selling and buying, to electronic marketing; consequently, different corporations have adopted this new concept so as to gain time, effort and money for the sake of the customer’s satisfaction. The main reason for this study is to know the impact of electronic marketing on consumer satisfaction in the fields of communication through practical studies of Ooredoo customers, where the descriptive analytical method was used with statistics to analyze the results of the survey. It concluded that e-marketing effectively contributes to customer satisfaction.Keywords: e-marketing, consumer, consumer behavior, satisfaction
Procedia PDF Downloads 5015089 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 15615088 Digital Nudge, Social Proof Nudge and Trust on Brand loyalty
Authors: Mirza Amin Ul Haq
Abstract:
Purpose – the purpose of conducting this research is to check the impact of nudges constructs, whether they create an encouragement factor with consumer brand loyalty and relating of word-of-mouth power have some kind of effect with all independent variables. Desin/Methodology/Approach – this study adopted the four constructs (i.e., Digital Nudge, Social Proof Nudge, Trust, and the mediator Word of Mouth) and explore its effect and connection with Brand Loyalty. A total of 390 respondents were selected for self-administrated questionnaire to obtain the finding of the research. Findings – the impact and cause between the constructs were done through structural equation modeling. The findings show a positive impact of social proof nudge and word of mouth whereas, digital nudge and trust have the weaker influence on the consumer choices when talk about brand loyalty. Originality/Value – Further implication for research and its marketing strategies in the field of clothing industry creating brand loyalty with customer.Keywords: nudge, digital nudge, social proof, online buying, brand loyalty, trust, word of mouth
Procedia PDF Downloads 11115087 The Impact of Teacher's Emotional Intelligence on Students' Motivation to Learn
Authors: Marla Wendy Spergel
Abstract:
The purpose of this qualitative study is to showcase graduated high school students’ to voice on the impact past teachers had on their motivation to learn, and if this impact has affected their post-high-school lives. Through a focus group strategy, 21 graduated high school alumni participated in three separate focus groups. Participants discussed their former teacher’s emotional intelligence skills, which influenced their motivation to learn or not. A focused review of the literature revealed that teachers are a major factor in a student’s motivation to learn. This research was guided by Bandura’s Social Cognitive Theory of Motivation and constructs related to learning and motivation from Carl Rogers’ Humanistic Views of Personality, and from Brain-Based Learning perspectives with a major focus on the area of Emotional Intelligence. Findings revealed that the majority of participants identified teachers who most motivated them to learn and demonstrated skills associated with emotional intelligence. An important and disturbing finding relates to the saliency of negative experiences. Further work is recommended to expand this line of study in Higher Education, perform a long-term study to better gain insight into long-term benefits attributable to experiencing positive teachers, study the negative impact teachers have on students’ motivation to learn, specifically focusing on student anxiety and acquired helplessness.Keywords: emotional intelligence, learning, motivation, pedagogy
Procedia PDF Downloads 15715086 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 14515085 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time
Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar
Abstract:
The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors
Procedia PDF Downloads 7415084 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 319