Search results for: similarity transformation
2140 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity
Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang
Abstract:
The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.Keywords: text information retrieval, natural language processing, new word discovery, information extraction
Procedia PDF Downloads 952139 Differential Terrain: A Spectrum in Capitalism Transformation
Authors: Sibo Lu, Zhongkai Qian
Abstract:
This study endeavors to articulate a spectrum of capitalist transformation from a politico-economic perspective, categorizing the development of capitalism into pre-modern, modern, and post-modern stages while examining the transitions between these states. It critically engages with the concepts of pre-modernity, modernity, and post-modernity, typically aligned with cultural studies, to shed light on their objective changes in the politico-economic realm. Post-modernity, in this context, is associated with the transition to high-value-added services and economic growth in ‘developed’ countries amidst globalization, framing a ‘neoliberal’ economic transformation. The paper scrutinizes the neoliberal economic shifts in the latter half of the 20th century as part of the post-modern state, arguing against viewing post-modernity merely as a cultural or subjective interpretative stance. Instead, it is posited as a concrete politico-economic phase marked by the dominance of post-Fordist systems. Through integrating insights from the political economy with continental philosophy, this research provides a nuanced analysis of capitalism's evolution, challenging conventional class analyses under the capitalist system and fostering a broader understanding of socio-economic paradigms.Keywords: post marxism, critical theory, political economy, capitalism transformation
Procedia PDF Downloads 352138 Vulnerability of People to Climate Change: Influence of Methods and Computation Approaches on Assessment Outcomes
Authors: Adandé Belarmain Fandohan
Abstract:
Climate change has become a major concern globally, particularly in rural communities that have to find rapid coping solutions. Several vulnerability assessment approaches have been developed in the last decades. This comes along with a higher risk for different methods to result in different conclusions, thereby making comparisons difficult and decision-making non-consistent across areas. The effect of methods and computational approaches on estimates of people’s vulnerability was assessed using data collected from the Gambia. Twenty-four indicators reflecting vulnerability components: (exposure, sensitivity, and adaptive capacity) were selected for this purpose. Data were collected through household surveys and key informant interviews. One hundred and fifteen respondents were surveyed across six communities and two administrative districts. Results were compared over three computational approaches: the maximum value transformation normalization, the z-score transformation normalization, and simple averaging. Regardless of the approaches used, communities that have high exposure to climate change and extreme events were the most vulnerable. Furthermore, the vulnerability was strongly related to the socio-economic characteristics of farmers. The survey evidenced variability in vulnerability among communities and administrative districts. Comparing output across approaches, overall, people in the study area were found to be highly vulnerable using the simple average and maximum value transformation, whereas they were only moderately vulnerable using the z-score transformation approach. It is suggested that assessment approach-induced discrepancies be accounted for in international debates to harmonize/standardize assessment approaches to the end of making outputs comparable across regions. This will also likely increase the relevance of decision-making for adaptation policies.Keywords: maximum value transformation, simple averaging, vulnerability assessment, West Africa, z-score transformation
Procedia PDF Downloads 1032137 Nazca: A Context-Based Matching Method for Searching Heterogeneous Structures
Authors: Karine B. de Oliveira, Carina F. Dorneles
Abstract:
The structure level matching is the problem of combining elements of a structure, which can be represented as entities, classes, XML elements, web forms, and so on. This is a challenge due to large number of distinct representations of semantically similar structures. This paper describes a structure-based matching method applied to search for different representations in data sources, considering the similarity between elements of two structures and the data source context. Using real data sources, we have conducted an experimental study comparing our approach with our baseline implementation and with another important schema matching approach. We demonstrate that our proposal reaches higher precision than the baseline.Keywords: context, data source, index, matching, search, similarity, structure
Procedia PDF Downloads 3642136 3D Model Completion Based on Similarity Search with Slim-Tree
Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo
Abstract:
With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search
Procedia PDF Downloads 1212135 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry
Authors: Dongxu Chen, Yipeng Li
Abstract:
This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.Keywords: image denoising, Poisson noise, information geometry, nonlocal-means
Procedia PDF Downloads 2852134 Influence of Information Technology on Financial Management Practices in Secondary School: For National Transormation in Zone C Senatorional District of Benue State
Authors: Eru Ihie Joel
Abstract:
This study was carried out to investigate the influence of information technology on financial management practice in secondary schools for transformation. In Zone C Senatorial District of Benue state. The study answered four research questions and tested four hypotheses. Related literature was reviewed to show the gap to be filled in the study. The population was 196 respondents made up of principals and finance clerks of secondary schools. The descriptive survey was adopted for the study. A structured 20 item questionnaire (IITFMPSQ) was constructed and used to collect date for the study. Data obtained were analyzed using descriptive and inferential statistic. Mean and standard deviation were used to analyze the research question while the chi- square (x2) test of goodness of fit was used to test the hypothesis. The major findings revealed that the use of computer system significantly influences budgeting in secondary schools in zone senatorial district of Benue State for transformation. It was also established that the use of internet facilities influences the funding of secondary schools for transformation in the zone. Based on the findings of the study, it was recommended among other things that administrators and teachers in schools should be trained to make effective use of the computer in budgeting so as to facilitate delegations, control, evaluation, accountability for transformation. It was further suggested that the study be replicated on the effective use of information communication teaching (ITC) in teaching and learning in secondary school for transformation.Keywords: influence, finance, management, technology
Procedia PDF Downloads 3632133 The Characteristics of Transformation of Institutional Changes and Georgia
Authors: Nazira Kakulia
Abstract:
The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.Keywords: competitive environment, fiscal policy, macroeconomic stabilization, tax system
Procedia PDF Downloads 2642132 Impact of Covid-19 on Digital Transformation
Authors: Tebogo Sethibe, Jabulile Mabuza
Abstract:
The COVID-19 pandemic has been commonly referred to as a ‘black swan event’; it has changed the world, from how people live, learn, work and socialise. It is believed that the pandemic has fast-tracked the adoption of technology in many organisations to ensure business continuity and business sustainability; broadly said, the pandemic has fast-tracked digital transformation (DT) in different organisations. This paper aims to study the impact of the COVID-19 pandemic on DT in organisations in South Africa by focusing on the changes in IT capabilities in the DT framework. The research design is qualitative. The data collection was through semi-structured interviews with information communication technology (ICT) leaders representing different organisations in South Africa. The data were analysed using the thematic analysis process. The results from the study show that, in terms of ICT in the organisation, the pandemic had a direct and positive impact on ICT strategy and ICT operations. In terms of IT capability transformation, the pandemic resulted in the optimisation and expansion of existing IT capabilities in the organisation and the building of new IT capabilities to meet emerging business needs. In terms of the focus of activities during the pandemic, there seems to be a split in organisations between the primary focus being on ‘digital IT’ or ‘traditional IT’. Overall, the findings of the study show that the pandemic had a positive and significant impact on DT in organisations. However, a definitive conclusion on this would require expanding the scope of the research to all the components of a comprehensive DT framework. This study is significant because it is one of the first studies to investigate the impact of the COVID-19 pandemic on organisations, on ICT in the organisation, on IT capability transformation and, to a greater extent, DT. The findings from the study show that in response to the pandemic, there is a need for: (i) agility in organisations; (ii) organisations to execute on their existing strategy; (iii) the future-proofing of IT capabilities; (iv) the adoption of a hybrid working model; and for (v) organisations to take risks and embrace new ideas.Keywords: digital transformation, COVID-19, bimodal-IT, digital transformation framework
Procedia PDF Downloads 1782131 Data-Focused Digital Transformation for Smart Net-Zero Cities: A Systems Thinking Approach
Authors: Farzaneh Mohammadi Jouzdani, Vahid Javidroozi, Monica Mateo Garcia, Hanifa Shah
Abstract:
The emergence of developing smart net-zero cities in recent years has attracted significant attention and interest from worldwide communities and scholars as a potential solution to the critical requirement for urban sustainability. This research-in-progress paper aims to investigate the development of smart net-zero cities to propose a digital transformation roadmap for smart net-zero cities with a primary focus on data. Employing systems thinking as an underpinning theory, the study advocates for the necessity of utilising a holistic strategy for understanding the complex interdependencies and interrelationships that characterise urban systems. The proposed methodology will involve an in-depth investigation of current data-driven approaches in the smart net-zero city. This is followed by utilising predictive analysis methods to evaluate the holistic impact of the approaches on moving toward a Smart net-zero city. It is expected to achieve systemic intervention followed by a data-focused and systemic digital transformation roadmap for smart net-zero, contributing to a more holistic understanding of urban sustainability.Keywords: smart city, net-zero city, digital transformation, systems thinking, data integration, data-driven approach
Procedia PDF Downloads 222130 Phishing Detection: Comparison between Uniform Resource Locator and Content-Based Detection
Authors: Nuur Ezaini Akmar Ismail, Norbazilah Rahim, Norul Huda Md Rasdi, Maslina Daud
Abstract:
A web application is the most targeted by the attacker because the web application is accessible by the end users. It has become more advantageous to the attacker since not all the end users aware of what kind of sensitive data already leaked by them through the Internet especially via social network in shake on ‘sharing’. The attacker can use this information such as personal details, a favourite of artists, a favourite of actors or actress, music, politics, and medical records to customize phishing attack thus trick the user to click on malware-laced attachments. The Phishing attack is one of the most popular attacks for social engineering technique against web applications. There are several methods to detect phishing websites such as Blacklist/Whitelist based detection, heuristic-based, and visual similarity-based detection. This paper illustrated a comparison between the heuristic-based technique using features of a uniform resource locator (URL) and visual similarity-based detection techniques that compares the content of a suspected phishing page with the legitimate one in order to detect new phishing sites based on the paper reviewed from the past few years. The comparison focuses on three indicators which are false positive and negative, accuracy of the method, and time consumed to detect phishing website.Keywords: heuristic-based technique, phishing detection, social engineering and visual similarity-based technique
Procedia PDF Downloads 1772129 Case Study of Gender Mainstreaming in Rand Water: A Journey of Transformation
Authors: Saki Makume
Abstract:
Misogyny is a serious problem in the world that is predominantly patriarchal. South Africa is a very unequal society, so are the companies in this country. After 1994, laws were promulgated to outlaw unfair discrimination, amongst them discrimination based on gender. The presentation aims to share the experiences and learnings of Rand Water through its transformation journey. The environment was so hostile to women in the workplace that policies and practices excluded or unfairly discriminated against women. The paper will be in the form of a case study, predominantly qualitative and to a lesser extent quantitative. The results will show that the number of women at Board, Executive and Management levels have increased; and policies amended to be gender sensitive. Policies were developed that specifically protected women’s rights e.g. sexual harassment. A program like TechnoGirl was introduced to lure girl learners to Rand Water.Keywords: gender mainstreaming, policies, transformation, unfair discrimination
Procedia PDF Downloads 2772128 Defuzzification of Periodic Membership Function on Circular Coordinates
Authors: Takashi Mitsuishi, Koji Saigusa
Abstract:
This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates
Procedia PDF Downloads 3092127 Stakeholder Voices in Digital Evolution: Challenges Faced by SMEs in Automotive Supply Chain
Authors: Mohammed Sharaf, Alireza Shokri, Adrian Small, Toby Bridges
Abstract:
This paper investigates digital transformation challenges in SMEs within the automotive supply chain. A case study approach and participant observation revealed significant data management and process optimization barriers, corroborated by a conceptual model. Stakeholder feedback, visualized through a pie chart, emphasized data management and process efficiency as primary concerns. Recommended strategies include implementing advanced data systems, process simplification, and enhancing digital skills. Despite the single-case study limitation, the findings offer actionable insights for SMEs to leverage Industry 4.0 technologies effectively. This research contributes to the strategic roadmap necessary for SMEs to achieve competitive digital transformation.Keywords: automotive supply chain, digital transformation, industry 4.0
Procedia PDF Downloads 342126 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 202125 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 1552124 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Authors: M. A. Talha, M. Osman Gani, M. Ferdows
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation
Procedia PDF Downloads 1812123 Genetic Characterization of Barley Genotypes via Inter-Simple Sequence Repeat
Authors: Mustafa Yorgancılar, Emine Atalay, Necdet Akgün, Ali Topal
Abstract:
In this study, polymerase chain reaction based Inter-simple sequence repeat (ISSR) from DNA fingerprinting techniques were used to investigate the genetic relationships among barley crossbreed genotypes in Turkey. It is important that selection based on the genetic base in breeding programs via ISSR, in terms of breeding time. 14 ISSR primers generated a total of 97 bands, of which 81 (83.35%) were polymorphic. The highest total resolution power (RP) value was obtained from the F2 (0.53) and M16 (0.51) primers. According to the ISSR result, the genetic similarity index changed between 0.64–095; Lane 3 with Line 6 genotypes were the closest, while Line 36 were the most distant ones. The ISSR markers were found to be promising for assessing genetic diversity in barley crossbreed genotypes.Keywords: barley, crossbreed, genetic similarity, ISSR
Procedia PDF Downloads 3472122 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems
Authors: Aydin M. Torkabadi, Ehsan Pourjavad
Abstract:
A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM
Procedia PDF Downloads 1622121 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition
Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan
Abstract:
Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film
Procedia PDF Downloads 3292120 Leasing Revisited: Mastering the Digital Transformation with Traditional Financing
Authors: Tobias Huttche, Marco Canipa-Valdez, Corinne Mühlebach
Abstract:
This article discusses the role of leasing on the digital transformation process of companies and corresponding economic effects. Based on the traditional mechanisms of leasing, this article focuses in particular on the benefits of leasing as financing instrument with regard to the innovation potential of companies. Practical examples demonstrate how leasing can become an integral part of new business models. Especially, with regard to the digital transformation and corresponding investments in know-how and infrastructure, leasing can play an important role. Furthermore, findings of an empirical survey are presented dealing with the usage of leasing in Switzerland in an international context. The survey shows not only the benefits of leasing against the backdrop of digital transformation but gives guidance on how other countries can benefit from promoting leasing in their legislation and economy. Based on a simulation model for Switzerland, the economic effect of an increase in leasing volume is being calculated. Again, the respective results underline the substantial growth potential. This holds true especially for economies where asset-based lending is rarely used because of a lack of entrepreneurial or private security of the borrower (cash-based financing for developing and emerging countries). Overall, the authors found that leasing using companies are more productive and tend to grow faster than companies using less or none leasing. The positive effects of leasing on emerging digital challenges for companies and entire economies should encourage other countries to facilitate access to leasing as financing instrument by decreasing legal-, tax- and accounting-related requirements in the respective jurisdiction.Keywords: Cash-Based financing, digital transformation, financing instruments, growth, innovation, leasing
Procedia PDF Downloads 2562119 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems
Authors: Baba Mbaye
Abstract:
In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering
Procedia PDF Downloads 2182118 Urban Life on the Go: Urban Transformation of Public Space
Authors: E. Zippelius
Abstract:
Urban design aims to provide a stage for public life that, when once brought to life, is right away subject to subtle but continuous transformation. This paper explores such transformations and searches for ways how public life can be reinforced in the case of a housing settlement for the displaced in Nicosia, Cyprus. First, a sound basis of theoretical knowledge is established through literature review, notably the theory of the Production of Space by Henri Lefebvre, exploring its potential and defining key criteria for the following empirical analysis. The analysis is pinpointing the differences between spatial practice, representation of space and spaces of representation as well as their interaction, alliance, or even conflict. In doing so uncertainties, chances and challenges are unraveled that will be consequently linked to practice and action and lead to the formulation of a design strategy. A strategy, though, that does not long for achieving an absolute, finite certainty but understands the three dimensions of space formulated by Lefebvre as equal and space as continuously produced, hence, unfinished.Keywords: production of space, public space, urban life, urban transformation
Procedia PDF Downloads 1412117 Semantic Search Engine Based on Query Expansion with Google Ranking and Similarity Measures
Authors: Ahmad Shahin, Fadi Chakik, Walid Moudani
Abstract:
Our study is about elaborating a potential solution for a search engine that involves semantic technology to retrieve information and display it significantly. Semantic search engines are not used widely over the web as the majorities are still in Beta stage or under construction. Many problems face the current applications in semantic search, the major problem is to analyze and calculate the meaning of query in order to retrieve relevant information. Another problem is the ontology based index and its updates. Ranking results according to concept meaning and its relation with query is another challenge. In this paper, we are offering a light meta-engine (QESM) which uses Google search, and therefore Google’s index, with some adaptations to its returned results by adding multi-query expansion. The mission was to find a reliable ranking algorithm that involves semantics and uses concepts and meanings to rank results. At the beginning, the engine finds synonyms of each query term entered by the user based on a lexical database. Then, query expansion is applied to generate different semantically analogous sentences. These are generated randomly by combining the found synonyms and the original query terms. Our model suggests the use of semantic similarity measures between two sentences. Practically, we used this method to calculate semantic similarity between each query and the description of each page’s content generated by Google. The generated sentences are sent to Google engine one by one, and ranked again all together with the adapted ranking method (QESM). Finally, our system will place Google pages with higher similarities on the top of the results. We have conducted experimentations with 6 different queries. We have observed that most ranked results with QESM were altered with Google’s original generated pages. With our experimented queries, QESM generates frequently better accuracy than Google. In some worst cases, it behaves like Google.Keywords: semantic search engine, Google indexing, query expansion, similarity measures
Procedia PDF Downloads 4252116 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence
Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park
Abstract:
Scripts are one of the basic text resources to understand broadcasting contents. Since broadcast media wields lots of influence over the public, tools for understanding broadcasting contents are more required. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches. Scripts also provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scripts consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics based on statistical learning method. To tackle this problem, we propose a method of learning with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, by using high quality of topics, we can get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.Keywords: broadcasting contents, scripts, text similarity, topic model
Procedia PDF Downloads 3182115 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance
Authors: Loai AbdAllah, Mahmoud Kaiyal
Abstract:
Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.Keywords: missing values, incomplete data, distance, incomplete diabetes data
Procedia PDF Downloads 2252114 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning
Procedia PDF Downloads 4032113 The Impact of Digital Transformation on the Construction Industry in Kuwait
Authors: M. Aladwani, Y. Alarfaj
Abstract:
The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.Keywords: BIM, digital construction, construction technologies, digital transformation
Procedia PDF Downloads 862112 Recruitment Model (FSRM) for Faculty Selection Based on Fuzzy Soft
Authors: G. S. Thakur
Abstract:
This paper presents a Fuzzy Soft Recruitment Model (FSRM) for faculty selection of MHRD technical institutions. The selection criteria are based on 4-tier flexible structure in the institutions. The Advisory Committee on Faculty Recruitment (ACoFAR) suggested nine criteria for faculty in the proposed FSRM. The model Fuzzy Soft is proposed with consultation of ACoFAR based on selection criteria. The Fuzzy Soft distance similarity measures are applied for finding best faculty from the applicant pool.Keywords: fuzzy soft set, fuzzy sets, fuzzy soft distance, fuzzy soft similarity measures, ACoFAR
Procedia PDF Downloads 3472111 NFResNet: Multi-Scale and U-Shaped Networks for Deblurring
Authors: Tanish Mittal, Preyansh Agrawal, Esha Pahwa, Aarya Makwana
Abstract:
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three differ-ent loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.Keywords: multi-scale, Unet, deblurring, FFT, resblock, NAF-block, nfresnet, charbonnier, edge, frequency reconstruction
Procedia PDF Downloads 136