Search results for: smart cities applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9085

Search results for: smart cities applications

8935 Understanding the Role of Social Entrepreneurship in Building Mobility of a Service Transportation Models

Authors: Liam Fassam, Pouria Liravi, Jacquie Bridgman

Abstract:

Introduction: The way we travel is rapidly changing, car ownership and use are declining among young people and those residents in urban areas. Also, the increasing role and popularity of sharing economy companies like Uber highlight a movement towards consuming transportation solutions as a service [Mobility of a Service]. This research looks to bridge the knowledge gap that exists between city mobility, smart cities, sharing economy and social entrepreneurship business models. Understanding of this subject is crucial for smart city design, as access to affordable transport has been identified as a contributing factor to social isolation leading to issues around health and wellbeing. Methodology: To explore the current fit vis-a-vis transportation business models and social impact this research undertook a comparative analysis between a systematic literature review and a Delphi study. The systematic literature review was undertaken to gain an appreciation of the current academic thinking on ‘social entrepreneurship and smart city mobility’. The second phase of the research initiated a Delphi study across a group of 22 participants to review future opinion on ‘how social entrepreneurship can assist city mobility sharing models?’. The Delphi delivered an initial 220 results, which once cross-checked for duplication resulted in 130. These 130 answers were sent back to participants to score importance against a 5-point LIKERT scale, enabling a top 10 listing of areas for shared user transports in society to be gleaned. One further round (4) identified no change in the coefficient of variant thus no further rounds were required. Findings: Initial results of the literature review returned 1,021 journals using the search criteria ‘social entrepreneurship and smart city mobility’. Filtering allied to ‘peer review’, ‘date’, ‘region’ and ‘Chartered associated of business school’ ranking proffered a resultant journal list of 75. Of these, 58 focused on smart city design, 9 on social enterprise in cityscapes, 6 relating to smart city network design and 3 on social impact, with no journals purporting the need for social entrepreneurship to be allied to city mobility. The future inclusion factors from the Delphi expert panel indicated that smart cities needed to include shared economy models in their strategies. Furthermore, social isolation born by costs of infrastructure needed addressing through holistic A-political social enterprise models, and a better understanding of social benefit measurement is needed. Conclusion: In investigating the collaboration between key public transportation stakeholders, a theoretical model of social enterprise transportation models that positively impact upon the smart city needs of reduced transport poverty and social isolation was formed. As such, the research has identified how a revised business model of Mobility of a Service allied to a social entrepreneurship can deliver impactful measured social benefits associated to smart city design existent research.

Keywords: social enterprise, collaborative transportation, new models of ownership, transport social impact

Procedia PDF Downloads 140
8934 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 357
8933 A Literature Study on IoT Based Monitoring System for Smart Agriculture

Authors: Sonu Rana, Jyoti Verma, A. K. Gautam

Abstract:

In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology.

Keywords: smart agriculture, IoT, agriculture technology, data analytics, smart technology

Procedia PDF Downloads 116
8932 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites

Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano

Abstract:

Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.

Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene

Procedia PDF Downloads 128
8931 Energy Management System and Interactive Functions of Smart Plug for Smart Home

Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya

Abstract:

Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.

Keywords: energy management, load profile, smart plug, wireless sensor network

Procedia PDF Downloads 273
8930 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 318
8929 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 188
8928 Sleep Tracking AI Application in Smart-Watches

Authors: Sumaiya Amir Khan, Shayma Al-Sharif, Samiha Mazher, Neha Intikhab Khan

Abstract:

This research paper aims to evaluate the effectiveness of sleep-tracking AI applications in smart-watches. It focuses on comparing the sleep analyses of two different smartwatch brands, Samsung and Fitbit, and measuring sleep at three different stages – REM (Rapid-Eye-Movement), NREM (Non-Rapid-Eye-Movement), and deep sleep. The methodology involves the participation of different users and analyzing their sleep data. The results reveal that although light sleep is the longest stage, deep sleep is higher than average in the participants. The study also suggests that light sleep is not uniform, and getting higher levels of deep sleep can prevent debilitating health conditions. Based on the findings, it is recommended that individuals should aim to achieve higher levels of deep sleep to maintain good health. Overall, this research contributes to the growing literature on the effectiveness of sleep-tracking AI applications and their potential to improve sleep quality.

Keywords: sleep tracking, lifestyle, accuracy, health, AI, AI features, ML

Procedia PDF Downloads 79
8927 Low-Cost Wireless Power Transfer System for Smart Recycling Containers

Authors: Juan Luis Leal, Rafael Maestre, Ovidio López

Abstract:

As innovation progresses, more possibilities are made available to increase the efficiency and reach of solutions for Smart Cities, most of which require the data provided by the Internet of Things (IoT) devices and may even have higher power requirements such as motors or actuators. A reliable power supply with the lowest maintenance is a requirement for the success of these solutions in the long term. Energy harvesting, mainly solar, becomes the solution of choice in most cases, but only if there is enough power to be harvested, which may depend on the device location (e.g., outdoors vs. indoor). This is the case of Smart Waste Containers with compaction systems, which have moderately high-power requirements, and may be installed in places with little sunlight for solar generation. It should be noted that waste is unloaded from the containers with cranes, so sudden and irregular movements may happen, making wired power unviable. In these cases, a wireless power supply may be a great alternative. This paper proposes a cost-effective two coil resonant wireless power transfer (WPT) system and describes its implementation, which has been carried out within an R&D project and validated in real settings with smart containers. Experimental results prove that the developed system achieves wireless power transmission up to 35W in the range of 5 cm to 1 m with a peak efficiency of 78%. The circuit is operated at relatively low resonant frequencies, which combined with enough wire-to-wire separation between the coil windings, reduce the losses caused by the proximity effect and, therefore, allow the use of common stranded wire instead of Litz wire, this without reducing the efficiency significantly. All these design considerations led to a final system that achieves a high efficiency for the desired charging range, simplifying the energy supply for Smart Containers as well as other devices that may benefit from a cost-effective wireless charging system.

Keywords: electromagnetic coupling, resonant wireless charging, smart recycling containers, wireless power transfer

Procedia PDF Downloads 93
8926 Smart Trash Can Interface between Origin and Destination Waste Management

Authors: Fatemeh Ghorbani

Abstract:

The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.

Keywords: connector, smart trash can, waste management

Procedia PDF Downloads 66
8925 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
8924 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 71
8923 Decision Support Tool for Water Re-used Systems

Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz

Abstract:

The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.

Keywords: circular economy, digital tool, geo-visualization, wastewater re-use

Procedia PDF Downloads 56
8922 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
8921 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 75
8920 Using the Internet of Things to Deal with Ventilators for Minimizing the Direct Contact with COVID-19 Patients

Authors: Mohammed Al-Shalabi

Abstract:

In recent years, the Internet of Things (IoT) has become an important technology for connecting various smart objects in many applications, especially in health monitoring applications. The IoT technology develops healthcare applications from traditional to personalized ones by making the treatment and monitoring of patients easier. Nowadays, especially during the COVID-19 pandemic, the necessity of enhancing healthcare monitoring applications to avoid the spreading of this pandemic is increased. In this paper, a mechanism is proposed to minimize direct contact with COVID-19 patients who need ventilators by using IoT technology. The proposed mechanism saves medical providers from COVID-19 infection and then minimizes the spreading of this disease.

Keywords: internet of things, healthcare monitoring, COVID-19, ventilators, thingspeak, clouds

Procedia PDF Downloads 135
8919 A Survey on Intelligent Traffic Management with Cooperative Driving in Urban Roads

Authors: B. Karabuluter, O. Karaduman

Abstract:

Traffic management and traffic planning are important issues, especially in big cities. Due to the increase of personal vehicles and the physical constraints of urban roads, the problem of transportation especially in crowded cities over time is revealed. This situation reduces the living standards, and it can put human life at risk because the vehicles such as ambulance, fire department are prevented from reaching their targets. Even if the city planners take these problems into account, emergency planning and traffic management are needed to avoid cases such as traffic congestion, intersections, traffic jams caused by traffic accidents or roadworks. In this study, in smart traffic management issues, proposed solutions using intelligent vehicles acting in cooperation with urban roads are examined. Traffic management is becoming more difficult due to factors such as fatigue, carelessness, sleeplessness, social behavior patterns, and lack of education. However, autonomous vehicles, which remove the problems caused by human weaknesses by providing driving control, are increasing the success of practicing the algorithms developed in city traffic management. Such intelligent vehicles have become an important solution in urban life by using 'swarm intelligence' algorithms and cooperative driving methods to provide traffic flow, prevent traffic accidents, and increase living standards. In this study, studies conducted in this area have been dealt with in terms of traffic jam, intersections, regulation of traffic flow, signaling, prevention of traffic accidents, cooperation and communication techniques of vehicles, fleet management, transportation of emergency vehicles. From these concepts, some taxonomies were made out of the way. This work helps to develop new solutions and algorithms for cities where intelligent vehicles that can perform cooperative driving can take place, and at the same time emphasize the trend in this area.

Keywords: intelligent traffic management, cooperative driving, smart driving, urban road, swarm intelligence, connected vehicles

Procedia PDF Downloads 332
8918 The Challenges of Citizen Engagement in Urban Transformation: Key Learnings from Three European Cities

Authors: Idoia Landa Oregi, Itsaso Gonzalez Ochoantesana, Olatz Nicolas Buxens, Carlo Ferretti

Abstract:

The impact of citizens in urban transformations has become increasingly important in the pursuit of creating citizen-centered cities. Citizens at the forefront of the urban transformation process are key to establishing resilient, sustainable, and inclusive cities that cater to the needs of all residents. Therefore, collecting data and information directly from citizens is crucial for the sustainable development of cities. Within this context, public participation becomes a pillar for acquiring the necessary information from citizens. Public participation in urban transformation processes establishes a more responsive, equitable, and resilient urban environment. This approach cultivates a sense of shared responsibility and collective progress in building cities that truly serve the well-being of all residents. However, the implementation of public participation practices often overlooks strategies to effectively engage citizens in the processes, resulting in non-successful participatory outcomes. Therefore, this research focuses on identifying and analyzing the critical aspects of citizen engagement during the same participatory urban transformation process in different European contexts: Ermua (Spain), Elva (Estonia) and Matera (Italy). The participatory neighborhood regeneration process is divided into three main stages, to turn social districts into inclusive and smart neighborhoods: (i) the strategic level, (ii) the design level, and (iii) the implementation level. In the initial stage, the focus is on diagnosing the neighborhood and creating a shared vision with the community. The second stage centers around collaboratively designing various action plans to foster inclusivity and intelligence while pushing local economic development within the district. Finally, the third stage ensures the proper co-implementation of the designed actions in the neighborhood. To this date, the presented results critically analyze the key aspects of engagement in the first stage of the methodology, the strategic plan, in the three above-mentioned contexts. It is a multifaceted study that incorporates three case studies to shed light on the various perspectives and strategies adopted by each city. The results indicate that despite of the various cultural contexts, all cities face similar barriers when seeking to enhance engagement. Accordingly, the study identifies specific challenges within the participatory approach across the three cities such as the existence of discontented citizens, communication gaps, inconsistent participation, or administration resistance. Consequently, key learnings of the process indicate that a collaborative sphere needs to be cultivated, educating both citizens and administrations in the aspects of co-governance, giving these practices the appropriate space and their own communication channels. This study is part of the DROP project, funded by the European Union, which aims to develop a citizen-centered urban renewal methodology to transform the social districts into smart and inclusive neighborhoods.

Keywords: citizen-centred cities, engagement, public participation, urban transformation

Procedia PDF Downloads 67
8917 Social Network Based Decision Support System for Smart U-Parking Planning

Authors: Jun-Ho Park, Kwang-Woo Nam, Seung-Mo Hong, Tae-Heon Moon, Sang-Ho Lee, Youn-Taik Leem

Abstract:

The aim of this study was to build ‘Ubi-Net’, a decision-making support system for systematic establishment in U-City planning. We have experienced various urban problems caused by high-density development and population concentrations in established urban areas. To address these problems, a U-Service contributes to the alleviation of urban problems by providing real-time information to citizens through network connections and related information. However, technology, devices, and information for consumers are required for systematic U-Service planning in towns and cities where there are many difficulties in this regard, and a lack of reference systems. Thus, this study suggests methods to support the establishment of sustainable planning by providing comprehensive information including IT technology, devices, news, and social networking services(SNS) to U-City planners through intelligent searches. In this study, we targeted Smart U-Parking Planning to solve parking problems in an ‘old’ city. Through this study, we sought to contribute to supporting advances in U-Space and the alleviation of urban problems.

Keywords: desigin and decision support system, smart u-parking planning, social network analysis, urban engineering

Procedia PDF Downloads 426
8916 Evaluation of the Spatial Performance of Ancient Cities in the Context of Landscape Architecture

Authors: Elvan Ender Altay, Zeynep Pirselimoglu Batman, Murat Zencirkiran

Abstract:

Ancient cities are, according to United Nations Educational, Scientific and Cultural Organization (UNESCO), landscape areas designed and created by people, at the same time naturally developing and constantly changing sustainable cultural landscapes. Ancient cities are the urban settlements where we can see the reflection of public lifestyle existed thousands of years ago. The conceptual and spatial traces in ancient cities, are crucial for examining the city history and its preservation. This study is intended to demonstrate the impacts of human life and physical environment on the cultural landscape. This research aims to protect and maintain cultural continuity of the ancient cities in Bursa which contain archeological and historical elements and could not majorly reach to the day because of not being protected and to show importance of landscape architecture to ensure this protection. In this context, ancient cities in Bursa were researched and a total of 7 ancient cities were identified. These ancient cities are; Apollonia, Lopadion, Nicaea, Myrleia, Cius, Daskyleion and Basilinopolis. In the next stage, the spatial performances of ancient cities were assessed by weighted criteria method. The highest score is the Nicaea Ancient City. Considering current situation of the ancient cities in Bursa, it is seen that most of them could not survive until our day due to lack of interest in these areas. As a result, according to the findings, it is a priority to create a protective band with green areas around the archaeological sites, thus adapting to nearby areas and emphasizing culture. In addition, proposals have been made to provide a transportation network that does not harm the ancient cities and the cultural landscape.

Keywords: ancient cities, Bursa, landscape, spatial performance

Procedia PDF Downloads 202
8915 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 315
8914 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System

Authors: R. Ramesh, K. K. Shivaraman

Abstract:

The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.

Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management

Procedia PDF Downloads 305
8913 Guests’ Satisfaction and Intention to Revisit Smart Hotels: Qualitative Interviews Approach

Authors: Raymond Chi Fai Si Tou, Jacey Ja Young Choe, Amy Siu Ian So

Abstract:

Smart hotels can be defined as the hotel which has an intelligent system, through digitalization and networking which achieve hotel management and service information. In addition, smart hotels include high-end designs that integrate information and communication technology with hotel management fulfilling the guests’ needs and improving the quality, efficiency and satisfaction of hotel management. The purpose of this study is to identify appropriate factors that may influence guests’ satisfaction and intention to revisit Smart Hotels based on service quality measurement of lodging quality index and extended UTAUT theory. Unified Theory of Acceptance and Use of Technology (UTAUT) is adopted as a framework to explain technology acceptance and use. Since smart hotels are technology-based infrastructure hotels, UTATU theory could be as the theoretical background to examine the guests’ acceptance and use after staying in smart hotels. The UTAUT identifies four key drivers of the adoption of information systems: performance expectancy, effort expectancy, social influence, and facilitating conditions. The extended UTAUT modifies the definitions of the seven constructs for consideration; the four previously cited constructs of the UTAUT model together with three new additional constructs, which including hedonic motivation, price value and habit. Thus, the seven constructs from the extended UTAUT theory could be adopted to understand their intention to revisit smart hotels. The service quality model will also be adopted and integrated into the framework to understand the guests’ intention of smart hotels. There are rare studies to examine the service quality on guests’ satisfaction and intention to revisit in smart hotels. In this study, Lodging Quality Index (LQI) will be adopted to measure the service quality in smart hotels. Using integrated UTAUT theory and service quality model because technological applications and services require using more than one model to understand the complicated situation for customers’ acceptance of new technology. Moreover, an integrated model could provide more perspective insights to explain the relationships of the constructs that could not be obtained from only one model. For this research, ten in-depth interviews are planned to recruit this study. In order to confirm the applicability of the proposed framework and gain an overview of the guest experience of smart hotels from the hospitality industry, in-depth interviews with the hotel guests and industry practitioners will be accomplished. In terms of the theoretical contribution, it predicts that the integrated models from the UTAUT theory and the service quality will provide new insights to understand factors that influence the guests’ satisfaction and intention to revisit smart hotels. After this study identifies influential factors, smart hotel practitioners could understand which factors may significantly influence smart hotel guests’ satisfaction and intention to revisit. In addition, smart hotel practitioners could also provide outstanding guests experience by improving their service quality based on the identified dimensions from the service quality measurement. Thus, it will be beneficial to the sustainability of the smart hotels business.

Keywords: intention to revisit, guest satisfaction, qualitative interviews, smart hotels

Procedia PDF Downloads 208
8912 Applications of Drones in Infrastructures: Challenges and Opportunities

Authors: Jin Fan, M. Ala Saadeghvaziri

Abstract:

Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.

Keywords: bridge, construction, drones, infrastructure, information

Procedia PDF Downloads 124
8911 An Internet of Things Smart Washroom Framework

Authors: Robin Ratnasingham, Maher Elshakankiri

Abstract:

This research report will look at how to make a smart washroom to increase public hygiene and cleanliness. The system would use IoT devices to pick up various activities in the washroom and notify the appropriate stakeholders or devices to regulate the condition of the washroom. As more people are required to physically go back to the office or school, ensuring a clean and sanitized washroom is even more important now than before. It would help prevent virus outbreaks and safeguard the organization from shutdowns or slowdowns in their business. A framework of the suggested smart washroom was introduced to help reduce the chances of a virus outbreak. Most organizations outsource renovation or implementation to an external party. Using the smart washroom framework, we looked at vendors that provide smart washroom solutions. There are IoT vendors that cannot match the framework, and there are vendors that can support the framework design. This segment is a niche market, and most of the devices are similar in their basic functions. However, all the vendors have unique characteristics to give them a competitive advantage over the rest of the IoT washroom companies. Ultimately, the organization would need to decide if they want to add IoT devices to enable smart capability or renovate the washroom to create a fluid IoT smart washroom design. The report would introduce an IoT smart washroom framework to help organizations design a cohesive preventive measure network for the daily maintenance routine. The framework is designed to help understand how to manage washroom cleanliness more efficiently and to provide guidance in achieving this goal. The leading result is eliminating potential viral outbreaks that could jeopardize the organization.

Keywords: IoT, smart washroom, public hygiene, cleanliness, virus outbreaks, safeguard

Procedia PDF Downloads 95
8910 Development of an Intelligent Decision Support System for Smart Viticulture

Authors: C. M. Balaceanu, G. Suciu, C. S. Bosoc, O. Orza, C. Fernandez, Z. Viniczay

Abstract:

The Internet of Things (IoT) represents the best option for smart vineyard applications, even if it is necessary to integrate the technologies required for the development. This article is based on the research and the results obtained in the DISAVIT project. For Smart Agriculture, the project aims to provide a trustworthy, intelligent, integrated vineyard management solution that is based on the IoT. To have interoperability through the use of a multiprotocol technology (being the future connected wireless IoT) it is necessary to adopt an agnostic approach, providing a reliable environment to address cyber security, IoT-based threats and traceability through blockchain-based design, but also creating a concept for long-term implementations (modular, scalable). The ones described above represent the main innovative technical aspects of this project. The DISAVIT project studies and promotes the incorporation of better management tools based on objective data-based decisions, which are necessary for agriculture adapted and more resistant to climate change. It also exploits the opportunities generated by the digital services market for smart agriculture management stakeholders. The project's final result aims to improve decision-making, performance, and viticulturally infrastructure and increase real-time data accuracy and interoperability. Innovative aspects such as end-to-end solutions, adaptability, scalability, security and traceability, place our product in a favorable situation over competitors. None of the solutions in the market meet every one of these requirements by a unique product being innovative.

Keywords: blockchain, IoT, smart agriculture, vineyard

Procedia PDF Downloads 200
8909 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks

Authors: Faisal Al Yahmadi, Muhammad R. Ahmed

Abstract:

Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.

Keywords: smart grid network, security, threats, vulnerabilities

Procedia PDF Downloads 139
8908 Consent, Agency and Abuse: Intimate Partner Violence in the Indian Context: A Primary Study Based on Working Women from Lower Income Groups in Smart Cities across North India

Authors: Shirin Abbas, Sandeep Kumar Dubey

Abstract:

Intimate partner violence (IPV) is one of the most common forms of gender-based violence (GBV) and is classified as discrimination on the basis of gender. Article 2 of the non-binding UN Declaration on the Elimination of Violence against Women (DEVAW). This was adopted in 1993 as the first international pronouncement regarding violence against women, including physical, sexual, and psychological violence in the family (i.e., domestic violence, marital rape, battery, statutory rape, rape by male members of the family, etc.) While crime against women continues unabated, the Indian government has strongly refuted the 2018 study by the Thomson Reuters Foundation categorizing India as a risky country for women due to the high risk of sexual violence and being forced into slave labour, according to a poll of global experts. This paper has explored consent, agency, and abuse through the lens of intimate partner violence among women from lower income groups in smart cities in the state of Uttar Pradesh, India. Using focused mapping, the paper has explored the situation on IPV internationally and studied the status of working women from lower income groups to ascertain if their lot was any different where IPV was concerned to study. The findings of the study also vindicate global reports which rate India as a country unsafe for women, even within marriage.

Keywords: consent and agency, domestic violence, gender based violence GBV, intimate partner violence IPV

Procedia PDF Downloads 74
8907 Efficient Signcryption Scheme with Provable Security for Smart Card

Authors: Jayaprakash Kar, Daniyal M. Alghazzawi

Abstract:

The article proposes a novel construction of signcryption scheme with provable security which is most suited to implement on smart card. It is secure in random oracle model and the security relies on Decisional Bilinear Diffie-Hellmann Problem. The proposed scheme is secure against adaptive chosen ciphertext attack (indistiguishbility) and adaptive chosen message attack (unforgebility). Also, it is inspired by zero-knowledge proof. The two most important security goals for smart card are Confidentiality and authenticity. These functions are performed in one logical step in low computational cost.

Keywords: random oracle, provable security, unforgebility, smart card

Procedia PDF Downloads 593
8906 Urban Planning and Sustainable Cities: Issues and Viewpoints

Authors: Prince, Amoako

Abstract:

This article provides an overview of academic research on urban future planning, with a focus on sustainable cities. The goal of the article is to provide a global update on the issues and viewpoints that are now surrounding urban planning, sustainability, and development. Based on scholarly and scientific research, the review presents potential avenues of investigation and development for ensuring a sustainable urban future. Recent scholarly research in the context of sustainable cities has focused on the conceptualization and knowledge generation involved in building sustainable cities. The goal of the study is to describe the present state of research on concepts and terminologies related to sustainable cities, planning, and techniques for developing and evaluating urban sustainability, even though its breadth may not be all-inclusive. The objective is to offer local governments, urban and development practitioners and other stakeholders some perspective and guidance in striving towards urban sustainability in the future.

Keywords: urban sustainability, sustainable urban development, sustainability assessment, sustainable development, sustainable cities

Procedia PDF Downloads 42