Search results for: hyper ledger fabric
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 715

Search results for: hyper ledger fabric

565 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 77
564 Superhydrophobic Coatings Based On Waterborne Polyolefin And Silica Nanoparticles

Authors: Kyuwon Lee, Young-Wook Chang

Abstract:

Superhydrophobic surfaces have been paid great attentions over the years due to their various applications. In this study, superhydrophobic coatings based on the hybrids of hydrophobically modified silica nanoparticles and waterborne polyolefin were fabricated onto a cotton fabric by spraying a mixture of surface dodecylated silica nanoparticles with aqueous dispersion of polyolefin onto the fabric and a subsequent drying at 80℃. The coated fabrics were characterized using water-contact angle measurement, SEM, and AFM analysis. The coated fabrics exhibit superhydrophobicity with a water contact angle of 155° along with excellent self-cleaning and water/oil separation ability. It was also revealed that such superhydrophobicity was maintained after repeated mechanical abrasion using a sandpaper.

Keywords: superhydrophobic coating, waterborne polyolefin, dodecylated silica nanoparticle, durability

Procedia PDF Downloads 124
563 The Optimization Design of Sound Absorbing for Automotive Interior Material

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during development

Keywords: automotive interior material, sound absorbing, optimization design, nonwoven fabric

Procedia PDF Downloads 826
562 Model of Application of Blockchain Technology in Public Finances

Authors: M. Vlahovic

Abstract:

This paper presents a model of public finances, which combines three concepts: participatory budgeting, crowdfunding and blockchain technology. Participatory budgeting is defined as a process in which community members decide how to spend a part of community’s budget. Crowdfunding is a practice of funding a project by collecting small monetary contributions from a large number of people via an Internet platform. Blockchain technology is a distributed ledger that enables efficient and reliable transactions that are secure and transparent. In this hypothetical model, the government or authorities on local/regional level would set up a platform where they would propose public projects to citizens. Citizens would browse through projects and support or vote for those which they consider justified and necessary. In return, they would be entitled to a tax relief in the amount of their monetary contribution. Since the blockchain technology enables tracking of transactions, it can be used to mitigate corruption, money laundering and lack of transparency in public finances. Models of its application have already been created for e-voting, health records or land registries. By presenting a model of application of blockchain technology in public finances, this paper takes into consideration the potential of blockchain technology to disrupt governments and make processes more democratic, secure, transparent and efficient. The framework for this paper consists of multiple streams of research, including key concepts of direct democracy, public finance (especially the voluntary theory of public finance), information and communication technology, especially blockchain technology and crowdfunding. The framework defines rules of the game, basic conditions for the implementation of the model, benefits, potential problems and development perspectives. As an oversimplified map of a new form of public finances, the proposed model identifies primary factors, that influence the possibility of implementation of the model, and that could be tracked, measured and controlled in case of experimentation with the model.

Keywords: blockchain technology, distributed ledger, participatory budgeting, crowdfunding, direct democracy, internet platform, e-government, public finance

Procedia PDF Downloads 142
561 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges

Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau

Abstract:

Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.

Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment

Procedia PDF Downloads 369
560 Cotton Fabrics Functionalized with Green and Commercial Ag Nanoparticles

Authors: Laura Gonzalez, Santiago Benavides, Martha Elena Londono, Ana Elisa Casas, Adriana Restrepo-Osorio

Abstract:

Cotton products are sensitive to microorganisms due to its ability to retain moisture, which might cause change into the coloration, mechanical properties reduction or foul odor generation; consequently, this represents risks to the health of users. Nowadays, have been carried out researches to give antibacterial properties to textiles using different strategies, which included the use of silver nanoparticles (AgNPs). The antibacterial behavior can be affected by laundering process reducing its effectiveness. In the other way, the environmental impact generated for the synthetic antibacterial agents has motivated to seek new and more ecological ways for produce AgNPs. The aims of this work are to determine the antibacterial activity of cotton fabric functionalized with green (G) and commercial (C) AgNPs after twenty washing cycles, also to evaluate morphological and color changes. A plain weave cotton fabric suitable for dyeing and two AgNPs solutions were use. C a commercial product and G produced using an ecological method, both solutions with 0.5 mM concentration were impregnated on cotton fabric without stabilizer, at a liquor to fabric ratio of 1:20 in constant agitation during 30min and then dried at 70 °C by 10 min. After that the samples were subjected to twenty washing cycles using phosphate-free detergent simulated on agitated flask at 150 rpm, then were centrifuged and dried on a tumble. The samples were characterized using Kirby-Bauer test determine antibacterial activity against E. coli y S. aureus microorganisms, the results were registered by photographs establishing the inhibition halo before and after the washing cycles, the tests were conducted in triplicate. Scanning electron microscope (SEM) was used to observe the morphologies of cotton fabric and treated samples. The color changes of cotton fabrics in relation to the untreated samples were obtained by spectrophotometer analysis. The images, reveals the presence of inhibition halo in the samples treated with C and G AgNPs solutions, even after twenty washing cycles, which indicated a good antibacterial activity and washing durability, with a tendency to better results against to S. aureus bacteria. The presence of AgNPs on the surface of cotton fiber and morphological changes were observed through SEM, after and before washing cycles. The own color of the cotton fiber has been significantly altered with both antibacterial solutions. According to the colorimetric results, the samples treated with C lead to yellowing while the samples modified with G to red yellowing Cotton fabrics treated AgNPs C and G from 0.5 mM solutions exhibited excellent antimicrobial activity against E. coli and S. aureus with good laundering durability effects. The surface of the cotton fibers was modified with the presence of AgNPs C and G due to the presence of NPs and its agglomerates. There are significant changes in the natural color of cotton fabric due to deposition of AgNPs C and G which were maintained after laundering process.

Keywords: antibacterial property, cotton fabric, fastness to wash, Kirby-Bauer test, silver nanoparticles

Procedia PDF Downloads 241
559 A Study of Parameters That Have an Influence on Fabric Prints in Judging the Attractiveness of a Female Body Shape

Authors: Man N. M. Cheung

Abstract:

In judging the attractiveness of female body shape, visual sense is one of the important means. The ratio and proportion of body shape influence the perception of female physical attractiveness. This study aims to examine visual perception of digital textile prints on a virtual 3D model in judging the attractiveness of the body shape. Also, investigate the influences when using different shape parameters and their relationships. Participants were asked to conduct a set of questionnaires with images to rank the attractiveness of the female body shape. Results showed that morphing the fabric prints with a certain ratio and combination of shape parameters - waist and hip, can enhance the attractiveness of the female body shape.

Keywords: digital printing, 3D body modeling, fashion print design, body shape attractiveness

Procedia PDF Downloads 166
558 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 528
557 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products

Authors: Maciej Jedrzejczyk, Karolina Marzantowicz

Abstract:

Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.

Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids

Procedia PDF Downloads 289
556 Investigating the Need to Align with and Adapt Sustainability of Cotton

Authors: Girija Jha

Abstract:

This paper investigates the need of cotton to integrate sustainability. The methodology used in the paper is to do secondary research to find out the various environmental implications of cotton as textile material across its life cycle and try to look at ways and possibilities of minimizing its ecological footprint. Cotton is called ‘The Fabric of Our Lives’. History is replete with examples where this fabric used to be more than a fabric of lives. It used to be a miracle fabric, a symbol India’s pride and social Movement of Swaraj, Gandhijee’s clarion call to self reliance. Cotton is grown in more than 90 countries across the globe on 2.5 percent of the world's arable land in countries like China, India, United States, etc. accounting for almost three fourth of global production. But cotton as a raw material has come under the scanner of sustainability experts because of myriad reasons a few have been discussed here. It may take more than 20,000 liters of water to produce 1kg of cotton. Cotton harvest is primarily done from irrigated land which leads to Salinization and depletion of local water reservoirs, e.g., Drying up of Aral Sea. Cotton is cultivated on 2.4% of total world’s crop land but accounts for 24% usage of insecticide and shares the blame of 11% usage of pesticides leading to health hazards and having an alarmingly dangerous impact on the ecosystem. One of the possible solutions to these problems as proposed was GM, Genetically Modified cotton crop. However, use of GM cotton is still debatable and has many ethical issues. The practice of mass production and increasing consumerism and especially fast fashion has been major culprits to disrupt this delicate balance. Disposable fashion or fast fashion is on the rise and cotton being one of the major choices adds on to the problem. Denims – made of cotton and have a strong fashion statement and the washes being an integral part of their creation they share a lot of blame. These are just a few problems listed. Today Sustainability is the need of the hour and it is inevitable to incorporate have major changes in the way we cultivate and process cotton to make it a sustainable choice. The answer lies in adopting minimalism and boycotting fast fashion, in using Khadi, in saying no to washed denims and using selvedge denims or using better methods of finishing the washed out fabric so that the environment does not bleed blue. Truly, the answer lies in integrating state of art technology with age old sustainable practices so that the synergy of the two may help us come out of the vicious circle.

Keywords: cotton, sustainability, denim, Khadi

Procedia PDF Downloads 146
555 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 66
554 Finite Element Modelling of a 3D Woven Composite for Automotive Applications

Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno

Abstract:

A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.

Keywords: 3D woven composite (3DWC), meso-scale finite element model, homogenisation of elastic material properties, Abaqus Python scripting

Procedia PDF Downloads 130
553 Experiments on Residual Compressive Strength After Fatigue of Carbon Fiber Fabric Composites in Hydrothermal Environment

Authors: Xuan Sun, Mingbo Tong

Abstract:

In order to study the effect of hydrothermal environment on the fatigue properties of carbon fiber fabric composites, the experiments on fatigue and residual compressive strength with the center-hole laminates were carried out. For the experiments on fatigue in hydrothermal environment, an environmental chamber used for hydrothermal environment was designed, and the FLUENT was used to simulate the field of temperature in the environmental chamber, it proved that the design met the test requirements. In accordance with ASTM standard, the fatigue test fixture and compression test fixture were designed and produced. Then the tension-compression fatigue tests were carried out in conditions of standard environment (temperature of 23+2℃, relative humidity of 50+/-5%RH) and hydrothermal environment (temperature of 70 +2℃, relative humidity of 85+/-5%RH). After that, the residual compressive strength tests were carried out, respectively. The residual compressive strength after fatigue in condition of standard environment was set as a reference value, compared with the value in condition of hydrothermal environment, calculating the difference between them. According to the result of residual compressive strength tests, it shows that the residual compressive strength after fatigue in condition of hydrothermal environment was decreased by 13.5%,so the hydrothermal environment has little effect on the residual compressive strength of carbon fiber fabric composites laminates after fatigue under load spectrum in this research.

Keywords: carbon fiber, hydrothermal environment, fatigue, residual compressive strength

Procedia PDF Downloads 476
552 Sustainable Traditional Urban Design of the Old City of Ghadames

Authors: Hazem Bunkheila

Abstract:

Ghadames is an oasis on the edge of the Sahara Desert in southwestern Libya at the border with Algeria and Tunisia. It is the oldest oasis in the world that provides a fascinating example of traditional urban in the desert environment. The urban of the small city is considered a genuine adaptation to the harsh desert climate. The historic city of Ghadames remained unaffected by the rapid after oil changes. That makes it a good field to study sustainable, vernacular, earth architecture and urban design. The aim of this paper is to investigate the urban structure, concept, and fabric of the old oasis. The research also surveys the environmental considerations in the city that shades the sustainable features in this traditional residential area. In addition, the paper addresses the modern applications in the new city of Ghadams and sides of success and failure compared to the traditional urban fabric.

Keywords: dessert climate design, Ghadames, sustainable urban design, traditional urban design

Procedia PDF Downloads 354
551 Modification of Four Layer through the Thickness Woven Structure for Improved Impact Resistance

Authors: Muhammad Liaqat, Hafiz Abdul Samad, Syed Talha Ali Hamdani, Yasir Nawab

Abstract:

In the current research, the four layers, orthogonal through the thickness, 2D woven, 3D fabric structure was modified to improve the impact resistance of 3D fabric reinforced composites. This was achieved by imparting the auxeticity into four layers through the thickness woven structure. A comparison was made between the standard and modified four layers through the thickness woven structure in terms of auxeticity, penetration and impact resistance. It was found that the modified structure showed auxeticity in both warp and weft direction. It was also found that the penetration resistance of modified sample was less as compared to the standard structure, but impact resistance was improved up to 6.7% of modified four layers through the thickness woven structure.

Keywords: 2D woven, 3D fabrics, auxetic, impact resistance, orthogonal through the thickness

Procedia PDF Downloads 330
550 Long-Term Field Performance of Paving Fabric Interlayer Systems to Reduce Reflective Cracking

Authors: Farshad Amini, Kejun Wen

Abstract:

The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The effectiveness of paving fabrics in reducing reflection cracking is related to joint or crack movement in the underlying pavement, crack width, overlay thickness, subgrade conditions, climate, and traffic volume. The nonwoven geotextiles are installed between the old and new asphalt layers. Paving fabrics enhance performance through two mechanisms: stress relief and waterproofing. Several factors including proper installation, remedial work performed before overlay, overlay thickness, variability of pavement strength, existing pavement condition, base/subgrade support condition, and traffic volume affect the performance. The primary objective of this study was to conduct a long-term monitoring of the paving fabric interlayer systems to evaluate its effectiveness and performance. A comprehensive testing, monitoring, and analysis program were undertaken, where twelve 500-ft pavement sections of a four-lane highway were rehabilitated, and then monitored for seven years. A comparison between the performance of paving fabric treatment systems and control sections is reported. Lessons learned, and the various factors are discussed.

Keywords: monitoring, paving fabrics, performance, reflective cracking

Procedia PDF Downloads 324
549 Bacterial Decontamination of Nurses' White Coats by Application of Antimicrobial Finish

Authors: Priyanka Gupta, Nilanjana Bairagi, Deepti Gupta

Abstract:

New pathogenic strains of microbes are continually emerging and resistance of bacteria to antibiotics is growing. Hospitals in India have a high burden of infections in their intensive care units and general wards. Rising incidence of hospital infections is a matter of great concern in India. This growth is often attributed to the absence of effective infection control strategies in healthcare facilities. Government, therefore, is looking for cost effective strategies that are effective against HAIs. One possible method is by application of an antimicrobial finish on the uniform. But there are limited studies to show the effect of antimicrobial activity of antimicrobial finish treated nurses’ uniforms in a real hospital set up. This paper proposes a prospective non-destructive sampling technique, based on the use of a detachable fabric patch, to assess the effectiveness of silver based antimicrobial agent across five wards in a tertiary care government hospital in Delhi, India. Fabrics like polyester and polyester cotton blend fabric which are more prevalent for making coats were selected for the study. Polyester and polyester cotton blend fabric was treated with silver based antimicrobial (AM) finish. At the beginning of shift, a composite patch of untreated and treated fabric respectively was stitched on the abdominal region on the left and right side of the washed white coat of participating nurse. At the end of the shift, the patch was removed and taken for bacterial sampling on Brain Heart Infusion (BHI) plates. Microbial contamination on polyester and blend fabrics after 6 hours shift was compared in Brain Heart Infusion broth (BHI). All patches treated with silver based antimicrobial agent showed decreased bacterial counts. Percent reduction in the bacterial colonies after the antimicrobial treatment in both fabrics was 81.0 %. Antimicrobial finish was equally effective in reducing microbial adhesion on both fabric types. White coats of nurses become progressively contaminated during clinical care. Type of fabric used to make the coat can affect the extent of contamination which is higher on polyester cotton blend as compared to 100% polyester. The study highlights the importance of silver based antimicrobial finish in the area of uniform hygiene. Bacterial load can be reduced by using antimicrobial finish on hospital uniforms. Hospital staff uniforms endowed with antimicrobial properties may be of great help in reducing the occurrence and spread of infections.

Keywords: antimicrobial finish, bacteria, infection control, silver, white coat

Procedia PDF Downloads 202
548 Exploring White-Matter Hyperintensities in Patients with Psychiatric Disorders and Their Clinical Relevance

Authors: Ubaid Ullah Kamgar, Ajaz Ahmed Suhaff, Mohammad Maqbool Dar

Abstract:

Objective: The aim is to study the association of MRI findings of T₂/FLAIR white matter hyperintensities among patients with psychiatric disorders. Background and Rationale: MRI findings in psychiatric disorders can vary widely depending on specific disorders and individual differences. However, some general patterns have been observed, such as, in Depression - reduced volume in areas such as the prefrontal cortex and hippocampus; in Schizophrenia - enlarged ventricles, abnormalities in frontal and temporal lobes, as well as hippocampus and thalamus; in Bipolar Disorder – reduced volume in the prefrontal cortex and hippocampus and abnormalities in the amygdala; in OCD – abnormalities in the orbitofrontal cortex, anterior cingulate cortex and striatum. However, many patients show findings of white-matter hyper-intensities, which are usually considered non-specific in psychiatry. These hyperintensities are low attenuation in the deep and white matter. The pathogenic mechanisms of white matter hyperintensities are not well-understood and have been attributed to cerebral small vessel disease. The aim of the study is to study the association of the above MRI findings in patients with psychiatric disorders after ruling out neurological disorders (if any are found). Methodology: Patients admitted to psychiatric hospitals or presenting to OPDs with underlying psychiatric disorders, having undergone MRI Brain as part of investigations, and having T₂/FLAIR white-matter hyperintensities on MRI were taken to study the association of the above MRI findings with different psychiatric disorders. Results: Out of the 22 patients having MRI findings of T₂/FLAIR white-matter hyper-intensities, the underlying psychiatric comorbidities were: Major Depressive Disorder in 7 pts; Obsessive Compulsive Disorder in 5 pts; Bipolar Disorder in 5 pts; Dementia (vascular type) in 5pts. Discussion and conclusion: In our study, the white matter hyper-intensities were found mostly in MDD (32%), OCD (22.7%), Bipolar Disorder (22.7%) and Dementia in 22.7% of patients. In conclusion, the presence of white-matter hyperintensities in psychiatric disorders underscores the complex interplay between vascular, neurobiological and psychosocial factors. Further research with a large sample size is needed to fully elucidate their clinical significance.

Keywords: white-matter hyperintensities, OCD, MDD, dementia, bipolar disorder.

Procedia PDF Downloads 48
547 Fabrication of Textile-Based Radio Frequency Metasurfaces

Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu

Abstract:

Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.

Keywords: electronic textiles, metasurface, printed electronics, flexible

Procedia PDF Downloads 189
546 Functional Finishing of Organic Cotton Fabric Using Vetiver Root Extract

Authors: Sakeena Naikwadi, K. Jagaluraiah Sannapapamma

Abstract:

Vetiveria zizanioides is an aromatic grass and traditionally been used in aromatherapy and ayurvedic medicine. Vetiver root is multi-functional biopolymer and has highly aromatic, antimicrobial, UV blocking, antioxidant properties suitable for textile finishing. The vetiver root (Gulabi) powder of different concentration (2, 4, 6,8 percent) were extracted by aqueous and solvent methods subjected to bioassay for antimicrobial efficiency and GCMS spectral analysis. The organic cotton fabric was finished with vetiver root extract (8 percent) by exhaust and pad dry cure methods. The finished fabric was assessed for functional properties viz., UV protective factor, antimicrobial efficiency and aroma intensity. The results revealed that Ethanol extraction showed a greater zone of inhibition compared to aqueous extract in root powder. Among the concentrations, 8 percent root extract in ethanol showed a greater zone of inhibition against gram-positive organism S. aureus and gram-negative organism E. coli. The major compounds present in vetiver root extracts were diethyl pathalate with greater percentage (87.73 %) followed by 7- Isopropyl dimethyl carboxylic acid (4.05 %), 2-butanone 4-trimethyle cyclohexen (1.21 %), phenanthrene carboxylic acid (1.03 %), naphthalene pentanoic acid (0.99 %), 1-phenanthrene carboxylic acid and 1 cyclohexenone 2-methyl oxobuty (0.89 %). The sample finished by pad dry cure method exhibited better UV protection even after 10th wash as compared to exhaust method. Vetiver extract treated samples exhibited maximum zone of inhibition against S. aureus than the E. coli organism. The vetiver root extract treated organic cotton fabric through pad dry cure method possessed good antimicrobial activity against S. aureus and E. coli even after 20th washes compared to vetiver root extract treated by exhaust method. The olfactory analysis was carried out by 30 panels of members and opined that vetiver root extract treated fabric has very good and pleasant aroma with better tactile properties that provide cooling, soothing effect and enhances the mood of the wearer. Vetiver root extract finished organic cotton fabric possessed aroma, antimicrobial and UV properties which are aptly suitable for medical and healthcare textiles viz., wound dressing, bandage gauze, surgical cloths, baby diapers and sanitary napkins. It can be used as after finishing agent for variegated garments and made-ups and can be replaced with commercial after finishing agents.

Keywords: antimicrobial, olfactory analysis, UV protection factor, vetiver root extract

Procedia PDF Downloads 226
545 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers

Authors: Jayahar Sivasubramanian

Abstract:

Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.

Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet

Procedia PDF Downloads 176
544 Decontamination of Chromium Containing Ground Water by Adsorption Using Chemically Modified Activated Carbon Fabric

Authors: J. R. Mudakavi, K. Puttanna

Abstract:

Chromium in the environment is considered as one of the most toxic elements probably next only to mercury and arsenic. It is acutely toxic, mutagenic and carcinogenic in the environment. Chromium contamination of soil and underground water due to industrial activities is a very serious problem in several parts of India covering Karnataka, Tamil Nadu, Andhra Pradesh etc. Functionally modified Activated Carbon Fabrics (ACF) offer targeted chromium removal from drinking water and industrial effluents. Activated carbon fabric is a light weight adsorbing material with high surface area and low resistance to fluid flow. We have investigated surface modification of ACF using various acids in the laboratory through batch as well as through continuous flow column experiments with a view to develop the optimum conditions for chromium removal. Among the various acids investigated, phosphoric acid modified ACF gave best results with a removal efficiency of 95% under optimum conditions. Optimum pH was around 2 – 4 with 2 hours contact time. Continuous column experiments with an effective bed contact time (EBCT) of 5 minutes indicated that breakthrough occurred after 300 bed volumes. Adsorption data followed a Freundlich isotherm pattern. Nickel adsorbs preferentially and sulphate reduces chromium adsorption by 50%. The ACF could be regenerated up to 52.3% using 3 M NaOH under optimal conditions. The process is simple, economical, energy efficient and applicable to industrial effluents and drinking water.

Keywords: activated carbon fabric, hexavalent chromium, adsorption, drinking water

Procedia PDF Downloads 328
543 Technological Ensuring of the Space Reflector Antennas Manufacturing Process from Carbon Fiber Reinforced Plastics

Authors: Pyi Phyo Maung

Abstract:

In the study, the calculations of the permeability coefficient, values of the volume and porosity of a unit cell of a woven fabric before and after deformation based on the geometrical parameters are presented. Two types of carbon woven fabric structures were investigated: standard type, which integrated the filament, has a cross sectional shape of a cylinder and spread tow type, which has a rectangular cross sectional shape. The space antennas reflector, which distinctive feature is the presence of the surface of double curvature, is considered as the object of the research. Modeling of the kinetics of the process of impregnation of the reflector for the two types of carbon fabric’s unit cell structures was performed using software RAM-RTM. This work also investigated the influence of the grid angle between warp and welt of the unit cell on the duration of impregnation process. The results showed that decreasing the angle between warp and welt of the unit cell, the decreasing of the permeability values were occurred. Based on the results of calculation samples of the reflectors, their quality was determined. The comparisons of the theoretical and experimental results have been carried out. Comparison of the two textile structures (standard and spread tow) showed that the standard textiles with circular cross section were impregnated faster than spread tows, which have a rectangular cross section.

Keywords: vacuum assistant resin infusion, impregnation time, shear angle, reflector and modeling

Procedia PDF Downloads 267
542 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding

Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long

Abstract:

Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.

Keywords: 3D fiber, void formation, RTM, process modelling

Procedia PDF Downloads 88
541 Crystallized Colored Towels Obtained by Special Coloration of Yarns

Authors: Hasan Eskin, Gizem Özmen, A. Nazmi Çeler

Abstract:

When we examine the home textile development process, it follows a parallel line with the other textile products especially in the garment fabrics in terms of raw materials, production technologies and pattern characteristics. As a result, the expectations of people regarding textile, comfort, pattern (texture) and color properties are increasing. One of the places where comfort is most sought after is bath, pool, sea and baths. In addition to the material and technique that make up the physical structure in woven fabrics, color has an impressive importance with its strong effects. Color is the most prominent element in the fabric, and the color and texture are visually reinforcing. Evaluation of color in fabric is a personal phenomenon. Factors that determine color determination in fabric are the amount of color used, color ratio and its relationship with other colors. In this project; Considering the effect of color dimensions on human, we are talking about the crystallized colored towel that we developed in terms of comfort and texture properties. The basis of the effect created in the towel; It is formed by bending the yarn from its own special blend and the harmonious appearance of the natural crystallized rainbow colors with the pattern effect it determines on the warp yarns by using the weft yarns in the weaving. In addition, by using different weaving techniques and colors, alternatives can be created and personalized patterns can be created. One side of the towel determines the properties related to color, while the pile part determines the comfort characteristics with its soft touch and water absorbency.

Keywords: color effect, comfort, towel, weaving technique

Procedia PDF Downloads 145
540 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

Authors: Iris Käppler, Paul Matthäi, Chokri Cherif

Abstract:

In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Keywords: non-crimp fabric, adhesive, stitch-free, high-performance fibre

Procedia PDF Downloads 348
539 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 233
538 Study on the Prediction of Serviceability of Garments Based on the Seam Efficiency and Selection of the Right Seam to Ensure Better Serviceability of Garments

Authors: Md Azizul Islam

Abstract:

Seam is the line of joining two separate fabric layers for functional or aesthetic purposes. Different kinds of seams are used for assembling the different areas or parts of the garment to increase serviceability. To empirically support the importance of seam efficiency on serviceability of garments, this study is focused on choosing the right type of seams for particular sewing parts of the garments based on the seam efficiency to ensure better serviceability. Seam efficiency is the ratio of seam strength and fabric strength. Single jersey knitted finished fabrics of four different GSMs (gram per square meter) were used to make the test garments T-shirt. Three distinct types of the seam: superimposed, lapped and flat seam was applied to the side seams of T-shirt and sewn by lockstitch (stitch class- 301) in a flat-bed plain sewing machine (maximum sewing speed: 5000 rpm) to make (3x4) 12 T-shirts. For experimental purposes, needle thread count (50/3 Ne), bobbin thread count (50/2 Ne) and the stitch density (stitch per inch: 8-9), Needle size (16 in singer system), stitch length (31 cm), and seam allowance (2.5cm) were kept same for all specimens. The grab test (ASTM D5034-08) was done in the Universal tensile tester to measure the seam strength and fabric strength. The produced T-shirts were given to 12 soccer players who wore the shirts for 20 soccer matches (each match of 90 minutes duration). Serviceability of the shirt were measured by visual inspection of a 5 points scale based on the seam conditions. The study found that T-shirts produced with lapped seam show better serviceability and T-shirts made of flat seams perform the lowest score in serviceability score. From the calculated seam efficiency (seam strength/ fabric strength), it was obvious that the performance (in terms of strength) of the lapped and bound seam is higher than that of the superimposed seam and the performance of superimposed seam is far better than that of the flat seam. So it can be predicted that to get a garment of high serviceability, lapped seams could be used instead of superimposed or other types of the seam. In addition, less stressed garments can be assembled by others seems like superimposed seams or flat seams.

Keywords: seam, seam efficiency, serviceability, T-shirt

Procedia PDF Downloads 191
537 Innovation Management: A Comparative Analysis among Organizations from United Arab Emirates, Saudi Arabia, Brazil and China

Authors: Asmaa Abazaid, Maram Al-Ostah, Nadeen Abu-Zahra, Ruba Bawab, Refaat Abdel-Razek

Abstract:

Innovation audit is defined as a tool that can be used to reflect on how the innovation is managed in an organization. The aim of this study is to audit innovation in the second top Engineering Firms in the world, and one of the Small Medium Enterprises (SMEs) companies that are working in United Arab Emirates (UAE). The obtained results are then compared with four international companies from China and Brazil. The Diamond model has been used for auditing innovation in the two companies in UAE to evaluate their innovation management and to identify each company’s strengths and weaknesses from an innovation perspective. The results of the comparison between the two companies (Jacobs and Hyper General Contracting) revealed that Jacobs has support for innovation, its innovation processes are well managed, the company is committed to the development of its employees worldwide and the innovation system is flexible. Jacobs was doing best in all innovation management dimensions: strategy, process, organization, linkages and learning, while Hyper General Contracting did not score as Jacobs in any of the innovation dimensions. Furthermore, the audit results of both companies were compared with international companies to examine how well the two construction companies in UAE manage innovation relative to SABIC (Saudi company), Poly Easy and Arnious (Brazilian companies), Huagong tools and Guizohou Yibai (Chinese companies). The results revealed that Jacobs is doing best in learning and organization dimensions, while PolyEasy and Jacobs are equal in the linkage dimension. Huagong Tools scored the highest score in process dimension among all the compared companies. However, the highest score of strategy dimension was given to PolyEasy. On the other hand, Hyper General Contracting scored the lowest in all of the innovation management dimensions. It needs to improve its management of all the innovation management dimensions with special attention to be given to strategy, process, and linkage as they got scores below 4 out of 7 comparing with other dimensions. Jacobs scored the highest in three innovation management dimensions related to the six companies. However, the strategy dimension is considered low, and special attention is needed in this dimension.

Keywords: Brazil, China, innovation audit, innovation evaluation, innovation management, Saudi Arabia, United Arab Emirates

Procedia PDF Downloads 274
536 Hygrothermal Properties of Raw Earth Material

Authors: Ichrak Hamrouni, Tariq Ouahbi, Natalija Lhuissier, Saïd Taibi, Mehrez Jemai, Olivier Crumeyrolle, Hatem Zenzri

Abstract:

Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented.

Keywords: raw earth material, hygro-thermal, thermal conductivity, water vapour permeability, building materials, building materials

Procedia PDF Downloads 167