Search results for: xylem filter
695 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques
Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan
Abstract:
A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104
Procedia PDF Downloads 588694 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology
Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi
Abstract:
This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter
Procedia PDF Downloads 427693 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm
Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang
Abstract:
In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm
Procedia PDF Downloads 149692 Digital Watermarking Based on Visual Cryptography and Histogram
Authors: R. Rama Kishore, Sunesh
Abstract:
Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.Keywords: digital watermarking, visual cryptography, histogram, butter worth filter
Procedia PDF Downloads 355691 Segmenting 3D Optical Coherence Tomography Images Using a Kalman Filter
Authors: Deniz Guven, Wil Ward, Jinming Duan, Li Bai
Abstract:
Over the past two decades or so, Optical Coherence Tomography (OCT) has been used to diagnose retina and optic nerve diseases. The retinal nerve fibre layer, for example, is a powerful diagnostic marker for detecting and staging glaucoma. With the advances in optical imaging hardware, the adoption of OCT is now commonplace in clinics. More and more OCT images are being generated, and for these OCT images to have clinical applicability, accurate automated OCT image segmentation software is needed. Oct image segmentation is still an active research area, as OCT images are inherently noisy, with the multiplicative speckling noise. Simple edge detection algorithms are unsuitable for detecting retinal layer boundaries in OCT images. Intensity fluctuation, motion artefact, and the presence of blood vessels also decrease further OCT image quality. In this paper, we introduce a new method for segmenting three-dimensional (3D) OCT images. This involves the use of a Kalman filter, which is commonly used in computer vision for object tracking. The Kalman filter is applied to the 3D OCT image volume to track the retinal layer boundaries through the slices within the volume and thus segmenting the 3D image. Specifically, after some pre-processing of the OCT images, points on the retinal layer boundaries in the first image are identified, and curve fitting is applied to them such that the layer boundaries can be represented by the coefficients of the curve equations. These coefficients then form the state space for the Kalman Filter. The filter then produces an optimal estimate of the current state of the system by updating its previous state using the measurements available in the form of a feedback control loop. The results show that the algorithm can be used to segment the retinal layers in OCT images. One of the limitations of the current algorithm is that the curve representation of the retinal layer boundary does not work well when the layer boundary is split into two, e.g., at the optic nerve, the layer boundary split into two. This maybe resolved by using a different approach to representing the boundaries, such as b-splines or level sets. The use of a Kalman filter shows promise to developing accurate and effective 3D OCT segmentation methods.Keywords: optical coherence tomography, image segmentation, Kalman filter, object tracking
Procedia PDF Downloads 481690 Low-Power Digital Filters Design Using a Bypassing Technique
Authors: Thiago Brito Bezerra
Abstract:
This paper presents a novel approach to reduce power consumption of digital filters based on dynamic bypassing of partial products in their multipliers. The bypassing elements incorporated into the multiplier hardware eliminate redundant signal transitions, which appear within the carry-save adders when the partial product is zero. This technique reduces the power consumption by around 20%. The circuit implementation was made using the AMS 0.18 um technology. The bypassing technique applied to the circuits is outlined.Keywords: digital filter, low-power, bypassing technique, low-pass filter
Procedia PDF Downloads 380689 Treatment of Simulated Textile Wastewater Containing Reactive Azo Dyes Using Laboratory Scale Trickling Filter
Authors: Ayesha Irum, Sadia Mumtaz, Abdul Rehman, Iffat Naz, Safia Ahmed
Abstract:
The present study was conducted to evaluate the potential applicability of biological trickling filter system for the treatment of simulated textile wastewater containing reactive azo dyes with bacterial consortium under non-sterile conditions. The percentage decolorization for the treatment of wastewater containing structurally different dyes was found to be higher than 95% in all trials. The stable bacterial count of the biofilm on stone media of the trickling filter during the treatment confirmed the presence, proliferation, dominance and involvement of the added microbial consortium in the treatment of textile wastewater. Results of physicochemical parameters revealed the reduction in chemical oxygen demand (58.5-75.1%), sulphates (18.9-36.5%), and phosphates (63.6-73.0%). UV-Visible and FTIR spectroscopy confirmed decolorization of dye containing wastewater was the ultimate consequence of biodegradation. Toxicological studies revealed the nontoxic nature of degradative metabolites.Keywords: biodegradation, textile dyes, waste water, trickling filters
Procedia PDF Downloads 431688 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.Keywords: optimal control, nonlinear systems, state estimation, Kalman filter
Procedia PDF Downloads 200687 Strategy of Inventory Analysis with Economic Order Quantity and Quick Response: Case on Filter Inventory for Heavy Equipment in Indonesia
Authors: Lim Sanny, Felix Christian
Abstract:
The use of heavy equipment in Indonesia is always increasing. Cost reduction in procurement of spare parts is the aim of the company. The spare parts in this research are focused in the kind of filters. On the early step, the choosing of priority filter will be studied further by using the ABC analysis. To find out future demand of the filter, this research is using demand forecast by utilizing the QM software for windows. And to find out the best method of inventory control for each kind of filter is by comparing the total cost of Economic Order Quantity and Quick response inventory method. For the three kind of filters which are Cartridge, Engine oil – pn : 600-211-123, Element, Transmission – pn : 424-16-11140, and Element, Hydraulic – pn : 07063-01054, the best forecasting method is Linear regression. The best method for inventory control of Cartridge, Engine oil – pn : 600-211-123 and Element, Transmission – pn : 424-16-11140, is Quick Response Inventory, while the best method for Element, Hydraulic – pn : 07063-01054 is Economic Order Quantity.Keywords: strategy, inventory, ABC analysis, forecasting, economic order quantity, quick response inventory
Procedia PDF Downloads 363686 Enhanced Cytotoxic Effect of Expanded NK Cells with IL12 and IL15 from Leukoreduction Filter on K562 Cell Line Exhibits Comparable Cytotoxicity to Whole Blood
Authors: Abdulbaset Mazarzaei
Abstract:
Natural killer (NK) cells are innate immune effectors that play a pivotal role in combating tumors and infected cells. In recent years, the therapeutic potential of NK cells has gained significant attention due to their remarkable cytotoxic ability. This study focuses on investigating the cytotoxic effect of expanded NK cells enriched with interleukin 12 (IL12) and interleukin 15 (IL15), derived from the leukoreduction filter, on the K562 cell line. Firstly, NK cells were isolated from whole blood samples obtained from healthy volunteers. These cells were subsequently expanded ex vivo using a combination of feeder cells, IL12, and IL15. The expanded NK cells were then harvested and assessed for their cytotoxicity against K562, a well-established human chronic myelogenous leukemia cell line. The cytotoxicity was evaluated using flow cytometry assay. Results demonstrate that the expanded NK cells significantly exhibited enhanced cytotoxicity against K562 cells compared to non-expanded NK cells. Interestingly, the expanded NK cells derived specifically from IL12 and IL15-enriched leukoreduction filters showed a robust cytotoxic effect similar to the whole blood-derived NK cells. These findings suggest that IL12 and IL15 in the leukoreduction filter are crucial in promoting NK cell cytotoxicity. Furthermore, the expanded NK cells displayed relatively similar cytotoxicity profiles to whole blood-derived NK cells, indicating their comparable capability in targeting and eliminating tumor cells. This observation is of significant relevance as expanded NK cells from the leukoreduction filter could potentially serve as a readily accessible and efficient source for adoptive immunotherapy. In conclusion, this study highlights the significant cytotoxic effect of expanded NK cells enriched with IL12 and IL15 obtained from the leukoreduction filter on the K562 cell line. Moreover, it emphasizes that these expanded NK cells exhibit comparable cytotoxicity to whole blood-derived NK cells. These findings reinforce the potential clinical utility of using expanded NK cells from the leukoreduction filter as an effective strategy in adoptive immunotherapy for the treatment of cancer. Further studies are warranted to explore the broader implications of this approach in clinical settings.Keywords: natural killer (NK) cells, Cytotoxicity, Leukoreduction filter, IL-12 and IL-15 Cytokines
Procedia PDF Downloads 62685 An Efficient Separation for Convolutive Mixtures
Authors: Salah Al-Din I. Badran, Samad Ahmadi, Dylan Menzies, Ismail Shahin
Abstract:
This paper describes a new efficient blind source separation method; in this method we use a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence.Keywords: Blind source separation, estimates, full-band, mixtures, sub-band
Procedia PDF Downloads 443684 Noise Removal Techniques in Medical Images
Authors: Amhimmid Mohammed Saffour, Abdelkader Salama
Abstract:
Filtering is a part of image enhancement techniques, it is used to enhance certain details such as edges in the image that are relevant to the application. Additionally, filtering can even be used to eliminate unwanted components of noise. Medical images typically contain salt and pepper noise and Poisson noise. This noise appears to the presence of minute grey scale variations within the image. In this paper, different filters techniques namely (Median, Wiener, Rank order3, Rank order5, and Average) were applied on CT medical images (Brain and chest). We using all these filters to remove salt and pepper noise from these images. This type of noise consists of random pixels being set to black or white. Peak Signal to Noise Ratio (PSNR), Mean Square Error r(MSE) and Histogram were used to evaluated the quality of filtered images. The results, which we have achieved shows that, these filters, are more useful and they prove to be helpful for general medical practitioners to analyze the symptoms of the patients with no difficulty.Keywords: CT imaging, median filter, adaptive filter and average filter, MATLAB
Procedia PDF Downloads 312683 Ultra-Tightly Coupled GNSS/INS Based on High Degree Cubature Kalman Filtering
Authors: Hamza Benzerrouk, Alexander Nebylov
Abstract:
In classical GNSS/INS integration designs, the loosely coupled approach uses the GNSS derived position and the velocity as the measurements vector. This design is suboptimal from the standpoint of preventing GNSSoutliers/outages. The tightly coupled GPS/INS navigation filter mixes the GNSS pseudo range and inertial measurements and obtains the vehicle navigation state as the final navigation solution. The ultra‐tightly coupled GNSS/INS design combines the I (inphase) and Q(quadrature) accumulator outputs in the GNSS receiver signal tracking loops and the INS navigation filter function intoa single Kalman filter variant (EKF, UKF, SPKF, CKF and HCKF). As mentioned, EKF and UKF are the most used nonlinear filters in the literature and are well adapted to inertial navigation state estimation when integrated with GNSS signal outputs. In this paper, it is proposed to move a step forward with more accurate filters and modern approaches called Cubature and High Degree cubature Kalman Filtering methods, on the basis of previous results solving the state estimation based on INS/GNSS integration, Cubature Kalman Filter (CKF) and High Degree Cubature Kalman Filter with (HCKF) are the references for the recent developed generalized Cubature rule based Kalman Filter (GCKF). High degree cubature rules are the kernel of the new solution for more accurate estimation with less computational complexity compared with the Gauss-Hermite Quadrature (GHQKF). Gauss-Hermite Kalman Filter GHKF which is not selected in this work because of its limited real-time implementation in high-dimensional state-spaces. In ultra tightly or a deeply coupled GNSS/INS system is dynamics EKF is used with transition matrix factorization together with GNSS block processing which is well described in the paper and assumes available the intermediary frequency IF by using a correlator samples with a rate of 500 Hz in the presented approach. GNSS (GPS+GLONASS) measurements are assumed available and modern SPKF with Cubature Kalman Filter (CKF) are compared with new versions of CKF called high order CKF based on Spherical-radial cubature rules developed at the fifth order in this work. Estimation accuracy of the high degree CKF is supposed to be comparative to GHKF, results of state estimation are then observed and discussed for different initialization parameters. Results show more accurate navigation state estimation and more robust GNSS receiver when Ultra Tightly Coupled approach applied based on High Degree Cubature Kalman Filter.Keywords: GNSS, INS, Kalman filtering, ultra tight integration
Procedia PDF Downloads 279682 Impact of Applying Bag House Filter Technology in Cement Industry on Ambient Air Quality - Case Study: Alexandria Cement Company
Authors: Haggag H. Mohamed, Ghatass F. Zekry, Shalaby A. Elsayed
Abstract:
Most sources of air pollution in Egypt are of anthropogenic origin. Alexandria Governorate is located at north of Egypt. The main contributing sectors of air pollution in Alexandria are industry, transportation and area source due to human activities. Alexandria includes more than 40% of the industrial activities in Egypt. Cement manufacture contributes a significant amount to the particulate pollution load. Alexandria Portland Cement Company (APCC) surrounding was selected to be the study area. APCC main kiln stack Total Suspended Particulate (TSP) continuous monitoring data was collected for assessment of dust emission control technology. Electro Static Precipitator (ESP) was fixed on the cement kiln since 2002. The collected data of TSP for first quarter of 2012 was compared to that one in first quarter of 2013 after installation of new bag house filter. In the present study, based on these monitoring data and metrological data a detailed air dispersion modeling investigation was carried out using the Industrial Source Complex Short Term model (ISC3-ST) to find out the impact of applying new bag house filter control technology on the neighborhood ambient air quality. The model results show a drastic reduction of the ambient TSP hourly average concentration from 44.94μg/m3 to 5.78μg/m3 which assures the huge positive impact on the ambient air quality by applying bag house filter technology on APCC cement kilnKeywords: air pollution modeling, ambient air quality, baghouse filter, cement industry
Procedia PDF Downloads 267681 Notched Bands in Ultra-Wideband UWB Filter Design for Advanced Wireless Applications
Authors: Abdul Basit, Amil Daraz, Guoqiang Zhang
Abstract:
With the increasing demand for wireless communication systems for unlicensed indoor applications, the FCC, in February 2002, allocated unlicensed bands ranging from 3.1 GHZ to 10.6 GHz with fractional bandwidth of about 109 %, because it plays a key role in the radiofrequency (RF) front ends devices and has been widely applied in many other microwave circuits. Targeting the proposed band defined by the FCC for the UWB system, this article presents a UWB bandpass filter with three stop bands for the mitigation of wireless bands that may interfere with the UWB range. For this purpose, two resonators are utilized for the implementation of triple-notched bands. The C-shaped resonator is used for the first notch band creation at 3.4 GHz to suppress the WiMAX signal, while the H-shaped resonator is employed in the initial UWB design to introduce the dual notched characteristic at 4.5 GHz and 8.1 GHz to reject the WLAN and Satellite Communication signals. The overall circuit area covered by the proposed design is 30.6 mm × 20 mm, or in terms of guided wavelength at the first stopband, its size is 0.06 λg × 0.02 λg. The presented structure shows a good return loss under -10 dB over most of the passband and greater than -15 dB for the notched frequency bands. Finally, the filter is simulated and analyzed in HFSS 15.0. All the bands for the rejection of wireless signals are independently controlled, which makes this work superior to the rest of the UWB filters presented in the literature.Keywords: a bandpass filter (BPF), ultra-wideband (UWB), wireless communication, C-shaped resonator, triple notch
Procedia PDF Downloads 77680 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: state estimation, control systems, observer systems, nonlinear systems
Procedia PDF Downloads 131679 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization
Procedia PDF Downloads 141678 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor
Authors: Justas Dilys
Abstract:
ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.Keywords: unscented kalman filter, ARM, PMSM, implementation
Procedia PDF Downloads 164677 Recursive Doubly Complementary Filter Design Using Particle Swarm Optimization
Authors: Ju-Hong Lee, Ding-Chen Chung
Abstract:
This paper deals with the optimal design of recursive doubly complementary (DC) digital filter design using a metaheuristic based optimization technique. Based on the theory of DC digital filters using two recursive digital all-pass filters (DAFs), the design problem is appropriately formulated to result in an objective function which is a weighted sum of the phase response errors of the designed DAFs. To deal with the stability of the recursive DC filters during the design process, we can either impose some necessary constraints on the phases of the recursive DAFs. Through a frequency sampling and a weighted least squares approach, the optimization problem of the objective function can be solved by utilizing a population based stochastic optimization approach. The resulting DC digital filters can possess satisfactory frequency response. Simulation results are presented for illustration and comparison.Keywords: doubly complementary, digital all-pass filter, weighted least squares algorithm, particle swarm optimization
Procedia PDF Downloads 686676 Effect of Fabrication Errors on High Frequency Filter Circuits
Authors: Wesam Ali
Abstract:
This paper provides useful guidelines to the circuit designers on the magnitude of fabrication errors in multilayer millimeter-wave components that are acceptable and presents data not previously reported in the literature. A particularly significant error that was quantified was that of skew between conductors on different layers, where it was found that a skew angle of only 0.1° resulted in very significant changes in bandwidth and insertion loss. The work was supported by a detailed investigation on a 35GHz, multilayer edge-coupled band-pass filter, which was fabricated on alumina substrates using photoimageable thick film process.Keywords: fabrication errors, multilayer, high frequency band, photoimagable technology
Procedia PDF Downloads 472675 Comparison of Loosely Coupled and Tightly Coupled INS/GNSS Architecture for Guided Rocket Navigation System
Authors: Rahmat Purwoko, Bambang Riyanto Trilaksono
Abstract:
This paper gives comparison of INS/GNSS architecture namely Loosely Coupled and Tightly Coupled using Hardware in the Loop Simulation in Guided Missile RKX-200 rocket model. INS/GNSS Tightly Coupled architecture requires pseudo-range, pseudo-range rate, and position and velocity of each satellite in constellation from GPS (Global Positioning System) measurement. The Loosely Coupled architecture use estimated position and velocity from GNSS receiver. INS/GNSS architecture also requires angular rate and specific force measurement from IMU (Inertial Measurement Unit). Loosely Coupled arhitecture designed using 15 states Kalman Filter and Tightly Coupled designed using 17 states Kalman Filter. Integration algorithm calculation using ECEF frame. Navigation System implemented Zedboard All Programmable SoC.Keywords: kalman filter, loosely coupled, navigation system, tightly coupled
Procedia PDF Downloads 307674 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation
Procedia PDF Downloads 150673 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 358672 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy
Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed
Abstract:
The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy
Procedia PDF Downloads 540671 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 385670 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence
Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang
Abstract:
The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence
Procedia PDF Downloads 74669 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization
Procedia PDF Downloads 154668 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter
Authors: Yi Huang, Clemens Guehmann
Abstract:
In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model
Procedia PDF Downloads 283667 Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites
Authors: Jongwoo Lee, Dae-Eun Kang, Sang-Young Park
Abstract:
This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF.Keywords: satellite relative navigation, laser-based measurement, intermittent measurement, unscented Kalman filter
Procedia PDF Downloads 355666 Adsorption of Phosphate from Aqueous Solution Using Filter Cake for Urban Wastewater Treatment
Authors: Girmaye Abebe, Brook Lemma
Abstract:
Adsorption of phosphorus (P as PO43-) in filter cake was studied to assess the media's capability in removing phosphorous from wastewaters. The composition of the filter cake that was generated from alum manufacturing process as waste residue has high amount of silicate from the complete silicate analysis of the experiment. Series of batches adsorption experiments were carried out to evaluate parameters that influence the adsorption capacity of PO43-. The factors studied include the effect of contact time, adsorbent dose, thermal pretreatment of the adsorbent, neutralization of the adsorbent, initial PO43- concentration, pH of the solution and effect of co-existing anions. Results showed that adsorption of PO43- is fairly rapid in first 5 min and after that it increases slowly to reach the equilibrium in about 1 h. The treatment efficiency of PO43- was increased with adsorbent extent. About 90% removal efficiency was increased within 1 h at an optimum adsorbent dose of 10 g/L for initial PO43- concentration of 10 mg/L. The amount of PO43- adsorbed increased with increasing initial PO43- concentration. Heat treatment and surface neutralization of the adsorbent did not improve the PO43- removal capacity and efficiency. The percentage of PO43- removal remains nearly constant within the pH range of 3-8. The adsorption data at ambient pH were well fitted to the Langmuir Isotherm and Dubinin–Radushkevick (D–R) isotherm model with a capacity of 25.84 and 157.55 mg/g of the adsorbent respectively. The adsorption kinetic was found to follow a pseudo-second-order rate equation with an average rate constant of 3.76 g.min−1.mg−1. The presence of bicarbonate or carbonate at higher concentrations (10–1000 mg/L) decreased the PO43- removal efficiency slightly while other anions (Cl-, SO42-, and NO3-) have no significant effect within the concentration range tested. The overall result shows that the filter cake is an efficient PO43- removing adsorbent against many parameters.Keywords: wastewater, filter cake, adsorption capacity, phosphate (PO43-)
Procedia PDF Downloads 230