Search results for: decision support framework
13933 Aircraft Line Maintenance Equipped with Decision Support System
Authors: B. Sudarsan Baskar, S. Pooja Pragati, S. Raj Kumar
Abstract:
The cost effectiveness in aircraft maintenance is of high privilege in the recent days. The cost effectiveness can be effectively made when line maintenance activities are incorporated at airports during Turn around time (TAT). The present work outcomes the shortcomings that affect the dispatching of the aircrafts, aiming at high fleet operability and low maintenance cost. The operational and cost constraints have been discussed and a suggestive alternative mechanism is proposed. The possible allocation of all deferred maintenance tasks to a set of all deferred maintenance tasks to a set of suitable airport resources have termed as alternative and is discussed in this paper from the data’s collected from the kingfisher airlines.Keywords: decision support system, aircraft maintenance planning, maintenance-cost, RUL(remaining useful life), logistics, supply chain management
Procedia PDF Downloads 50313932 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 37213931 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer
Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner
Abstract:
Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.Keywords: calculation of risk factor, fuzzy logic, fuzzy programming for ship, safety navigation of ships
Procedia PDF Downloads 18913930 Legal Implications of a Single African Air Transport Market on Airlines and Passengers in Nigeria
Authors: Adejoke Omowumi Adediran
Abstract:
The commitment of African states to liberalise civil aviation in Africa through the implementation of the Yamoussoukro Decision of 1999 was reiterated in 2015 at the African Union Assembly meeting. A declaration was made by African Heads of government at the meeting to ensure the immediate implementation of the decision towards the establishment of a Single African Air Transport Market (SAATM) by 2017. A SAATM will imply among others, a removal of all commercial restrictions for African airlines in Africa; access to any route in Africa by African airlines without any required permit or authorisation; and a common set of regulations for airlines in African member states. As the envisioned 2017 date for launching the SAATM could not be met, a new date of January 2018 has been set. The lack of political will by African States, however, remains a prominent challenge to the realisation of the SAATM. As at June 2017, only twenty-one states had signed the commitment to actualise the decision creating the SAATM. In actualisation of the SAATM, a regulatory framework has been established to efficiently manage the new African airline industry, and regulatory texts have been adopted as part of the legal regime. This legal regime is to regulate both interstate and domestic operations. Airlines in Nigeria are currently faced with certain challenges which ultimately affect their effectiveness and passengers as well do not enjoy utmost customer satisfaction with services rendered by the airlines. Although Nigeria has demonstrated support for the SAATM since 2015, as Nigeria alongside ten other states, signed the initial commitment, whether or not SAATM will eventually be beneficial to airlines and passengers has become an issue in the light of the challenges of the Nigerian airline industry. Remarkably, the benefit of the SAATM is to a large extent ultimately determined by its legal framework. Using doctrinal research, this paper examines the legal implications of the SAATM on airlines and passengers in Nigeria. This paper analyses the legal framework of SAATM and juxtaposes this with the particular issues affecting airlines and passengers in Nigeria such as financial difficulties on the part of airlines and consumer protection as regards passengers. Among others, it can be asserted that the legal regime affords an opportunity for business expansion and creates a fair environment for competition. This is beneficial not only to the airlines but to passengers as well. In addition, in the interest of passengers, consumer rights are prescribed, and the regulations also cater for situations where airlines interrupt their services, as losses arising from these situations will be mitigated. There is indeed no doubt that the SAATM will be of great utility to both airlines and passengers in Nigeria.Keywords: airlines, civil aviation, competition, consumer protection, passengers, single African air transport market, yamoussoukro decision
Procedia PDF Downloads 14013929 A Reliable Multi-Type Vehicle Classification System
Authors: Ghada S. Moussa
Abstract:
Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm
Procedia PDF Downloads 35913928 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 8013927 Decision Traps of Military Leaders
Authors: Ahmet Ali Turk, Muhterem Bayram
Abstract:
In this study, it is intended to determine that what kind of traps military leaders fall into during the decision making and how they make take a measure against them. In the study, the domestic and foreign literature on the military leadership has been reviewed and military decision-making process of the different countries has been introduced and study has been designed by making interviews as a sample with 50 people who had made military leadership. The issues resulting from the literature review that led to wrong decisions of military leaders and the points obtained as a result of interview have been evaluated by comparing. As a result, it has been emerged that the personnel who have made especially military leadership are in tendency of making the wrong decision due to decision traps such as excessive self-confidence, lack of experience, unplanned movement, hasty decision making and prohibitive conditions and also the need for increased situational awareness about this condition has been emerged.Keywords: military leadership, decision making, military decision making, military decision making traps
Procedia PDF Downloads 35613926 An Approach to Manage and Evaluate Asset Performance
Authors: Mohammed Saif Al-Saidi, John P. T. Mo
Abstract:
Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organisation. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.Keywords: asset management, performance, evaluation, modern engineering, System Support Engineering (SSE)
Procedia PDF Downloads 67913925 Urban Transport Demand Management Multi-Criteria Decision Using AHP and SERVQUAL Models: Case Study of Nigerian Cities
Authors: Suleiman Hassan Otuoze, Dexter Vernon Lloyd Hunt, Ian Jefferson
Abstract:
Urbanization has continued to widen the gap between demand and resources available to provide resilient and sustainable transport services in many fast-growing developing countries' cities. Transport demand management is a decision-based optimization concept for both benchmarking and ensuring efficient use of transport resources. This study assesses the service quality of infrastructure and mobility services in the Nigerian cities of Kano and Lagos through five dimensions of quality (i.e., Tangibility, Reliability, Responsibility, Safety Assurance and Empathy). The methodology adopts a hybrid AHP-SERVQUAL model applied on questionnaire surveys to gauge the quality of satisfaction and the views of experts in the field. The AHP results prioritize tangibility, which defines the state of transportation infrastructure and services in terms of satisfaction qualities and intervention decision weights in the two cities. The results recorded ‘unsatisfactory’ indices of quality of performance and satisfaction rating values of 48% and 49% for Kano and Lagos, respectively. The satisfaction indices are identified as indicators of low performances of transportation demand management (TDM) measures and the necessity to re-order priorities and take proactive steps towards infrastructure. The findings pilot a framework for comparative assessment of recognizable standards in transport services, best ethics of management and a necessity of quality infrastructure to guarantee both resilient and sustainable urban mobility.Keywords: transportation demand management, multi-criteria decision support, transport infrastructure, service quality, sustainable transport
Procedia PDF Downloads 22513924 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts
Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman
Abstract:
Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.Keywords: artificial intelligence, blockchain, data integrity, smart contracts
Procedia PDF Downloads 5613923 Small Micro and Medium Enterprises Perception-Based Framework to Access Financial Support
Authors: Melvin Mothoa
Abstract:
Small Micro and Medium Enterprises are very significant for the development of their market economies. They are the main creators of the new working places, and they present a vital core of the market economy in countries across the globe. Access to finance is identified as crucial for small, micro, and medium-sized enterprises for their growth and innovation. This paper is conceived to propose a perception-based SMME framework to aid in access to financial support. Furthermore, the study will address issues that impede SMMEs in South Africa from obtaining finance from financial institutions. The framework will be tested against data collected from 200 Small Micro & Medium Enterprises in the Gauteng province of South Africa. The study adopts a quantitative method, and the delivery of self-administered questionnaires to SMMEs will be the primary data collection tool. Structural equation modeling will be used to further analyse the data collected.Keywords: finance, small business, growth, development
Procedia PDF Downloads 11213922 Project Management Framework and Influencing Factors
Authors: Mehrnoosh Askarizadeh
Abstract:
The increasing variations of the business world correspond with a high diversity of theoretical perspectives used in project management research. This diversity is reflected by a variety of influencing factors, which have been the subject of empirical studies. This article aims to systemize the different streams of research on the basis of a literature review and at developing a research framework influencing factors. We will identify fundamental elements of a project management theory. The framework consists of three dimensions: design, context, and goal. Its purpose is to support the combination of different perspectives and the development of strategies for further research.Keywords: project, goal, project management, influencing factors
Procedia PDF Downloads 54313921 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 18213920 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 47913919 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy
Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy
Abstract:
The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability
Procedia PDF Downloads 24413918 Review of Life-Cycle Analysis Applications on Sustainable Building and Construction Sector as Decision Support Tools
Abstract:
Considering the environmental issues generated by the building sector for its energy consumption, solid waste generation, water use, land use, and global greenhouse gas (GHG) emissions, this review pointed out to LCA as a decision-support tool to substantially improve the sustainability in the building and construction industry. The comprehensiveness and simplicity of LCA make it one of the most promising decision support tools for the sustainable design and construction of future buildings. This paper contains a comprehensive review of existing studies related to LCAs with a focus on their advantages and limitations when applied in the building sector. The aim of this paper is to enhance the understanding of a building life-cycle analysis, thus promoting its application for effective, sustainable building design and construction in the future. Comparisons and discussions are carried out between four categories of LCA methods: building material and component combinations (BMCC) vs. the whole process of construction (WPC) LCA,attributional vs. consequential LCA, process-based LCA vs. input-output (I-O) LCA, traditional vs. hybrid LCA. Classical case studies are presented, which illustrate the effectiveness of LCA as a tool to support the decisions of practitioners in the design and construction of sustainable buildings. (i) BMCC and WPC categories of LCA researches tend to overlap with each other, as majority WPC LCAs are actually developed based on a bottom-up approach BMCC LCAs use. (ii) When considering the influence of social and economic factors outside the proposed system by research, a consequential LCA could provide a more reliable result than an attributional LCA. (iii) I-O LCA is complementary to process-based LCA in order to address the social and economic problems generated by building projects. (iv) Hybrid LCA provides a more superior dynamic perspective than a traditional LCA that is criticized for its static view of the changing processes within the building’s life cycle. LCAs are still being developed to overcome their limitations and data shortage (especially data on the developing world), and the unification of LCA methods and data can make the results of building LCA more comparable and consistent across different studies or even countries.Keywords: decision support tool, life-cycle analysis, LCA tools and data, sustainable building design
Procedia PDF Downloads 12113917 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization
Authors: Wenqi Liu, Reginald Bailey
Abstract:
This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.Keywords: machine learning, XGBoost, regression, decision making framework, system engineering
Procedia PDF Downloads 1913916 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support
Authors: Artur Krukowski, Emmanouela Vogiatzaki
Abstract:
The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.Keywords: 3D modelling, UAS, cultural heritage, preservation
Procedia PDF Downloads 12313915 Stress Perception, Ethics and Leadership Styles of Pilots: Implications for Airline Global Talent Acquisition and Talent Management Strategy
Authors: Arif Sikander, Imran Saeed
Abstract:
The behavioral pattern and performance of airline pilots are influenced by the level of stress, their ethical decision-making ability and above all their leadership style as part of the Crew Management process. Cultural differences of pilots, especially while working in ex-country airlines, could influence the stress perception. Culture also influences ethical decision making. Leadership style is also a variable dimension, and pilots need to adapt to the cultural settings while flying with the local pilots as part of their team. Studies have found that age, education, gender, and management experience are statistically significant factors in ethical maturity. However, in the decades to come, more studies are required to validate the results over and over again; thereby, providing support for the validity of the Moral Development Theory. Leadership style plays a vital role in ethical decision making. This study is grounded in the Moral Development theory and seeks to analyze the styles of leadership of airline pilots related to ethical decision making and also the influence of the culture on their stress perception. The sample for the study included commercial pilots from a National Airline. It is expected that these results should provide useful input to the literature in the context of developing appropriate Talent Management strategies. The authors intend to extend this study (carried out in one country) to major national carriers (many countries) to be able to develop a ultimate framework on Talent Management which should serve as a benchmark for any international airline as most of them (e.g., Emirates, Etihad, Cathay Pacific, China Southern, etc.) are dependent on the supply of this scarce resource from outside countries.Keywords: ethics, leadership, pilot, stress
Procedia PDF Downloads 14313914 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class
Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha
Abstract:
This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting
Procedia PDF Downloads 43013913 Towards a Framework for Evaluating Scientific Efficiency of World-Class Universities
Authors: Veljko Jeremic, Milica Kostic Stankovic, Aleksandar Markovic, Milan Martic
Abstract:
Evaluating the efficiency of decision making units has been frequently elaborated on in numerous publications. In this paper, the theoretical framework for a novel method of Distance Based Analysis (DBA) is presented. In addition, the method is performed on a sample of the ARWU’s top 54 Universities of the United States, the findings of which clearly demonstrate that the best ranked Universities are far from also being the most efficient.Keywords: evaluating efficiency, distance based analysis, ranking of universities, ARWU
Procedia PDF Downloads 29613912 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification
Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike
Abstract:
Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.Keywords: data mining, decision tree, classification, imbalance dataset
Procedia PDF Downloads 13713911 Theorizing about the Determinants of Sustainable Entrepreneurship Intention and Behavior
Authors: Mariella Pinna
Abstract:
Sustainable entrepreneurship is an innovative corporate approach to create value combining economic, social and environmental goals over time. In the last two decades, the interest in sustainable entrepreneurship has flourished thanks to its potential to answer the current challenges of sustainable development. As a result, scholars are increasingly interested in understanding the determinants of the intentions to become a sustainable entrepreneur and consistent behavior. To date, prior studies provided empirical evidence for the influence of attitudes, perceived feasibility and desirability, values, and personality traits on the decision-making process of becoming a sustainable entrepreneur. Conversely, scant effort has been provided to understand which factors inhibit sustainable entrepreneurial intentions and behaviors. Therefore a global understanding of the sustainable entrepreneurship decision-making process is missing. This paper contributes to the debate on sustainable entrepreneurship by proposing a conceptual model that combines the factors which are predicted to facilitate and hinder the proclivity of individuals to become sustainable entrepreneurs. More in particular, the proposed framework theorizes about the role of the characteristics of the prospective sustainable entrepreneur (e.g., socio-demographic, psychological, cultural), the positive antecedents (e.g., attitude, social feasibility and desirability, among others) and the negative precursors (e.g., neutralization) in influencing sustainable entrepreneurship intentions and subsequent behavior. The proposed framework is expected to shed further light on the decision-making process of becoming a sustainable entrepreneur, which in turn, is of practical relevance for public policy institutions and the society as a whole to enhance the favorable conditions to create new sustainable ventures.Keywords: sustainable entrepreneurship, entrepreneurial intentions, entrepreneurial decision-making, antecedents of entrepreneurial intention and behavior
Procedia PDF Downloads 21113910 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making
Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty
Abstract:
Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality
Procedia PDF Downloads 8313909 A Computationally Intelligent Framework to Support Youth Mental Health in Australia
Authors: Nathaniel Carpenter
Abstract:
Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.Keywords: artificial intelligence, information systems, machine learning, youth mental health
Procedia PDF Downloads 11013908 Identifying the Barriers Facing Chinese Small and Medium-Sized Enterprises and Evaluating the Effectiveness of Public Supports
Authors: A. Yongsheng Guo, B. Obedat. Abdulazeez, C. Xiaoxian Zhu
Abstract:
This study aimed to identify the barriers to the development of small and medium-sized enterprises (SMEs) in China and build a theoretical framework to evaluate the support provided by the authorities and institutions. A grounded theory approach was adopted to collect and analyze data. 32 interviews were conducted with SME managers, and open, axial and selective coding was utilized to develop themes. Based on institutional theory, grounded theory models were used to present findings. The findings showed that the main barriers in the business environment were defaulting on contracts, bureaucracy in procedures, lack of financial and legal support, limited intermediaries and channels, and poor quality of products and services. This study found that many programs were provided to support SMEs. A theoretical framework was developed to evaluate the performance of the programs from the managers’ perspective. The concepts of economy, efficiency and effectiveness were used to evaluate the perceived value of the programs. This study suggests that specialized programs are needed to suit sector-specific requirements, and creative packages are helpful in supporting SMEs' growth.Keywords: business support, public economics, public programme, SME
Procedia PDF Downloads 5313907 Possibilistic Aggregations in the Investment Decision Making
Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze
Abstract:
This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.Keywords: expert evaluations, investment decision making, OWA operator, possibility uncertainty
Procedia PDF Downloads 55813906 A Framework for Internet Education: Personalised Approach
Authors: Zoe Wong
Abstract:
The purpose of this paper is to develop a framework for internet education. This framework uses the personalized learning approach for everyone who can freely develop their qualifications & careers. The key components of the framework includes students, teachers, assessments and infrastructure. It allows remove the challenges and limitations of the current educational system and allows learners' to cope with progressing learning materials.Keywords: internet education, personalized approach, information technology, framework
Procedia PDF Downloads 35813905 Facilitators and Barriers of Family Resilience in Cancer Patients Based on the Theoretical Domains Framework: An Integrative Review
Authors: Jiang Yuqi
Abstract:
Aims: The aim is to analyze the facilitators and barriers of family resilience in cancer patients based on the theoretical domain framework, provide a basis for intervention in the family resilience of cancer patients, and identify the progress and enlightenment of existing intervention projects. Methods: NVivo software was used to code the influencing factors using the framework of 14 theoretical domains as primary nodes; secondary nodes were then refined using thematic analysis, and specific influencing factors were aggregated and analyzed for evaluator reliability. Data sources: PubMed, Embase, CINAHL, Web of Science, Cochrane Library, MEDLINE, CNKI, and Wanfang (search dates: from construction to November 2023). Results: A total of 35 papers were included, with 142 coding points across 14 theoretical domains and 38 secondary nodes. The three most relevant theoretical domains are social influences (norms), the environment and resources, and emotions (mood). The factors with the greatest impact were family support, mood, confidence and beliefs, external support, quality of life, economic circumstances, family adaptation, coping styles with illness, and management. Conclusion: The factors influencing family resilience in cancer patients cover most of the theoretical domains in the Theoretical Domains Framework and are cross-cutting, multi-sourced, and complex. Further in-depth exploration of the key factors influencing family resilience is necessary to provide a basis for intervention research.Keywords: cancer, survivors, family resilience, theoretical domains framework, literature review
Procedia PDF Downloads 4713904 Social Support in the Tradition for Pregnant Mother Care In East Nusa Tenggara
Authors: Sri Widati, Ira Nurmala
Abstract:
The Se’i Tradition was considered to contribute highly to the high maternal mortality rate in South Amanuban, East Nusa Tenggara. This tradition is still preserved due to the social support that has influenced the decision to carry out the Se’i to pregnant women and post-partum women. The purpose of this study is to analyze this social support towards the Se’i Tradition on pregnant women in East Nusa Tenggara. This research was an explorative study with in-depth interviews, observations, and focus group discussions (FGD) in collecting the data. This study showed that emotional support towards Se’i was commonly given by families, specifically by the mother-in laws. Instrumental support was shown by the husbands and the traditional midwives who helped delivered the babies. Informational support was found on the pregnant women and their mother-in laws. Appraisal support was given by all the neighbors and relatives of the pregnant women by telling how comfortable it was to go through this tradition which eventually affected those women to carry it out themselves. The Se’i Tradition is still carried out and mostly supported by the relatives of the pregnant women. The first recommendation of this study is to suggest people to only follow the suggestions from the local health staff to give birth in the local health centers and not to do the tradition anymore. The second recommendation is to urge the government to give support in the form of transportation facilities for pregnant women to reach the local health staff.Keywords: the Se’i tradition, social support, pregnant women, maternal mortality, post-partum women
Procedia PDF Downloads 530