Search results for: emotion identification
3181 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: facial expression recognittion, image preprocessing, deep learning, CNN
Procedia PDF Downloads 1433180 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification
Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar
Abstract:
Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings
Procedia PDF Downloads 1743179 A Literature Review on Emotion Recognition Using Wireless Body Area Network
Authors: Christodoulou Christos, Politis Anastasios
Abstract:
The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction
Procedia PDF Downloads 503178 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3603177 Gender Identification Using Digital Forensics
Authors: Vinod C. Nayak
Abstract:
In day-to-day forensic practice, identification is always a difficult task. Availability of anti-mortem and postmortem records plays a major rule in facilitating this tough task. However, the advent of digital forensic is a boon for forensic experts. This study has made use of digital forensics to establish identity by radiological dimensions of maxillary sinus using workstation software. The findings suggest a significant association between maxillary sinus dimensions and human gender. The author will be discussing the methods and results of the study in this e-poster.Keywords: digital forensics, identification, maxillary sinus, radiology
Procedia PDF Downloads 4193176 Exploring the Suitability and Benefits of Two Different Mindfulness-Based Interventions with Marginalized Female Youth
Authors: Samaneh Abedini, Diana Coholic
Abstract:
The transition from adolescence into adulthood involves many changes that result in increased vulnerability to psychological challenges. This developmental stage can be especially stressful for female youth living in underserviced regions. If mental health problems are left untreated in socially marginalized youth, these challenges can extend into adulthood. We know that a lack of access to mental health services and supports can influence adolescents’ psycho-social development and well-being, while resilience and emotion regulation can help them cope with these challenges. Feasible therapeutic programs can play a significant role in assisting youth in developing these characteristics and skills. Mindfulness-Based Cognitive Therapy for Children (MBCT-C) and Holistic Art-Based Program (HAP) are two examples of mindfulness-based interventions (MBIs) that address emotion regulation, coping strategies, and resilience in marginalized youth. While each program’s beneficial effects have been documented, there is a lack of research comparing MBIs with youth, within underserviced geographical locations, and across different cultures. In this study, the sample was 42 female youth between the ages of 12 and 17 years from Iran. 42 female youth from the Elm o Honar High School, located in rural parts of Iran, Isfahan province, have been enrolled in the study. The participants were assigned to one of the MBIs (three MBCT-C experimental groups (n=20) and three HAP experimental groups (n=22)). All participants completed measures including the Child and Youth Resilience Measure-28 (CYRM-28), Child and Adolescent Mindfulness Measure (CAMM), and Difficulties in Emotion Regulation Scale (DERS) at baseline and post-intervention. At the end of intervention, the MBCT-C and HAP experimental groups showed significant changes in resilience and emotion regulation. However, the changes in resilience in HAP groups were not significant; the participants in MBCT-C experimental groups showed significant improvement in resilience. The study provided initial evidence that mindfulness-based intervention can be potentially beneficial for improving mental health status in marginalized Iranian female youth living in the middle east culture.Keywords: benefits, female, marginalized, mindfulness, youth
Procedia PDF Downloads 893175 Lateral Cephalometric Radiograph to Determine Sex in Forensic Investigations
Authors: Paulus Maulana
Abstract:
Forensic identification is to help investigators determine a person's identity. Personal identification is often a problem in civil and criminal cases. Orthodontists like all other dental professionals can play a major role by maintaining lateral cephalogram and thus providing important or vital information or can clues to the legal authorities in order to help them in their search. Radiographic lateral cephalometry is a measurement method which focused on the anatomical points of human lateral skull. Sex determination is one of the most important aspects of the personal identification in forensic. Lateral cephalogram is a valuable tool in identification of sex as reveal morphological details of the skull on single radiograph. This present study evaluates the role of lateral cephalogram in identification of sex that parameters of lateral cephalogram are linear measurement and angle measurement. The linear measurements are N-S ( Anterior cranial length), Sna-Snp (Palatal plane length), Me-Go (menton-gonion), N-Sna ( Midfacial anterior height ), Sna-Me (Lower anterior face height), Co-Gn (total mandibular length). The angle measurements are SNA, SNB, ANB, Gonial, Interincical, and facial.Keywords: lateral cephalometry, cephalogram, sex, forensic, parameter
Procedia PDF Downloads 1903174 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness
Procedia PDF Downloads 1123173 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 1403172 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.Keywords: causal realtion extraction, relation extracton, convolutional neural network, text representation
Procedia PDF Downloads 7323171 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 743170 A Study on the Ideal and Actual Coping Responses of Public and Private College School Teachers on Job-Related Stress
Authors: Zaralyn Bernardo, Dante Boac, Annabelle Del Rosario
Abstract:
Professional individuals who are in a primary role to impart learning with the new generation are alarmingly tend to have a vast decrease in their workforce due to stress at work. Thus, the study used mixed method research design to explore the ideal and actual coping patterns of college school teachers, both private and public, using Coping Response Inventory-Adult (CRI-Adult). It was suggested that in order for coping to be effective there must be a congruence or good match between coping efforts and preferred coping style. Results basically provided the same information on sources of teacher stress. However, workload and low salary were more likely heightened, for public and private school, respectively. There is also a significant difference between the ideal and actual coping style of college school teachers. Though the public school teachers leaned towards problem-focused as their ideal way of coping, both public and private teachers are somewhat inclined to use emotion-focused coping in actual situation. Results of FGD identified the factors that contribute to the incongruence or mismatch in their preferred style of coping and actual efforts to cope. Identified factors based on thematic analysis (TA) are clustered into themes such as affectivity and rehearsal of the preferred coping responses, sensitivity to pressure impairs coping efficacy, seeking for social acceptance and approval, indefinite appraisal of perceived stress, emotional dysregulation, and impulsivity, immediate desire to terminate negative emotion and adversity. Most of the factors somewhat provide partial elucidation on the engagement of the respondents on emotion-focused coping.Keywords: coping responses subtypes, appraisal, teacher stress, ideal and actual coping
Procedia PDF Downloads 1653169 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1293168 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and ECG-based systems are unquestionably the best choice due to their appealing inherent characteristics. The CNNs are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the calibre of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest FAR of 0.04 percent and the highest FRR of 5%, the best performing network achieved an identification accuracy of 99.94 percent. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.Keywords: Biometrics, Dense Networks, Identification Rate, Train/Test split ratio
Procedia PDF Downloads 1603167 Person Re-Identification using Siamese Convolutional Neural Network
Authors: Sello Mokwena, Monyepao Thabang
Abstract:
In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.Keywords: camera network, convolutional neural network topology, person tracking, person re-identification, siamese
Procedia PDF Downloads 723166 Metaphors of Love and Passion in Lithuanian Comics
Authors: Saulutė Juzelėnienė, Skirmantė Šarkauskienė
Abstract:
In this paper, it is aimed to analyse the multimodal representations of the concepts of LOVE and PASSION in Lithuanian graphic novel “Gertrūda”, by Gerda Jord. The research is based on the earlier findings by Forceville (2005), Eerden (2009) as well as insights made by Shihara and Matsunaka (2009) and Kövecses (2000). The domains of target and source of LOVE and PASSION metaphors in comics are expressed by verbal and non-verbal cues. The analysis of non-verbal cues adopts the concepts of rune and indexes. A pictorial rune is a graphic representation of an object that does not exist in reality in comics, such as lines, dashes, text "balloons", and pictorial index – a graphically represented object of reality, a real symptom expressing a certain emotion, such as a wide smile, furrowed eyebrows, etc. Indexes are often hyperbolized in comics. The research revealed that most frequent source domains are CLOSINESS/UNITY, NATURAL/ PHYSICAL FORCE, VALUABLE OBJECT, PRESSURE. The target is the emotion of LOVE/PASSION which belongs to a more abstract domain of psychological experience. In this kind of metaphor, the picture can be interpreted as representing the emotion of happiness. Data are taken from Lithuanian comic books and Internet sites, where comics have been presented. The data and the analysis we are providing in this article aims to reveal that there are pictorial metaphors that manifest conceptual metaphors that are also expressed verbally and that methodological framework constructed for the analysis in the papers by Forceville at all is applicable to other emotions and culture specific pictorial manifestations.Keywords: multimodal metaphor, conceptual metaphor, comics, graphic novel, concept of love/passion
Procedia PDF Downloads 663165 Rumination in Borderline Personality Disorder: A Meta-Analytic Review
Authors: Mara J. Richman, Zsolt Unoka, Robert Dudas, Zsolt Demetrovics
Abstract:
Borderline personality disorder (BPD) is characterized by deficits in emotion regulation and effective liability. Of this domain, ruminative behaviors have been considered a core feature of emotion dysregulation difficulties. Taking this into consideration, a meta-analysis was performed to assess how BPD symptoms correlate with rumination, while also considering clinical moderator variables such as comorbidity, GAF score, and type of BPD symptom and demographic moderator variables such as age, gender, and education level. Analysis of correlation across rumination domains for the entire sample revealed a medium overall correlation. When assessing types of rumination, the largest correlation was among pain rumination followed by anger, depressive, and anxious rumination. Furthermore, affective instability had the strongest correlation with increased rumination, followed by unstable relationships, identity disturbance, and self-harm/ impulsivity, respectively. Demographic variables showed no significance. Clinical implications are considered and further therapeutic interventions are discussed in the context of rumination.Keywords: borderline personality disorder, meta-analysis, rumination, symptoms
Procedia PDF Downloads 1943164 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification
Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo
Abstract:
The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.Keywords: the bluff body wakes, low-order modeling, neural network, system identification
Procedia PDF Downloads 1803163 Identifying Promoters and Their Types Based on a Two-Layer Approach
Authors: Bin Liu
Abstract:
Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.Keywords: promoter, promoter type, random forest, sequence information
Procedia PDF Downloads 1843162 The Effect of Brand Recovery Communications on Embarrassed Consumers’ Cognitive Appraisal and Post-purchase Behavior
Authors: Kin Yan Ho
Abstract:
Negative brand news (such as Volkswagen’s faulty carbon emission reports, China’s Luckin Coffee scandal, and bribery in reputable US universities) influence how people perceive a company. Germany’s citizens claimed Volkswagen’s scandal as a national embarrassment and cannot recover their psychological damages through monetary and non-monetary compensation. The main research question is to examine how consumers evaluate and respond to embarrassing brand publicity. The cognitive appraisal theory is used as a theoretical foundation. This study describes the use of scenario-based experiment. The findings suggest that consumers with different levels of embarrassment evaluate brand remedial offers from emotion-focused and task-focused restorative justice perspectives (newly derived from the well-established scales of perceived justice). When consumers face both negative and positive brand information (i.e., negative publicity news and a remedial offer), they change their appraisal criterion. The social situation in the cognitive reappraisal process influences the quality of the customer-brand relationship and the customer’s recovery from brand embarrassment. The results also depict that the components of recovery compensation cause differences in emotion recovery, relationship quality, and repurchase intentions. This study extends embarrassment literature in an embarrassing brand publicity context. The emotional components of brand remedial tactics provide insights to brand managers on how to handle different consumers’ emotions, consumer satisfaction, and foster positive future behavior.Keywords: brand relationship quality, cognitive appraisal, crisis communications, emotion, justice, social presence
Procedia PDF Downloads 1343161 Speech Identification Test for Individuals with High-Frequency Sloping Hearing Loss in Telugu
Authors: S. B. Rathna Kumar, Sandya K. Varudhini, Aparna Ravichandran
Abstract:
Telugu is a south central Dravidian language spoken in Andhra Pradesh, a southern state of India. The available speech identification tests in Telugu have been developed to determine the communication problems of individuals having a flat frequency hearing loss. These conventional speech audiometric tests would provide redundant information when used on individuals with high-frequency sloping hearing loss because of better hearing sensitivity in the low- and mid-frequency regions. Hence, conventional speech identification tests do not indicate the true nature of the communication problem of individuals with high-frequency sloping hearing loss. It is highly possible that a person with a high-frequency sloping hearing loss may get maximum scores if conventional speech identification tests are used. Hence, there is a need to develop speech identification test materials that are specifically designed to assess the speech identification performance of individuals with high-frequency sloping hearing loss. The present study aimed to develop speech identification test for individuals with high-frequency sloping hearing loss in Telugu. Individuals with high-frequency sloping hearing loss have difficulty in perception of voiceless consonants whose spectral energy is above 1000 Hz. Hence, the word lists constructed with phonemes having mid- and high-frequency spectral energy will estimate speech identification performance better for such individuals. The phonemes /k/, /g/, /c/, /ṭ/ /t/, /p/, /s/, /ś/, /ṣ/ and /h/are preferred for the construction of words as these phonemes have spectral energy distributed in the frequencies above 1000 KHz predominantly. The present study developed two word lists in Telugu (each word list contained 25 words) for evaluating speech identification performance of individuals with high-frequency sloping hearing loss. The performance of individuals with high-frequency sloping hearing loss was evaluated using both conventional and high-frequency word lists under recorded voice condition. The results revealed that the developed word lists were found to be more sensitive in identifying the true nature of the communication problem of individuals with high-frequency sloping hearing loss.Keywords: speech identification test, high-frequency sloping hearing loss, recorded voice condition, Telugu
Procedia PDF Downloads 4193160 The Influence of Emotion on Numerical Estimation: A Drone Operators’ Context
Authors: Ludovic Fabre, Paola Melani, Patrick Lemaire
Abstract:
The goal of this study was to test whether and how emotions influence drone operators in estimation skills. The empirical study was run in the context of numerical estimation. Participants saw a two-digit number together with a collection of cars. They had to indicate whether the stimuli collection was larger or smaller than the number. The two-digit numbers ranged from 12 to 27, and collections included 3-36 cars. The presentation of the collections was dynamic (each car moved 30 deg. per second on the right). Half the collections were smaller collections (including fewer than 20 cars), and the other collections were larger collections (i.e., more than 20 cars). Splits between the number of cars in a collection and the two-digit number were either small (± 1 or 2 units; e.g., the collection included 17 cars and the two-digit number was 19) or larger (± 8 or 9 units; e.g., 17 cars and '9'). Half the collections included more items (and half fewer items) than the number indicated by the two-digit number. Before and after each trial, participants saw an image inducing negative emotions (e.g., mutilations) or neutral emotions (e.g., candle) selected from International Affective Picture System (IAPS). At the end of each trial, participants had to say if the second picture was the same as or different from the first. Results showed different effects of emotions on RTs and percent errors. Participants’ performance was modulated by emotions. They were slower on negative trials compared to the neutral trials, especially on the most difficult items. They errored more on small-split than on large-split problems. Moreover, participants highly overestimated the number of cars when in a negative emotional state. These findings suggest that emotions influence numerical estimation, that effects of emotion in estimation interact with stimuli characteristics. They have important implications for understanding the role of emotions on estimation skills, and more generally, on how emotions influence cognition.Keywords: drone operators, emotion, numerical estimation, arithmetic
Procedia PDF Downloads 1163159 Harnessing the Power of Loss: On the Discriminatory Dynamic of Non-Emancipatory Organization Identity
Authors: Rickard Grassman
Abstract:
In this paper, Lacanian theory will be used to illustrate the way discourses interact with the material by way of reifying antagonisms to shape our sense of identities in and around organizations. The ability to ‘sustain the loss’ is, in this view, the common structure here discerned in the very texture of a discourse, which reifies ‘lack’ as an ontological condition into something contingently absent (loss) that the subject hopes to overcome (desire). These fundamental human tendencies of identification are illustrated in the paper by examples drawn from history, cinema, and literature. Turning to a select sample of empirical accounts from a management consultancy firm, it is argued that this ‘sustaining the loss’ operates in discourse to enact identification in an organizational context.Keywords: Lacan, identification, discourse, desire, loss
Procedia PDF Downloads 953158 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.Keywords: emotion, emotion-enhanced memory, learning technique, STEM
Procedia PDF Downloads 913157 Identification of Impact Load and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem
Procedia PDF Downloads 1233156 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis
Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw
Abstract:
Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network
Procedia PDF Downloads 4623155 Timely Detection and Identification of Abnormalities for Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.Keywords: detection, monitoring, identification, measurement data, multivariate techniques
Procedia PDF Downloads 2363154 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model
Authors: Didier Auroux, Vladimir Groza
Abstract:
This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization
Procedia PDF Downloads 3163153 Analysis of the Current and Ideal Situation of Iran’s Football Talent Management Process from the Perspective of the Elites
Authors: Mehran Nasiri, Ardeshir Poornemat
Abstract:
The aim of this study was to investigate the current and ideal situations of the process of talent identification in Iranian football from the point of view of Iranian instructors of the Asian Football Confederation (AFC). This research was a descriptive-analytical study; in data collection phase a questionnaire was used, whose face validity was confirmed by experts of Physical Education and Sports Science. The reliability of questionnaire was estimated through the use of Cronbach's alpha method (0.91). This study involved 122 participants of Iranian instructors of the AFC who were selected based on stratified random sampling method. Descriptive statistics were used to describe the variables and inferential statistics (Chi-square) were used to test the hypotheses of the study at significant level (p ≤ 0.05). The results of Chi-square test related to the point of view of Iranian instructors of the AFC showed that the grass-roots scientific method was the best way to identify football players (0.001), less than 10 years old were the best ages for talent identification (0.001), the Football Federation was revealed to be the most important organization in talent identification (0.002), clubs were shown to be the most important institution in developing talents (0.001), trained scouts of Football Federation were demonstrated to be the best and most appropriate group for talent identification (0.001), and being referred by the football academy coaches was shown to be the best way to attract talented football players in Iran (0.001). It was also found that there was a huge difference between the current and ideal situation of the process of talent identification in Iranian football from the point of view of Iranian instructors of the AFC. Hence, it is recommended that the policy makers of talent identification for Iranian football provide a comprehensive, clear and systematic model of talent identification and development processes for the clubs and football teams, so that the talent identification process helps to nurture football talents more efficiently.Keywords: current situation, talent finding, ideal situation, instructors (AFC)
Procedia PDF Downloads 2133152 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation
Procedia PDF Downloads 532