Search results for: energy anomaly detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11800

Search results for: energy anomaly detection

11650 Systematic Approach for Energy-Supply-Orientated Production Planning

Authors: F. Keller, G. Reinhart

Abstract:

The efficient and economic allocation of resources is one main goal in the field of production planning and control. Nowadays, a new variable gains in importance throughout the planning process: Energy. Energy-efficiency has already been widely discussed in literature, but with a strong focus on reducing the overall amount of energy used in production. This paper provides a brief systematic approach, how energy-supply-orientation can be used for an energy-cost-efficient production planning and thus combining the idea of energy-efficiency and energy-flexibility.

Keywords: production planning, production control, energy-efficiency, energy-flexibility, energy-supply

Procedia PDF Downloads 652
11649 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: low density, optical flow, upward smoke motion, video based smoke detection

Procedia PDF Downloads 357
11648 Rare Earth Element (REE) Geochemistry of Tepeköy Sandstones (Central Anatolia, Turkey)

Authors: Mehmet Yavuz Hüseyinca, Şuayip Küpeli

Abstract:

Sandstones from Upper Eocene - Oligocene Tepeköy formation (Member of Mezgit Group) that exposed on the eastern edge of Tuz Gölü (Salt Lake) were analyzed for their rare earth element (REE) contents. Average concentrations of ΣREE, ΣLREE (Total light rare earth elements) and ΣHREE (Total heavy rare earth elements) were determined as 31.37, 26.47 and 4.55 ppm respectively. These values are lower than UCC (Upper continental crust) which indicates grain size and/or CaO dilution effect. The chondrite-normalized REE pattern is characterized by the average ratios of (La/Yb)cn = 6.20, (La/Sm)cn = 4.06, (Gd/Lu)cn = 1.10, Eu/Eu* = 0.99 and Ce/Ce* = 0.94. Lower values of ΣLREE/ΣHREE (Average 5.97) and (La/Yb)cn suggest lower fractionation of overall REE. Moreover (La/Sm)cn and (Gd/Lu)cn ratios define less inclined LREE and almost flat HREE pattern when compared with UCC. Almost no Ce anomaly (Ce/Ce*) emphasizes that REE were originated from terrigenous material. Also depleted LREE and no Eu anomaly (Eu/Eu*) suggest an undifferentiated mafic provenance for the sandstones.

Keywords: central Anatolia, provenance, rare earth elements, REE, Tepeköy sandstone

Procedia PDF Downloads 478
11647 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone

Procedia PDF Downloads 391
11646 Structural Damage Detection Using Sensors Optimally Located

Authors: Carlos Alberto Riveros, Edwin Fabián García, Javier Enrique Rivero

Abstract:

The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures

Keywords: optimum sensor placement, structural damage detection, modal identification, beam-like structures.

Procedia PDF Downloads 435
11645 GPU Based Real-Time Floating Object Detection System

Authors: Jie Yang, Jian-Min Meng

Abstract:

A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.

Keywords: object detection, GPU, motion estimation, parallel processing

Procedia PDF Downloads 477
11644 Anatomical and Pathological Evaluation of Anomaly Cases Presented to the Department of Pathology at the Kafkas University Faculty of Veterinary Medicine, between 2017 and 2019

Authors: Gülseren Kırbaş Doğan, Emin Karakurt, Mushap Kuru, Hilmi Nuhoğlu

Abstract:

Developmental anomalies can be caused by defects in bone tissue, cartilage tissue, or primitive mesenchymal tissue. Genetic-, environmental-, teratogenic-, faulty breeding selection–, or feeding-related anomalies can be observed either locally or systemically. This study aimed to evaluate in detail the various anomalies in six calves according to pathological and anatomical investigations. Six calves were delivered to the Department of Pathology at the Kafkas University Faculty of Veterinary Medicine between 2017 and 2019. These calves comprised one with anencephaly, one with the diencephalic syndrome, one with Schistosoma reflexum, two with anasarca, and one with nasal and calvarium openings. After necropsy, samples were taken from the organs, foreseen, and routine pathological examinations were performed. Following these procedures, the calves were brought to the anatomy laboratory and anatomically examined. As a result, various anomalies in 6 calves were evaluated according to pathological and anatomical investigations. These findings are believed to contribute to the literature.

Keywords: anatomy, anomaly, calf, pathology

Procedia PDF Downloads 186
11643 Thermal Neutron Detection Efficiency as a Function of Film Thickness for Front and Back Irradiation Detector Devices Coated with ¹⁰B, ⁶LiF, and Pure Li Thin Films

Authors: Vedant Subhash

Abstract:

This paper discusses the physics of the detection of thermal neutrons using thin-film coated semiconductor detectors. The thermal neutron detection efficiency as a function of film thickness is calculated for the front and back irradiation detector devices coated with ¹⁰B, ⁶LiF, and pure Li thin films. The detection efficiency for back irradiation devices is 4.15% that is slightly higher than that for front irradiation detectors, 4.0% for ¹⁰B films of thickness 2.4μm. The theoretically calculated thermal neutron detection efficiency using ¹⁰B film thickness of 1.1 μm for the back irradiation device is 3.0367%, which has an offset of 0.0367% from the experimental value of 3.0%. The detection efficiency values are compared and proved consistent with the given calculations.

Keywords: detection efficiency, neutron detection, semiconductor detectors, thermal neutrons

Procedia PDF Downloads 134
11642 Literature Review and Biomechanical Findings in Patients with Bipartite Medial Cuneiforms

Authors: Aliza Lee, Mark Wilt, John Bonk, Scott Floyd, Bradley Hoffman, Karen Uchmanowicz

Abstract:

Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessments were performed on 2 patients who reported foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the 1st ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.

Keywords: bipartite medial cuneiforms, cuneiform, developmental anomaly, gait abnormality

Procedia PDF Downloads 158
11641 Impact of Design Choices on the Life Cycle Energy of Modern Buildings

Authors: Mahsa Karimpour, Martin Belusko, Ke Xing, Frank Bruno

Abstract:

Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy.

Keywords: building life cycle energy, embodied energy, energy design measures, low energy buildings

Procedia PDF Downloads 774
11640 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters

Authors: S. Ghasemi, K. Khorasani

Abstract:

In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.

Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault

Procedia PDF Downloads 437
11639 Functional Variants Detection by RNAseq

Authors: Raffaele A. Calogero

Abstract:

RNAseq represents an attractive methodology for the detection of functional genomic variants. RNAseq results obtained from polyA+ RNA selection protocol (POLYA) and from exonic regions capturing protocol (ACCESS) indicate that ACCESS detects 10% more coding SNV/INDELs with respect to POLYA. ACCESS requires less reads for coding SNV detection with respect to POLYA. However, if the analysis aims at identifying SNV/INDELs also in the 5’ and 3’ UTRs, POLYA is definitively the preferred method. No particular advantage comes from ACCESS or POLYA in the detection of fusion transcripts.

Keywords: fusion transcripts, INDEL, RNA-seq, WES, SNV

Procedia PDF Downloads 290
11638 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 464
11637 The Analysis of the Challenge China’s Energy Transition Faces and Proposed Solutions

Authors: Yuhang Wang

Abstract:

As energy is vital to industrial productivity and human existence, ensuring energy security becomes a critical government responsibility. The Chinese government has implemented the energy transition to safeguard China’s energy security. Throughout this progression, the Chinese government has faced numerous obstacles. This article seeks to describe the causes of China’s energy transition barriers and the steps taken by the Chinese government to overcome them.

Keywords: energy transition, energy market, fragmentation, path dependency

Procedia PDF Downloads 107
11636 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN

Procedia PDF Downloads 341
11635 Comprehensive Study of Renewable Energy Resources and Present Scenario in India

Authors: Aparna Bhat, Rajeshwari Hegde

Abstract:

Renewable energy sources also called non-conventional energy sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy- bio-fuels grown sustain ably), hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. This paper presents a review about conventional and renewable energy scenario of India. The paper also presents current status, major achievements and future aspects of renewable energy in India and implementing renewable for the future is also been presented.

Keywords: solar energy, renewabe energy, wind energy, bio-diesel, biomass, feedin

Procedia PDF Downloads 617
11634 UWB Open Spectrum Access for a Smart Software Radio

Authors: Hemalatha Rallapalli, K. Lal Kishore

Abstract:

In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method.

Keywords: cognitive radio, energy detection, software radio, spectrum sensing

Procedia PDF Downloads 430
11633 Subjective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

Authors: Emhimed Saffor

Abstract:

In this paper, the problem of edge detection in digital images is considered. Three methods of edge detection based on mathematical morphology algorithm were applied on two sets (Brain and Chest) CT images. 3x3 filter for first method, 5x5 filter for second method and 7x7 filter for third method under MATLAB programming environment. The results of the above-mentioned methods are subjectively evaluated. The results show these methods are more efficient and satiable for medical images, and they can be used for different other applications.

Keywords: CT images, Matlab, medical images, edge detection

Procedia PDF Downloads 339
11632 Modified CUSUM Algorithm for Gradual Change Detection in a Time Series Data

Authors: Victoria Siriaki Jorry, I. S. Mbalawata, Hayong Shin

Abstract:

The main objective in a change detection problem is to develop algorithms for efficient detection of gradual and/or abrupt changes in the parameter distribution of a process or time series data. In this paper, we present a modified cumulative (MCUSUM) algorithm to detect the start and end of a time-varying linear drift in mean value of a time series data based on likelihood ratio test procedure. The design, implementation and performance of the proposed algorithm for a linear drift detection is evaluated and compared to the existing CUSUM algorithm using different performance measures. An approach to accurately approximate the threshold of the MCUSUM is also provided. Performance of the MCUSUM for gradual change-point detection is compared to that of standard cumulative sum (CUSUM) control chart designed for abrupt shift detection using Monte Carlo Simulations. In terms of the expected time for detection, the MCUSUM procedure is found to have a better performance than a standard CUSUM chart for detection of the gradual change in mean. The algorithm is then applied and tested to a randomly generated time series data with a gradual linear trend in mean to demonstrate its usefulness.

Keywords: average run length, CUSUM control chart, gradual change detection, likelihood ratio test

Procedia PDF Downloads 301
11631 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.

Keywords: spectral index, shadow detection, remote sensing images, World-View 2

Procedia PDF Downloads 541
11630 Economic Analysis of Policy Instruments for Energy Efficiency

Authors: Etidel Labidi

Abstract:

Energy efficiency improvement is one of the means to reduce energy consumption and carbon emissions. Recently, some developed countries have implemented the tradable white certificate scheme (TWC) as a new policy instrument based on market approach to support energy efficiency improvements. The major focus of this paper is to compare the White Certificates (TWC) scheme as an innovative policy instrument for energy efficiency improvement to other policy instruments: energy taxes and regulations setting a minimum level of energy efficiency. On the basis of our theoretical discussion and numerical simulation, we show that the white certificates system is the most interesting policy instrument for saving energy because it generates the most important level of energy savings and the least increase in energy service price.

Keywords: energy savings, energy efficiency, energy policy, white certificates

Procedia PDF Downloads 336
11629 Lane Detection Using Labeling Based RANSAC Algorithm

Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung

Abstract:

In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.

Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping

Procedia PDF Downloads 248
11628 Application of PV/Wind-Based Green Energy to Power Cellular Base Station

Authors: Francis Okodede, Edafe Lucky Okotie

Abstract:

Conventional energy sources based on oil, coal, and natural gas has posed a trait to environment and to human health. Green energy stands as an alternative because it has proved to be eco-friendly. The prospective of renewable energy sources are quite vast as they can, in principle, meet many times the world’s energy demand. Renewable energy sources, such as wind and solar, can provide sustainable energy services based on the use of routinely available indigenous resources. New renewable energy sources (solar energy, wind energy, and modern bio-energy) are currently contributing immensely to global energy demand. A number of studies have shown the potential and contribution of renewable energy to global energy supplies, indicating that in the second half of the 21st century, it is going to be a major source and driver in the telecommunication sector. Green energy contribution might reach as much as 50 percent of global energy demands if the right policies are in place. This work suggests viable non-conventional means of energy supply to power a cellular base station.

Keywords: base station, energy storage, green energy, rotor efficiency, solar energy, wind energy

Procedia PDF Downloads 101
11627 Efficient Ground Targets Detection Using Compressive Sensing in Ground-Based Synthetic-Aperture Radar (SAR) Images

Authors: Gherbi Nabil

Abstract:

Detection of ground targets in SAR radar images is an important area for radar information processing. In the literature, various algorithms have been discussed in this context. However, most of them are of low robustness and accuracy. To this end, we discuss target detection in SAR images based on compressive sensing. Firstly, traditional SAR image target detection algorithms are discussed, and their limitations are highlighted. Secondly, a compressive sensing method is proposed based on the sparsity of SAR images. Next, the detection problem is solved using Multiple Measurements Vector configuration. Furthermore, a robust Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. Finally, the detection results obtained using raw complex data are presented. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.

Keywords: compressive sensing, raw complex data, synthetic aperture radar, ADMM

Procedia PDF Downloads 25
11626 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime

Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.

Keywords: data fusion, round types speed hump, speed hump detection, surface filter

Procedia PDF Downloads 514
11625 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism

Authors: Kun Xu, Yuan Xu, Jia Qiao

Abstract:

The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.

Keywords: document detection, corner detection, attention mechanism, lightweight

Procedia PDF Downloads 355
11624 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection

Authors: Jiandong Lv, Xingang Wang, Cuiling Shao

Abstract:

The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.

Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer

Procedia PDF Downloads 251
11623 Fast and Robust Long-term Tracking with Effective Searching Model

Authors: Thang V. Kieu, Long P. Nguyen

Abstract:

Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.

Keywords: correlation filter, long-term tracking, random fern, real-time tracking

Procedia PDF Downloads 140
11622 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 544
11621 Energy Policy and Interactions with Politics and Economics

Authors: A. Beril Tugrul

Abstract:

Demand on production and thereby the global need of energy is growing continuously. Each country has different trends on energy demand and supply according to their geopolitical and geographical locations, underground reserves, weather conditions and level of industrialization. Conventional energy resources such as oil, gas and coal –in other words fossil resources- remain dominant on primary energy supply in spite of causing of environmental problems. Energy supply and demand securities are essential within the energy importing and exporting countries. This concept affected all sectors, but especially impressed on political aspects of the countries and also global economic views.

Keywords: energy policy, energy economics, energy strategy, global trends, petro-dollar recycling

Procedia PDF Downloads 479