Search results for: cover crop
2183 Environmental Degradation of Natural Resources in Broghil National Park in the High Mountains of Pakistan – Empirical Evidence From Local Community and Geoinformatics
Authors: Siddique Ullah Baig, Alisha Manzoor
Abstract:
The remotest, mountainous, and icy Broghil Valley is a high-profile protected area as a national park, which hosts one of the highest altitude permanent human settlements on the earth. This park hosts a distributed but diverse range of habitats. Due to a lack of infrastructures, higher altitudes, and harsh environmental conditions, poverty-stricken inhabitants mostly rely on its resources, causing ecological dis-balance. This study aims to investigate the environmental degradation of natural resources of the park based on empirical evidence from stakeholders and geoinformatics. The result shows that one-fourth of the park is a gently undulating basin dotted with water bodies / grass, and agricultural land and three fourth is entirely rugged with steep mountains and glaciers. There are virtually no forests as the arid cold tundra climate and high altitude prevent tree growth. Rapid three-decadal land cover changes have led to ecological disequilibrium of the park, narrowing the traditional diverse food base, decreasing the resilience of biodiversity and local livelihoods as crop-land has shifted towards fallow, alpine-grass to peat-land and snow/glacial ice area to bare-soil/rocks. The local community believes in exploiting whatever vegetation or organic material is available for use as food, fodder, and fuel. The permanent presence of the community and limited cost-effective options in the park will be a challenge forever to maintain undisturbed natural processes as the objective of a national park.Keywords: Broghil National Park, natural resources, environmental degradation, land cover
Procedia PDF Downloads 642182 Utilization of Traditional Medicine for Treatment of Selected Illnesses among Crop-Farming Households in Edo State, Nigeria
Authors: Adegoke A. Adeyelu, Adeola T. Adeyelu, S. D. Y. Alfred, O. O. Fasina
Abstract:
This study examines the use of traditional medicines for the treatment of selected illnesses among crop-farming households in Edo State, Nigeria. A sample size of ninety (90) households were randomly selected for the study. Data were collected with a structured questionnaire alongside focus group discussions (FGD). Result shows that the mean age was 50 years old, the majority (76.7%) of the sampled farmers were below 60 years old. The majority (80.0%) of the farmers were married, about (92.2%) had formal education. It exposes that the majority of the respondents (76.7%) had household size of between 1-10 persons, about 55.6% had spent 11 years and above in crop farming. malaria (8th ), waist pains (7th ), farm injuries ( 6th ), cough (5th), acute headache(4th), skin infection (3rd), typhoid (2nd) and tuberculosis (1st ) were the most and least treated illness. Respondents (80%) had spent N10,000.00 ($27) and less on treatment of illnesses, 8.9% had spent N10,000.00-N20,000.0027 ($27-$55) 4.4% had spent between N20,100-N30,000.00 ($27-$83) while 6.7% had spent more than N30,100.00 ($83) on treatment of illnesses in the last one (1) year prior to the study. Age, years of farming, farm size, household size, level of income, cost of treatment, level of education, social network, and culture are some of the statistically significant factors influencing the utilization of traditional medicine. Farmers should be educated on methods of preventing illnesses, which is far cheaper than the curative.Keywords: crop farming-households, selected illnesses, traditional medicines, Edo State
Procedia PDF Downloads 2002181 Anaerobic Soil Disinfestation: Feasible Alternative to Soil Chemical Fumigants
Authors: P. Serrano-Pérez, M. C. Rodríguez-Molina, C. Palo, E. Palo, A. Lacasa
Abstract:
Phytophthora nicotianae is the principal causal agent of root and crown rot disease of red pepper plants in Extremadura (Western Spain). There is a need to develop a biologically-based method of soil disinfestation that facilitates profitable and sustainable production without the use of chemical fumigants. Anaerobic Soil Disinfestation (ASD), as well know as biodisinfestation, has been shown to control a wide range of soil-borne pathogens and nematodes in numerous crop production systems. This method implies soil wetting, incorporation of a easily decomposable carbon-rich organic amendment and covering with plastic film for several weeks. ASD with rapeseed cake (var. Tocatta, a glucosinolates-free variety) used as C-source was assayed in spring 2014, before the pepper crop establishment. The field experiment was conducted at the Agricultural Research Centre Finca La Orden (Southwestern Spain) and the treatments were: rapeseed cake (RCP); rapeseed cake without plastic cover (RC); control non-amendment (CP) and control non-amendment without plastic cover (C). The experimental design was a randomized complete block design with four replicates and a plot size of 5 x 5 m. On 26 March, rapeseed cake (1 kg·m-2) was incorporated into the soil with a rotovator. Biological probes with the inoculum were buried at 15 and 30-cm depth (biological probes were previously prepared with 100 g of disinfected soil inoculated with chlamydospores (chlam) of P. nicotianae P13 isolate [100 chlam·g-1 of soil] and wrapped in agryl cloth). Sprinkler irrigation was run until field capacity and the corresponding plots were covered with transparent plastic (PE 0.05 mm). On 6 May plastics were removed, the biological probes were dug out and a bioassay was established. One pepper seedling at the 2 to 4 true-leaves stage was transplanted in the soil from each biological probe. Plants were grown in a climatic chamber and disease symptoms were recorded every week during 2 months. Fragments of roots and crown of symptomatic plants were analyzed on NARPH media and soil from rizospheres was analyzed using carnation petals as baits. Results of “survival” were expressed as the percentage of soil samples where P. nicotianae was detected and results of “infectivity” were expressed as the percentage of diseased plants. No differences were detected in deep effect. Infectivity of P. nicotianae chlamydospores was successfully reduced in RCP treatment (4.2% of infectivity) compared with the controls (41.7% of infectivity). The pattern of survival was similar to infectivity observed by the bioassay: 21% of survival in RCP; 79% in CP; 83% in C and 87% in RC. Although ASD may be an effective alternative to chemical fumigants to pest management, more research is necessary to show their impact on the microbial community and chemistry of the soil.Keywords: biodisinfestation, BSD, soil fumigant alternatives, organic amendments
Procedia PDF Downloads 2142180 Climate Adaptations to Traditional Milpa Farming Practices in Mayan Communities of Southern Belize: A Socio-Ecological Systems Approach
Authors: Kristin Drexler
Abstract:
Climate change has exacerbated food and livelihood insecurity for Mayan milpa farmers in Central America. For centuries, milpa farming has been sustainable for subsistence; however, in the last 50 years, milpas have become less reliable due to accelerating climate change, resource degradation, declining markets, poverty, and other factors. Using interviews with extension leaders and milpa farmers in Belize, this qualitative study examines the capacity for increasing climate-smart agriculture (CSA) aspects of existing traditional milpa practices, specifically no-burn mulching, soil enrichment, and the use of cover plants. Applying community capitals and socio-ecological systems frameworks, this study finds four key capitals were perceived by farmers and agriculture extension leaders as barriers for increasing CSA practices: (1) human-capacity, (2) financial, (3) infrastructure, and (4) governance-justice capitals. The key barriers include a lack of CSA technology and pest management knowledge-sharing (human-capacity), unreliable roads and utility services (infrastructure), the closure of small markets and crop-buying programs in Belize (financial), and constraints on extension services and exacerbating a sense of marginalization in Maya communities (governance-justice). Recommendations are presented for government action to reduce barriers and facilitate an increase in milpa crop productivity, promote food and livelihood security, and enable climate resilience of Mayan milpa communities in Belize.Keywords: socio-ecological systems, community capitals, climate-smart agriculture, food security, milpa, Belize
Procedia PDF Downloads 902179 Assessment of Land Use and Land Cover Change in Lake Ol Bolossat Catchment, Nyandarua County, Kenya
Authors: John Wangui, Charles Gachene, Stephen Mureithi, Boniface Kiteme
Abstract:
Land use changes caused by demographic, natural variability, economic, technological and policy factors affect the goods and services derived from an ecosystem. In the past few decades, Lake Ol Bolossat catchment in Nyandarua County Kenya has been facing challenges of land cover changes threatening its capacity to perform ecosystems functions and adversely affecting communities and ecosystems downstream. This study assessed land cover changes in the catchment for a period of twenty eight years (from 1986 to 2014). Analysis of three Landsat images i.e. L5 TM 1986, L5 TM 1995 and L8 OLI/TIRS 2014 was done using ERDAS 9.2 software. The results show that dense forest, cropland and area under water increased by 27%, 29% and 3% respectively. On the other hand, open forest, dense grassland, open grassland, bushland and shrubland decreased by 3%, 3%, 11%, 26% and 1% respectively during the period under assessment. The lake was noted to have increased due to siltation caused by soil erosion causing a reduction in Lake’s depth and consequently causing temporary flooding of the wetland. The study concludes that the catchment is under high demographic pressure which would lead to resource use conflicts and therefore formulation of mitigation measures is highly recommended.Keywords: land cover, land use change, land degradation, Nyandarua, Remote sensing
Procedia PDF Downloads 3662178 Genetic Identification of Crop Cultivars Using Barcode System
Authors: Kesavan Markkandan, Ha Young Park, Seung-Il Yoo, Sin-Gi Park, Junhyung Park
Abstract:
For genetic identification of crop cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, PCR based, co-dominant and relatively abundant. However, new InDels need to be developed for genetic studies of new varieties due to the difference of allele frequencies in InDels among the population groups. These new varieties are evolved with low levels of genetic diversity in specific genome loci with high recombination rate. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a variation block (VB), where the genomes split by all assumed recombination sites. Firstly, VBs in crop cultivars were mined for transferability to VB-specific InDel markers. Secondly, putative InDels in the VB regions were identified for the development of barcode system by analyzing particular cultivar’s whole genome data. Thirdly, common VB-specific InDels from all cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the selected markers was assessed with other cultivars, and the barcode system that allows a clear distinction among those cultivars is described. The same approach can be applicable for other commercial crops. Hence, VB-based genetic identification not only minimize the molecular markers but also useful for assessing cultivars and for marker-assisted breeding in other crop species.Keywords: variation block, polymorphism, InDel marker, genetic identification
Procedia PDF Downloads 3772177 Comparative Analysis of the Impact of Urbanization on Land Surface Temperature in the United Arab Emirates
Authors: A. O. Abulibdeh
Abstract:
The aim of this study is to investigate and compare the changes in the Land Surface Temperature (LST) as a function of urbanization, particularly land use/land cover changes, in three cities in the UAE, mainly Abu Dhabi, Dubai, and Al Ain. The scale of this assessment will be at the macro- and micro-levels. At the macro-level, a comparative assessment will take place to compare between the four cities in the UAE. At the micro-level, the study will compare between the effects of different land use/land cover on the LST. This will provide a clear and quantitative city-specific information related to the relationship between urbanization and local spatial intra-urban LST variation in three cities in the UAE. The main objectives of this study are 1) to investigate the development of LST on the macro- and micro-level between and in three cities in the UAE over two decades time period, 2) to examine the impact of different types of land use/land cover on the spatial distribution of LST. Because these three cities are facing harsh arid climate, it is hypothesized that (1) urbanization is affecting and connected to the spatial changes in LST; (2) different land use/land cover have different impact on the LST; and (3) changes in spatial configuration of land use and vegetation concentration over time would control urban microclimate on a city scale and control macroclimate on the country scale. This study will be carried out over a 20-year period (1996-2016) and throughout the whole year. The study will compare between two distinct periods with different thermal characteristics which are the cool/cold period from November to March and warm/hot period between April and October. The best practice research method for this topic is to use remote sensing data to target different aspects of natural and anthropogenic systems impacts. The project will follow classical remote sensing and mapping techniques to investigate the impact of urbanization, mainly changes in land use/land cover, on LST. The investigation in this study will be performed in two stages. Stage one remote sensing data will be used to investigate the impact of urbanization on LST on a macroclimate level where the LST and Urban Heat Island (UHI) will be compared in the three cities using data from the past two decades. Stage two will investigate the impact on microclimate scale by investigating the LST and UHI using a particular land use/land cover type. In both stages, an LST and urban land cover maps will be generated over the study area. The outcome of this study should represent an important contribution to recent urban climate studies, particularly in the UAE. Based on the aim and objectives of this study, the expected outcomes are as follow: i) to determine the increase or decrease of LST as a result of urbanization in these four cities, ii) to determine the effect of different land uses/land covers on increasing or decreasing the LST.Keywords: land use/land cover, global warming, land surface temperature, remote sensing
Procedia PDF Downloads 2462176 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan
Authors: Sumaira Zafar, Arjumand Zaidi
Abstract:
During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization
Procedia PDF Downloads 5052175 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 1142174 Land Suitability Scaling and Modeling for Assessing Crop Suitability in Some New Reclaimed Areas, Egypt
Authors: W. A. M. Abdel Kawy, Kh. M. Darwish
Abstract:
Adequate land use selection is an essential step towards achieving sustainable development. The main object of this study is to develop a new scale for land suitability system, which can be compatible with the local conditions. Furthermore, it aims to adapt the conventional land suitability systems to match the actual environmental status in term of soil types, climate and other conditions to evaluate land suitability for newly reclaimed areas. The new system suggests calculation of land suitability considering 20 factors affecting crop selection grouping into five categories; crop-agronomic, land management, development, environmental conditions and socio – economic status. Each factor is summed by each other to calculate the total points. The highest rating for each factor indicates the highest preference for the evaluated crop. The highest rated crops for each group are those with the highest points for the actual suitability. This study was conducted to assess the application efficiency of the new land suitability scale in recently reclaimed sites in Egypt. Moreover, 35 representative soil profiles were examined, and soil samples were subjected to some physical and chemical analysis. Actual and potential suitabilities were calculated by using the new land suitability scale. Finally, the obtained results confirmed the applicability of a new land suitability system to recommend the most promising crop rotation that can be applied in the study areas. The outputs of this research revealed that the integration of different aspects for modeling and adapting a proposed model provides an effective and flexible technique, which contribute to improve land suitability assessment for several crops to be more accurate and reliable.Keywords: analytic hierarchy process, land suitability, multi-criteria analysis, new reclaimed areas, soil parameters
Procedia PDF Downloads 1362173 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Different Crops
Authors: M. M. Ali, Ahmed Al- Ani, Derek Eamus, Daniel K. Y. Tan
Abstract:
In this glasshouse study, we developed the new image-based non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. Plants were allowed to grow on nutrient media containing different P concentrations, i.e. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P as NaH2PO4). After 10 weeks of growth, plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. This data was further used in the linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using the image and morphological data. Our proposed non-destructive imaging method is precise in estimating P requirements of different crop species.Keywords: image-based techniques, leaf area, leaf P contents, linear discriminant analysis
Procedia PDF Downloads 3792172 FRP Bars Spacing Effect on Numerical Thermal Deformations in Concrete Beams under High Temperatures
Authors: A. Zaidi, F. Khelifi, R. Masmoudi, M. Bouhicha
Abstract:
5 In order to eradicate the degradation of reinforced concrete structures due to the steel corrosion, professionals in constructions suggest using fiber reinforced polymers (FRP) for their excellent properties. Nevertheless, high temperatures may affect the bond between FRP bar and concrete, and consequently the serviceability of FRP-reinforced concrete structures. This paper presents a nonlinear numerical investigation using ADINA software to investigate the effect of the spacing between glass FRP (GFRP) bars embedded in concrete on circumferential thermal deformations and the distribution of radial thermal cracks in reinforced concrete beams submitted to high temperature variations up to 60 °C for asymmetrical problems. The thermal deformations predicted from nonlinear finite elements model, at the FRP bar/concrete interface and at the external surface of concrete cover, were established as a function of the ratio of concrete cover thickness to FRP bar diameter (c/db) and the ratio of spacing between FRP bars in concrete to FRP bar diameter (e/db). Numerical results show that the circumferential thermal deformations at the external surface of concrete cover are linear until cracking thermal load varied from 32 to 55 °C corresponding to the ratio of e/db varied from 1.3 to 2.3, respectively. However, for ratios e/db >2.3 and c/db >1.6, the thermal deformations at the external surface of concrete cover exhibit linear behavior without any cracks observed on the specified surface. The numerical results are compared to those obtained from analytical models validated by experimental tests.Keywords: concrete beam, FRP bars, spacing effect, thermal deformation
Procedia PDF Downloads 2022171 Analysis of Land Use, Land Cover Changes in Damaturu, Nigeria: Using Satellite Images
Authors: Isa Muhammad Zumo, Musa Lawan
Abstract:
This study analyzes the land use/land cover changes in Damaturu metropolis from 1986 to 2005. LandSat TM Images of 1986, 1999, and 2005 were used. Built-up lands, agric lands, water body and other lands were created as themes within ILWIS 3.4 software. The images were displayed in False Colour Composite (FCC) for a better visualization and identification of the themes created. Training sample sets were collected based on the ground truth data during field the checks. Statistical data were then extracted from the classified sample set. Area in hectares for each theme was calculated for each year and the result for each land use/land cover types for each study year was compared. From the result, it was found out that built-up areas have a considerable increase from 37.71 hectares in 1986 to 1062.72 hectares in 2005. It has an annual increase rate of approximately 0.34%. The results also reveal that there is a decrease of 5829.66 hectares of other lands (vacant lands) from 1986 to 2005.Keywords: land use, changes, analysis, environmental pollution
Procedia PDF Downloads 3452170 Conservation Agriculture and Precision Water Management in Alkaline Soils under Rice-Wheat Cropping System: Effect on Wheat Productivity and Irrigation Water Use-a Case Study from India
Authors: S. K. Kakraliya, H. S. Jat, Manish Kakraliya, P. C. Sharma, M. L. Jat
Abstract:
The biggest challenge in agriculture is to produce more food for the continually increasing world population with in the limited land and water resources. Serious water deficits and reducing natural resources are some of the major threats to the agricultural sustainability in many regions of South Asia. Food and water security may be gained by bringing improvement in the crop water productivity and the amount produced per unit of water consumed. Improvement in the crop water productivity may be achieved by pursuing alternative modern agronomics approaches, which are more friendly and efficient in utilizing natural resources. Therefore, a research trial on conservation agriculture (CA) and precision water management (PWM) was conducted in 2018-19 at Karnal, India to evaluate the effect on crop productivity and irrigation in sodic soils under rice-wheat (RW) systems of Indo-Gangetic Plains (IGP). Eight scenarios were compared varied in the tillage, crop establishment, residue and irrigarion management i.e., {First four scenarios irrigated with flood irrigation method;Sc1-Conventional tillage (CT) without residue, Sc2-CT with residue, Sc3- Zero tillage (ZT) without residue, Sc4-ZT with residue}, and {last four scenarios irrigated with sub-surface drip irrigation method; Sc5-ZT without residue, Sc6- ZT with residue, Sc7-ZT inclusion legume without residue and Sc8- ZT inclusion legume with residue}. Results revealed that CA-flood irrigation (S3, Sc4) and CA-PWM system (Sc5, Sc6, Sc7 and Sc8) recorded about ~5% and ~15% higher wheat yield, respectively compared to Sc1. Similar, CA-PWM saved ~40% irrigation water compared to Sc1. Rice yield was not different under different scenarios in the first year (kharif 2019) but almost half irrigation water saved under CA-PWM system. Therefore, results of our study on modern agronomic practices including CA and precision water management (subsurface drip irrigation) for RW rotation would be addressed the existing and future challenges in the RW system.Keywords: Sub-surface drip, Crop residue, Crop yield , Zero tillage
Procedia PDF Downloads 1182169 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2292168 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 2112167 Bioefficacy of Diclosulam for Controlling Weeds in Soybean [Glycine Max (L.) Merrill] and Its Carry Over Effect on Succeeding Wheat (Triticum Aestivum) Crop
Authors: Pratap Sing, Chaman. K. Jadon, H. P. Meena, D. L.yadav, S. L. Yadav, Uditi Dhakad
Abstract:
The experiment was conducted at Agricultural Research Station, Agriculture University, Kota, Rajasthan, India during kharif and rabi 2020-21 and 2021-22 to study the biofficacy of diclosulam and its residual effect on succeeding wheat crop. The treatments comprised of Diclosulam 84 % WDG viz. 6.25, 12.50, 25.00 and 37.50 g/ha as pre emergence (PE), Pendimethalin 30% EC 3.33 l/ha, Sulfentrazon 48% SC 750 g/ha, hand weeding at 30 and 45 DAS and weedy check, were evaluated in randomized block design in three replications. The experimental soil was clay in texture and non-calcareous. Experimental field was mainly dominated by grasses-Echinochloa colonum, E.crusgalli,Cynodon dactylon, Sedges-Cyperus rotundus and broad leaved weeds Celosia argentea and Digera arvensis.The result revealed that application of Diclosulam 84 % WDG 25 g/ha PE was found effective in controlling mostly weed species and registered higher weed control efficiency 81.2, 74.3, 69.6 per cent at 30, 45 days after sowing and at harvest. Diclosulam 84 % WDG (6.25-25.0 g/ha) was found selective to the soybean crop as no any phytotoxicity symptoms were observed. Among the herbicidal treatments, Diclosulam 84 % WDG 25 g/ha registered maximum and significantly higher soybean seed yield (1889 and 1431 kg/ha during kharif 2020 and 2021, respectively and was at par with Sulfentrazone 48% SC 750 g/ha and over weedy check( 1027 and 667 kg/ha).The wheat crop growth, yield attributes and seed yield were not influenced due to carry over effect of the Diclosulam 84 % WDG( 6.25-25.0 g/ha) and no any phytotoxicity symptoms were observed. Henceforth, the Diclosulam 84 % WDG 25.0 g/ha as pre emergence may be used in the soybean for effective weed control without carry over effect on succeeding wheat crop.Keywords: Diclosulam, soybean, carry over effect, succeeding wheat
Procedia PDF Downloads 1112166 Changes in Forest Cover Regulate Streamflow in Central Nigerian Gallery Forests
Authors: Rahila Yilangai, Sonali Saha, Amartya Saha, Augustine Ezealor
Abstract:
Gallery forests in sub-Saharan Africa are drastically disappearing due to intensive anthropogenic activities thus reducing ecosystem services, one of which is water provisioning. The role played by forest cover in regulating streamflow and water yield is not well understood, especially in West Africa. This pioneering 2-year study investigated the interrelationships between plant cover and hydrology in protected and unprotected gallery forests. Rainfall, streamflow, and evapotranspiration (ET) measurements/estimates over 2015-2016 were obtained to form a water balance for both catchments. In addition, transpiration in the protected gallery forest with high vegetation cover was calculated from stomatal conductance readings of selected species chosen from plot level data of plant diversity and abundance. Results showed that annual streamflow was significantly higher in the unprotected site than the protected site, even when normalized by catchment area. However, streamflow commenced earlier and lasted longer in the protected site than the degraded unprotected site, suggesting regulation by the greater tree density in the protected site. Streamflow correlated strongly with rainfall with the highest peak in August. As expected, transpiration measurements were less than potential evapotranspiration estimates, while rainfall exceeded ET in the water cycle. The water balance partitioning suggests that the lower vegetation cover in the unprotected catchment leads to a larger runoff in the rainy season and less infiltration, thereby leading to streams drying up earlier, than in the protected catchment. This baseline information is important in understanding the contribution of plants in water cycle regulation, for modeling integrative water management in applied research and natural resource management in sustaining water resources with changing the land cover and climate uncertainties in this data-poor region.Keywords: evapotranspiration, gallery forest, rainfall, streamflow, transpiration
Procedia PDF Downloads 1702165 Gender-Specific Vulnerability on Climate Change and Food Security Status - A Catchment Approach on Agroforestry Systems - A Multi-Country Case Study
Authors: Zerihun Yohannes Amare Id, Bernhard Freyer, Ky Serge Stephane, Ouéda Adama, Blessing Mudombi, Jean Nzuma, Mekonen Getachew Abebe, Adane Tesfaye, Birtukan Atinkut Asmare, Tesfahun Asmamaw Kassie
Abstract:
The study was conducted in Ethiopia (Zege Catchment) (ZC), Zimbabwe (Upper Save Catchment) (USC), and Burkina Faso (Nakambe Catchment) (NC). The study utilized a quantitative approach with 180 participants and complemented it with qualitative methods, including 33 key informant interviews and 6 focus group discussions. Households in ZC (58%), NC (55%), and US (40%) do not cover their household food consumption from crop production. The households rely heavily on perennial cash crops rather than annual crop production. Exposure indicators in ZC (0.758), USC (0.774), and NC (0.944), and sensitivity indicators in ZC (0.849) and NC (0.937) show statistically significant and high correlation with vulnerability. In the USC, adaptive capacity (0.746) and exposure (0.774) are also statistically significant and highly correlated with vulnerability. Vulnerability levels of the NC are very high (0.75) (0.85 female and 0.65 male participants) compared to the USC (0.66) (0.69 female and 0.61 male participants) and ZC (0.47) (0.34 female and 0.58 male participants). Female-headed households had statistically significantly lower vulnerability index compared to males in ZC, while male-headed households had statistically significantly lower vulnerability index compared to females in USC and NC. The reason is land certification in ZC (80%) is higher than in the US (10%) and NC (8%). Agroforestry practices variables across the study catchments had statistically significant contributions to households' adaptive capacity. We conclude that agroforestry practices do have substantial benefits in increasing women's adaptive capacity and reducing their vulnerability to climate change and food insecurity.Keywords: climate change vulnerability, agroforestry, gender, food security, Sub-Saharan Africa
Procedia PDF Downloads 952164 Estimation of Soil Erosion Potential in Herat Province, Afghanistan
Authors: M. E. Razipoor, T. Masunaga, K. Sato, M. S. Saboory
Abstract:
Estimation of soil erosion is economically and environmentally important in Herat, Afghanistan. Degradation of soil has negative impact (decreased soil fertility, destroyed soil structure, and consequently soil sealing and crusting) on life of Herat residents. Water and wind are the main erosive factors causing soil erosion in Herat. Furthermore, scarce vegetation cover, exacerbated by socioeconomic constraint, and steep slopes accelerate soil erosion. To sustain soil productivity and reduce soil erosion impact on human life, due to sustaining agricultural production and auditing the environment, it is needed to quantify the magnitude and extent of soil erosion in a spatial domain. Thus, this study aims to estimate soil loss potential and its spatial distribution in Herat, Afghanistan by applying RUSLE in GIS environment. The rainfall erosivity factor ranged between values of 125 and 612 (MJ mm ha-1 h-1 year-1). Soil erodibility factor varied from 0.036 to 0.073 (Mg h MJ-1 mm-1). Slope length and steepness factor (LS) values were between 0.03 and 31.4. The vegetation cover factor (C), derived from NDVI analysis of Landsat-8 OLI scenes, resulting in range of 0.03 to 1. Support practice factor (P) were assigned to a value of 1, since there is not significant mitigation practices in the study area. Soil erosion potential map was the product of these factors. Mean soil erosion rate of Herat Province was 29 Mg ha-1 year-1 that ranged from 0.024 Mg ha-1 year-1 in flat areas with dense vegetation cover to 778 Mg ha-1 year-1 in sharp slopes with high rainfall but least vegetation cover. Based on land cover map of Afghanistan, areas with soil loss rate higher than soil loss tolerance (8 Mg ha-1 year-1) occupies 98% of Forests, 81% rangelands, 64% barren lands, 60% rainfed lands, 28% urban area and 18% irrigated Lands.Keywords: Afghanistan, erosion, GIS, Herat, RUSLE
Procedia PDF Downloads 4322163 Conservation Agriculture under Mediterranean Climate: Effects on below and Above-Ground Processes during Wheat Cultivation
Authors: Vasiliki Kolake, Christos Kavalaris, Sofia Megoudi, Maria Maxouri, Panagiotis A. Karas, Aris Kyparissis, Efi Levizou
Abstract:
Conservation agriculture (CA), is a production system approach that can tackle the challenges of climate change mainly through facilitating carbon storage into the soil and increasing crop resilience. This is extremely important for the vulnerable Mediterranean agroecosystems, which already face adverse environmental conditions. The agronomic practices used in CA, i.e. permanent soil cover and no-tillage, result in reduced soil erosion and increased soil organic matter, preservation of water and improvement of quality and fertility of the soil in the long-term. Thus the functional characteristics and processes of the soil are considerably affected by the implementation of CA. The aim of the present work was to assess the effects of CA on soil nitrification potential and mycorrhizal colonization about the above-ground production in a wheat field. Two adjacent but independent field sites of 1.5ha each were used (Thessaly plain, Central Greece), comprising the no-till and conventional tillage treatments. The no-tillage site was covered by residues of the previous crop (cotton). Potential nitrification and the nitrate and ammonium content of the soil were measured at two different soil depths (3 and 15cm) at 20-days intervals throughout the growth period. Additionally, the leaf area index (LAI) was monitored at the same time-course. The mycorrhizal colonization was measured at the commencement and end of the experiment. At the final harvest, total yield and plant biomass were also recorded. The results indicate that wheat yield was considerably favored by CA practices, exhibiting a 42% increase compared to the conventional tillage treatment. The superior performance of the CA crop was also depicted in the above-ground plant biomass, where a 26% increase was recorded. LAI, which is considered a reliable growth index, did not show statistically significant differences between treatments throughout the growth period. On the contrary, significant differences were recorded in endomycorrhizal colonization one day before the final harvest, with CA plants exhibiting 20% colonization, while the conventional tillage plants hardly reached 1%. The on-going analyses of potential nitrification measurements, as well as nitrate and ammonium determination, will shed light on the effects of CA on key processes in the soil. These results will integrate the assessment of CA impact on certain below and above-ground processes during wheat cultivation under the Mediterranean climate.Keywords: conservation agriculture, LAI, mycorrhizal colonization, potential nitrification, wheat, yield
Procedia PDF Downloads 1292162 Energy Consumption Modeling for Strawberry Greenhouse Crop by Adaptive Nero Fuzzy Inference System Technique: A Case Study in Iran
Authors: Azar Khodabakhshi, Elham Bolandnazar
Abstract:
Agriculture as the most important food manufacturing sector is not only the energy consumer, but also is known as energy supplier. Using energy is considered as a helpful parameter for analyzing and evaluating the agricultural sustainability. In this study, the pattern of energy consumption of strawberry greenhouses of Jiroft in Kerman province of Iran was surveyed. The total input energy required in the strawberries production was calculated as 113314.71 MJ /ha. Electricity with 38.34% contribution of the total energy was considered as the most energy consumer in strawberry production. In this study, Neuro Fuzzy networks was used for function modeling in the production of strawberries. Results showed that the best model for predicting the strawberries function had a correlation coefficient, root mean square error (RMSE) and mean absolute percentage error (MAPE) equal to 0.9849, 0.0154 kg/ha and 0.11% respectively. Regards to these results, it can be said that Neuro Fuzzy method can be well predicted and modeled the strawberry crop function.Keywords: crop yield, energy, neuro-fuzzy method, strawberry
Procedia PDF Downloads 3792161 Dynamics of Smallholder Farmer Adoption of High Value Horticultural Crops in Indonesia
Authors: Suprehatin Suprehatin
Abstract:
Improving the participation of smallholder farmers in horticultural value chains to benefit from the rapidly growing demand for high-value agricultural products is one strategy for raising farm income. However, smallholder farmer participation in Indonesian horticultural value chains is under-researched. To address this knowledge gap, this study aims to describe the current status of horticultural crop adoption in Indonesia and analyze the motivations and dynamics of smallholder farmer participation in horticultural value chains: why some small farmers join these new and potentially profitable chains and continue their participation. This study also examines the characteristics of farmers who adopted and those who did not adopt a new horticultural crop with respect to the household (farmer), farm and institutional characteristics. The analysis was conducted using unique data from a 2013 survey of 960 Indonesian farmers on Java Island that produce a variety of agricultural products. Basic statistical analysis showed relatively low adoption rates (10%) of new horticultural crops amongst 960 selected Indonesian farmers with different decisions made in terms of number and timing of new horticultural crop adoption. Adopters were motivated mainly by higher profit, higher yield, and more cash opportunities. The result also showed that current low rates of horticultural crop adoption are associated with a variety of factors, such as lower levels of education among farmers, resource constraints, lack of information on horticultural crop production and low participation in farmer groups. These findings will be helpful for policymakers when designing policies and programs to promote greater participation of Indonesian smallholder farmers in horticultural value chains. In other words, a revitalisation of agricultural policy beyond staple food is important to seize potential benefits from the ongoing agricultural food market transformation.Keywords: farmer adoption, high value, horticultural crops, Indonesia
Procedia PDF Downloads 2802160 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique
Authors: B. Almassri, F. Almahmoud, R. Francois
Abstract:
Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX
Procedia PDF Downloads 1632159 Effect of Biostimulants to Control the Phelipanche ramosa L. Pomel in Processing Tomato Crop
Authors: G. Disciglio, G. Gatta, F. Lops, A. Libutti, A. Tarantino, E. Tarantino
Abstract:
The experimental trial was carried out in open field at Foggia district (Apulia Region, Southern Italy), during the spring-summer season 2014, in order to evaluate the effect of four biostimulant products (RadiconÒ, Viormon plusÒ, LysodinÒ and SiaptonÒ 10L), compared with a control (no biostimulant), on the infestation of processing tomato crop (cv Dres) by the chlorophyll-lacking root parasite Phelipanche ramosa. Biostimulants consist in different categories of products (microbial inoculants, humic and fulvic acids, hydrolyzed proteins and aminoacids, seaweed extracts) which play various roles in plant growing, including the improvement of crop resistance and quali-quantitative characteristics of yield. The experimental trial was arranged according to a complete randomized block design with five treatments, each of one replicated three times. The processing tomato seedlings were transplanted on 5 May 2014. Throughout the crop cycle, P. ramosa infestation was assessed according to the number of emerged shoots (branched plants) counted in each plot, at 66, 78 and 92 day after transplanting. The tomato fruits were harvested at full-stage of maturity on 8 August 2014. From each plot, the marketable yield was measured and the quali-quantitative yield parameters (mean weight, dry matter content, colour coordinate, colour index and soluble solids content of the fruits) were determined. The whole dataset was tested according to the basic assumptions for the analysis of variance (ANOVA) and the differences between the means were determined using Tukey’s tests at the 5% probability level. The results of the study showed that none of the applied biostimulants provided a whole control of Phelipanche, although some positive effects were obtained from their application. To this respect, the RadiconÒ appeared to be the most effective in reducing the infestation of this root-parasite in tomato crop. This treatment also gave the higher tomato yield.Keywords: biostimulant, control methods, Phelipanche ramosa, tomato crop
Procedia PDF Downloads 2952158 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing
Authors: Kedibone Masenya, Memory Tekere, Jasper Rees
Abstract:
Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.Keywords: bacteria, multitrophic, sorghum, target sequencing
Procedia PDF Downloads 2812157 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1172156 Investigating the Significance of Ground Covers and Partial Root Zone Drying Irrigation for Water Conservation Weed Suppression and Quality Traits of Wheat
Authors: Muhammad Aown Sammar Raza, Salman Ahmad, Muhammad Farrukh Saleem, Muhammad Saqlain Zaheer, Rashid Iqbal, Imran Haider, Muhammad Usman Aslam, Muhammad Adnan Nazar
Abstract:
One of the main negative effects of climate change is the increasing scarcity of water worldwide, especially for irrigation purpose. In order to ensure food security with less available water, there is a need to adopt easy and economic techniques. Two of the effective techniques are; use of ground covers and partial root zone drying (PRD). A field experiment was arranged to find out the most suitable mulch for PRD irrigation system in wheat. The experiment was comprised of two irrigation methods (I0 = irrigation on both sides of roots and I1= irrigation to only one side of the root as alternate irrigation) and four ground covers (M0= open ground without any cover, M1= black plastic cover, M2= wheat straw cover and M4= cotton sticks cover). More plant height, spike length, number of spikelets and number of grains were found in full irrigation treatment. While water use efficiency and grain nutrient (NPK) contents were more in PRD irrigation. All soil covers suppress the weeds and significantly influenced the yield attributes, final yield as well as the grain nutrient contents. However black plastic cover performed the best. It was concluded that joint use of both techniques was more effective for water conservation and increasing grain yield than their sole application and combination of PRD with black plastic mulch performed the best than other ground covers combination used in the experiment.Keywords: ground covers, partial root zone drying, grain yield, quality traits, WUE, weed control efficiency
Procedia PDF Downloads 2462155 Determination of Biological Efficiency Values of Some Pesticide Application Methods under Second Crop Maize Conditions
Authors: Ali Bolat, Ali Bayat, Mustafa Gullu
Abstract:
Maize can be cultivated both under main and second crop conditions in Turkey. Main pests of maize under second crop conditions are Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis Hübner (Lepidoptera: Crambidae). Aerial spraying applications to control these two main maize pests can be carried out until 2006 in Turkey before it was banned due to environmental concerns like drifting of sprayed pestisides and low biological efficiency. In this context, pulverizers which can spray tall maize plants ( > 175 cm) from the ground have begun to be used. However, the biological efficiency of these sprayers is unknown. Some methods have been tested to increase the success of ground spraying in field experiments conducted in second crop maize in 2008 and 2009. For this aim, 6 spraying methods (air assisted spraying with TX cone jet, domestic cone nozzles, twinjet nozzles, air induction nozzles, standard domestic cone nozzles and tail booms) were used at two application rates (150 and 300 l.ha-1) by a sprayer. In the study, biological efficacy evaluations of each methods were measured in each parcel. Biological efficacy evaluations included counts of number of insect damaged plants, number of holes in stems and live larvae and pupa in stems of selected plants. As a result, the highest biological efficacy value (close to 70%) was obtained from Air Assisted Spraying method at 300 l / ha application volume.Keywords: air assisted sprayer, drift nozzles, biological efficiency, maize plant
Procedia PDF Downloads 2122154 Digital Platform of Crops for Smart Agriculture
Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye
Abstract:
In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.Keywords: prediction, machine learning, artificial intelligence, digital agriculture
Procedia PDF Downloads 79