Search results for: distributed frequent itemset mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4010

Search results for: distributed frequent itemset mining

3860 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining

Procedia PDF Downloads 177
3859 Understanding the Complexity of Corruption and Anti-Corruption in Indonesia's Mining Industry: Challenges and Opportunities

Authors: Ahmad Khoirul Umam, Iin Mayasari

Abstract:

Indonesia is blessed with rich natural resources and frequently dubbed as the 6th richest country in the world in terms of mining resources, including minerals and coal. Mining can contribute to the socio-economic development by generating state revenue for development, elevating poverty through employment, opening and developing remote areas, putting in basic infrastructure and creating new centres of developments. However, favouritism and rent-seeking behaviour committed by government officials, politicians, and business players in licensing and permit giving in mining and forestry sectors have resisted reforms. Even though Indonesia’s Corruption Eradication Commission (KPK) successfully targeted untouchable actors, public criticism continues to focus on questions of why corruption apparently remains systemic in mining industry in the country? This paper revealed that structural anomalies, as well as legacies of the Soeharto era’s power inequities, have severely inhibited Indonesia’s bureaucratic arrangements that continue to influence adversely the elements of transparency and accountability in mining industry governance. In the more liberalized and decentralized political system, the deficiencies have gradually assisted vested interest groups to band together, thus creating a coalition that can challenge, resist, and contain anti-graft actions. Therefore, Indonesia needs much more serious anti-corruption actions that would require eliminating the monopoly over power, enhancing competition, limiting discretion, and clarifying the rules of business and political competition in the mining sector in the country.

Keywords: anti-corruption, public integrity, private integrity, mining industry, democratization

Procedia PDF Downloads 115
3858 Merging of Results in Distributed Information Retrieval Systems

Authors: Larbi Guezouli, Imane Azzouz

Abstract:

This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.

Keywords: information retrieval, distributed IR systems, merging results, datamining

Procedia PDF Downloads 341
3857 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: data mining, environmental modeling, sustainability, urban planning

Procedia PDF Downloads 312
3856 Performance Evaluation of Production Schedules Based on Process Mining

Authors: Kwan Hee Han

Abstract:

External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.

Keywords: data mining, event log, process mining, production scheduling

Procedia PDF Downloads 281
3855 Merit Order of Indonesian Coal Mining Sources to Meet the Domestic Power Plants Demand

Authors: Victor Siahaan

Abstract:

Coal still become the most important energy source for electricity generation known for its contribution which take the biggest portion of energy mix that a country has, for example Indonesia. The low cost of electricity generation and quite a lot of resources make this energy still be the first choice to fill the portion of base load power. To realize its significance to produce electricity, it is necessary to know the amount of coal (volume) needed to ensure that all coal power plants (CPP) in a country can operate properly. To secure the volume of coal, in this study, discussion was carried out regarding the identification of coal mining sources in Indonesia, classification of coal typical from each coal mining sources, and determination of the port of loading. By using data above, the sources of coal mining are then selected to feed certain CPP based on the compatibility of the coal typical and the lowest transport cost.

Keywords: merit order, Indonesian coal mine, electricity, power plant

Procedia PDF Downloads 161
3854 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design

Authors: Qing K. Zhu

Abstract:

Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.

Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise

Procedia PDF Downloads 254
3853 Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm

Authors: Can Zhang, Qun Li, Yonglin Lei, Zhi Zhu, Dong Guo

Abstract:

Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas.

Keywords: screen method, cooperative positioning system, UAV swarm, factor graph, cooperative navigation

Procedia PDF Downloads 84
3852 Environmental Impact Assessments in Peru: Tools for Violence

Authors: Nadia Degregori

Abstract:

This paper focuses on Peru’s Environmental Impact Assessment’s communication and participation mechanisms, whose rationale is to prevent conflictive situations by –supposedly- providing high-quality information about mining projects and their impacts to affected stakeholders. It is argued that, in fact, these mechanisms enhance citizens’ feelings of fear and/or mistrust towards mining projects and the companies behind them because their design follows a top-down perspective that limits “participation” to a passive reception of information, and which does not address power unbalances between communities and companies or government. As well, the paper contends that this way of managing the social aspects of Environmental Impact Assessments in Peru leads stakeholders who possess less power (typically communities) to incline towards maintaining the status quo and avoiding negotiations with either the central government or mining companies as a defence mechanism for avoiding a bad negotiation.

Keywords: community relations, environmental impact assessments, governance and participation, mining, Peru

Procedia PDF Downloads 437
3851 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 564
3850 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease

Authors: Usama Ahmed

Abstract:

Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.

Keywords: data mining, classification, diabetes, WEKA

Procedia PDF Downloads 151
3849 Analyzing the Water Quality of Settling Pond after Revegetation at Ex-Mining Area

Authors: Iis Diatin, Yani Hadiroseyani, Muhammad Mujahid, Ahmad Teduh, Juang R. Matangaran

Abstract:

One of silica quarry managed by a mining company is located at Sukabumi District of West Java Province Indonesia with an area of approximately 70 hectares. Since 2013 this company stopped the mining activities. The company tries to restore the ecosystem post-mining with rehabilitation activities such as reclamation and revegetation of their ex-mining area. After three years planting the area the trees grown well. Not only planting some tree species but also some cover crop has covered the soil surface. There are two settling ponds located in the middle of the ex-mining area. Those settling pond were built in order to prevent the effect of acid mine drainage. Acid mine drainage (AMD) or the acidic water is created when sulphide minerals are exposed to air and water and through a natural chemical reaction produce sulphuric acid. AMD is the main pollutant at the open pit mining. The objective of the research was to analyze the effect of revegetation on water quality change at the settling pond. The physical and chemical of water quality parameter were measured and analysed at site and at the laboratory. Physical parameter such as temperature, turbidity and total organic matter were analyse. Also heavy metal and some other chemical parameter such as dissolved oxygen, alkalinity, pH, total ammonia nitrogen, nitrate and nitrite were analysed. The result showed that the acidity of first settling pond was higher than that of the second settling pond. Both settling pond water’s contained heavy metal. The turbidity and total organic matter were the parameter of water quality which become better after revegetation.

Keywords: acid mine drainage, ex-mining area, revegetation, settling pond, water quality

Procedia PDF Downloads 308
3848 Mine Production Index (MPi): New Method to Evaluate Effectiveness of Mining Machinery

Authors: Amol Lanke, Hadi Hoseinie, Behzad Ghodrati

Abstract:

OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPi shovel has been developed by team of experts and researchers for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovelcan properly evaluate production effectiveness of shovels and determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity.

Keywords: mining, overall equipment efficiency (OEE), mine production index, shovels

Procedia PDF Downloads 466
3847 Trusting the Big Data Analytics Process from the Perspective of Different Stakeholders

Authors: Sven Gehrke, Johannes Ruhland

Abstract:

Data is the oil of our time, without them progress would come to a hold [1]. On the other hand, the mistrust of data mining is increasing [2]. The paper at hand shows different aspects of the concept of trust and describes the information asymmetry of the typical stakeholders of a data mining project using the CRISP-DM phase model. Based on the identified influencing factors in relation to trust, problematic aspects of the current approach are verified using various interviews with the stakeholders. The results of the interviews confirm the theoretically identified weak points of the phase model with regard to trust and show potential research areas.

Keywords: trust, data mining, CRISP DM, stakeholder management

Procedia PDF Downloads 96
3846 The Acquisition of Case in Biological Domain Based on Text Mining

Authors: Shen Jian, Hu Jie, Qi Jin, Liu Wei Jie, Chen Ji Yi, Peng Ying Hong

Abstract:

In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text.

Keywords: text mining, vector space model, feature selection, biologically inspired design

Procedia PDF Downloads 266
3845 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution

Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang

Abstract:

Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.

Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution

Procedia PDF Downloads 163
3844 Compliance with the Health and Safety Standards/Regulations in the South African Mining Industry: A Literature Review

Authors: Livhuwani Muthelo, Tebogo Maria Mothiba, Rambelani Nancy Malema

Abstract:

Background: Despite occupational legislation/standards being in place in the industry, there are many reported health and safety incidents, including both occupational injuries and illnesses in the South African mining industry. Purpose: This systematic literature review aimed to describe and identify the existing gaps in health and safety compliance within the South African mining industry and propose future research areas. Methodology: A systematic literature review was conducted using the key concepts of health and safety, compliance, standards, and mining. A total of 102 papers issued from 1994 to April 2020 were extracted from an online database search, which included a combination of South African and international government OHS legislation documents, policies, standards, reports from the mineral departments and international labour office, qualitative and quantitative journal articles, dissertations, seminars and conference proceedings. Results: The literature review revealed that, though there are laws, regulations, standards to guide the industry on health and safety issues in South Africa, the main challenge is with the compliance with the existing health and safety systems, wherein systems are not being implemented. Conclusion: Gaps between research, policy, and implementation in occupational health practice in the South African mining industry were also identified.

Keywords: circumstances, non-compliance, health and safety, standards, mining industry

Procedia PDF Downloads 293
3843 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India

Authors: Sujata Upgupta, Prasoon Kumar Singh

Abstract:

The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.

Keywords: forest, coal mining, indicators, vulnerability

Procedia PDF Downloads 391
3842 Machine Learning Application in Shovel Maintenance

Authors: Amir Taghizadeh Vahed, Adithya Thaduri

Abstract:

Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.

Keywords: maintenance, machine learning, shovel, conditional based monitoring

Procedia PDF Downloads 225
3841 Planning Urban Sprawl in Mining Areas in Africa: How to Ensure Coherent Development

Authors: Pascal Rey, Anaïs Weber

Abstract:

Many mining projects are being developed in Africa the last decades. Due to the economic opportunities they offer, these projects result in a massive and rapid influx of migrants to the surrounding area. In areas where central government representation is low and local administration lack financial resources, urban development is often anarchical, beyond all public control. It leads to socio-spatial segregation, insecurity and the risk of social conflicts rising. Aware that their economic development is very correlated with local situation, mining companies get more and more involved in regional planning in setting up tools and Strategic Directions document. One of the commonly used tools in this regard is the “Influx Management Plan”. It consists in looking at the region’s absorption capacities in order to ensure its coherent development and by developing several urban centers than one macrocephalic city. It includes many other measures such as urban governance support, skills transfer, creation of strategic guidelines, financial support (local taxes, mining taxes, development funds etc.) local development projects. Through various examples of mining projects in Guinea, A country that is host to many large mining projects, we will look at the implications of regional and urban planning of which mining companies are key playor as well as public authorities. While their investment capacity offers advantages and accelerates development, their actions raise questions of the unilaterality of interests and local governance. By interfering in public affairs are mining companies not increasing the risk of central and local government shirking their responsibilities in terms of regional development, or even calling their legitimacy into question? Is such public-private collaboration really sustainable for the region as a whole and for all stakeholders?

Keywords: Africa, guinea, mine, urban planning

Procedia PDF Downloads 500
3840 Assessment for the Backfill Using the Run of the Mine Tailings and Portland Cement

Authors: Javad Someehneshin, Weizhou Quan, Abdelsalam Abugharara, Stephen Butt

Abstract:

Narrow vein mining (NVM) is exploiting very thin but valuable ore bodies that are uneconomical to extract by conventional mining methods. NVM applies the technique of Sustainable Mining by Drilling (SMD). The SMD method is used to mine stranded, steeply dipping ore veins, which are too small or isolated to mine economically using conventional methods since the dilution is minimized. This novel mining technique uses drilling rigs to extract the ore through directional drilling surgically. This paper is focusing on utilizing the run of the mine tailings and Portland cement as backfill material to support the hanging wall for providing safe mine operation. Cemented paste backfill (CPB) is designed by mixing waste tailings, water, and cement of the precise percentage for optimal outcomes. It is a non-homogenous material that contains 70-85% solids. Usually, a hydraulic binder is added to the mixture to increase the strength of the CPB. The binder fraction mostly accounts for 2–10% of the total weight. In the mining industry, CPB has been improved and expanded gradually because it provides safety and support for the mines. Furthermore, CPB helps manage the waste tailings in an economical method and plays a significant role in environmental protection.

Keywords: backfilling, cement backfill, tailings, Portland cement

Procedia PDF Downloads 143
3839 Numerical Modeling of Artisanal and Small Scale Mining of Coltan in the African Great Lakes Region

Authors: Sergio Perez Rodriguez

Abstract:

Coltan Artisanal and Small-Scale Mining (ASM) production from Africa's Great Lakes region has previously been addressed at large scales, notably from regional to country levels. The current findings address the unresolved issue of a production model of ASM of coltan ore by an average Democratic Republic of Congo (DRC) mineworker, which can be used as a reference for a similar characterization of the daily labor of counterparts from other countries in the region. To that end, the Fundamental Equation of Mineral Production has been applied, considering a miner's average daily output of coltan, estimated in the base of gross statistical data gathered from reputable sources. Results indicate daily yields of individual miners in the order of 300 g of coltan ore, with hourly peaks of production in the range of 30 to 40 g of the mineral. Yields are expected to be in the order of 5 g or less during the least productive hours. These outputs are expected to be achieved during the halves of the eight to ten hours of daily working sessions that these artisanal laborers can attend during the mining season.

Keywords: coltan, mineral production, production to reserve ratio, artisanal mining, small-scale mining, ASM, human work, Great Lakes region, Democratic Republic of Congo

Procedia PDF Downloads 79
3838 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning

Authors: Arun Sanjel, Greg Speegle

Abstract:

Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.

Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC

Procedia PDF Downloads 114
3837 Analysis on Thermococcus achaeans with Frequent Pattern Mining

Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon

Abstract:

After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.

Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree

Procedia PDF Downloads 293
3836 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries

Authors: Abdulrahman M. Qahtani, Gary. B. Wills, Andy. M. Gravell

Abstract:

Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.

Keywords: customisation software products, global software engineering, local decision making, requirement engineering, simulation model

Procedia PDF Downloads 434
3835 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System

Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho

Abstract:

This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.

Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile

Procedia PDF Downloads 89
3834 Investigation of Yard Seam Workings for the Proposed Newcastle Light Rail Project

Authors: David L. Knott, Robert Kingsland, Alistair Hitchon

Abstract:

The proposed Newcastle Light Rail is a key part of the revitalisation of Newcastle, NSW and will provide a frequent and reliable travel option throughout the city centre, running from Newcastle Interchange at Wickham to Pacific Park in Newcastle East, a total of 2.7 kilometers in length. Approximately one-third of the route, along Hunter and Scott Streets, is subject to potential shallow underground mine workings. The extent of mining and seams mined is unclear. Convicts mined the Yard Seam and overlying Dudley (Dirty) Seam in Newcastle sometime between 1800 and 1830. The Australian Agricultural Company mined the Yard Seam from about 1831 to the 1860s in the alignment area. The Yard Seam was about 3 feet (0.9m) thick, and therefore, known as the Yard Seam. Mine maps do not exist for the workings in the area of interest and it was unclear if both or just one seam was mined. Information from 1830s geological mapping and other data showing shaft locations were used along Scott Street and information from the 1908 Royal Commission was used along Hunter Street to develop an investigation program. In addition, mining was encountered for several sites to the south of the alignment at depths of about 7 m to 25 m. Based on the anticipated depths of mining, it was considered prudent to assess the potential for sinkhole development on the proposed alignment and realigned underground utilities and to obtain approval for the work from Subsidence Advisory NSW (SA NSW). The assessment consisted of a desktop study, followed by a subsurface investigation. Four boreholes were drilled along Scott Street and three boreholes were drilled along Hunter Street using HQ coring techniques in the rock. The placement of boreholes was complicated by the presence of utilities in the roadway and traffic constraints. All the boreholes encountered the Yard Seam, with conditions varying from unmined coal to an open void, indicating the presence of mining. The geotechnical information obtained from the boreholes was expanded by using various downhole techniques including; borehole camera, borehole sonar, and downhole geophysical logging. The camera provided views of the rock and helped to explain zones of no recovery. In addition, timber props within the void were observed. Borehole sonar was performed in the void and provided an indication of room size as well as the presence of timber props within the room. Downhole geophysical logging was performed in the boreholes to measure density, natural gamma, and borehole deviation. The data helped confirm that all the mining was in the Yard Seam and that the overlying Dudley Seam had been eroded in the past over much of the alignment. In summary, the assessment allowed the potential for sinkhole subsidence to be assessed and a mitigation approach developed to allow conditional approval by SA NSW. It also confirmed the presence of mining in the Yard Seam, the depth to the seam and mining conditions, and indicated that subsidence did not appear to have occurred in the past.

Keywords: downhole investigation techniques, drilling, mine subsidence, yard seam

Procedia PDF Downloads 318
3833 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 662
3832 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 411
3831 Frequent Pattern Mining for Digenic Human Traits

Authors: Atsuko Okazaki, Jurg Ott

Abstract:

Some genetic diseases (‘digenic traits’) are due to the interaction between two DNA variants. For example, certain forms of Retinitis Pigmentosa (a genetic form of blindness) occur in the presence of two mutant variants, one in the ROM1 gene and one in the RDS gene, while the occurrence of only one of these mutant variants leads to a completely normal phenotype. Detecting such digenic traits by genetic methods is difficult. A common approach to finding disease-causing variants is to compare 100,000s of variants between individuals with a trait (cases) and those without the trait (controls). Such genome-wide association studies (GWASs) have been very successful but hinge on genetic effects of single variants, that is, there should be a difference in allele or genotype frequencies between cases and controls at a disease-causing variant. Frequent pattern mining (FPM) methods offer an avenue at detecting digenic traits even in the absence of single-variant effects. The idea is to enumerate pairs of genotypes (genotype patterns) with each of the two genotypes originating from different variants that may be located at very different genomic positions. What is needed is for genotype patterns to be significantly more common in cases than in controls. Let Y = 2 refer to cases and Y = 1 to controls, with X denoting a specific genotype pattern. We are seeking association rules, ‘X → Y’, with high confidence, P(Y = 2|X), significantly higher than the proportion of cases, P(Y = 2) in the study. Clearly, generally available FPM methods are very suitable for detecting disease-associated genotype patterns. We use fpgrowth as the basic FPM algorithm and built a framework around it to enumerate high-frequency digenic genotype patterns and to evaluate their statistical significance by permutation analysis. Application to a published dataset on opioid dependence furnished results that could not be found with classical GWAS methodology. There were 143 cases and 153 healthy controls, each genotyped for 82 variants in eight genes of the opioid system. The aim was to find out whether any of these variants were disease-associated. The single-variant analysis did not lead to significant results. Application of our FPM implementation resulted in one significant (p < 0.01) genotype pattern with both genotypes in the pattern being heterozygous and originating from two variants on different chromosomes. This pattern occurred in 14 cases and none of the controls. Thus, the pattern seems quite specific to this form of substance abuse and is also rather predictive of disease. An algorithm called Multifactor Dimension Reduction (MDR) was developed some 20 years ago and has been in use in human genetics ever since. This and our algorithms share some similar properties, but they are also very different in other respects. The main difference seems to be that our algorithm focuses on patterns of genotypes while the main object of inference in MDR is the 3 × 3 table of genotypes at two variants.

Keywords: digenic traits, DNA variants, epistasis, statistical genetics

Procedia PDF Downloads 127