Search results for: clinical prediction score
7218 Natural Language Processing; the Future of Clinical Record Management
Authors: Khaled M. Alhawiti
Abstract:
This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications.Keywords: clinical information, information retrieval, natural language processing, automated applications
Procedia PDF Downloads 4047217 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 3067216 Combined Tarsal Coalition Resection and Arthroereisis in Treatment of Symptomatic Rigid Flat Foot in Pediatric Population
Authors: Michael Zaidman, Naum Simanovsky
Abstract:
Introduction. Symptomatic tarsal coalition with rigid flat foot often demands operative solution. An isolated coalition resection does not guarantee pain relief; correction of co-existing foot deformity may be required. The objective of the study was to analyze the results of combination of tarsal coalition resection and arthroereisis. Patients and methods. We retrospectively reviewed medical records and radiographs of children operatively treated in our institution for symptomatic calcaneonavicular or talocalcaneal coalition between the years 2019 and 2022. Eight patients (twelve feet), 4 boys and 4 girls with mean age 11.2 years, were included in the study. In six patients (10 feet) calcaneonavicular coalition was diagnosed, two patients (two feet) sustained talonavicular coalition. To quantify degrees of foot deformity, we used calcaneal pitch angle, lateral talar-first metatarsal (Meary's) angle, and talonavicular coverage angle. The clinical results were assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results. The mean follow-up was 28 month. The preoperative mean talonavicular coverage angle was 17,75º as compared with postoperative mean angle of 5.4º. The calcaneal pitch angle improved from mean 6,8º to 16,4º. The mean preoperative Meary’s angle of -11.3º improved to mean 2.8º. The preoperative mean AOFAS score improved from 54.7 to 93.1 points post-operatively. In nine of twelve feet, overall clinical outcome judged by AOFAS scale was excellent (90-100 points), in three feet was good (80-90 points). Six patients (ten feet) obviously improved their subtalar range of motion. Conclusion. For symptomatic stiff or rigid flat feet associated with tarsal coalition, the combination of coalition resection and arthroereisis leads to normalization of radiographic parameters, clinical and functional improvement with good patient’s satisfaction and likely to be more effective than the isolated procedures.Keywords: rigid flat foot, tarsal coalition resection, arthroereisis, outcome
Procedia PDF Downloads 647215 The New Propensity Score Method and Assessment of Propensity Score: A Simulation Study
Authors: Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis tool for causal inference in observational studies where exposure is not randomly assigned. Thus, confounding can impact the estimation of treatment effect on the outcome. Due to the dangers of discretizing continuous variables, the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect utilizing the stratification of the PS method. In this study, we will develop a new methodology to improve the efficiency of the PS analysis through stratification and simulation study. We will also explore the property of empirical distribution of average treatment effect theoretically, including asymptotic distribution, variance estimation and 95% confident Intervals.Keywords: propensity score, stratification, emprical distribution, average treatment effect
Procedia PDF Downloads 967214 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1247213 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1507212 The Use of Coronary Calcium Scanning for Cholesterol Assessment and Management
Authors: Eva Kirzner
Abstract:
Based on outcome studies published over the past two decades, in 2018, the ACC/AHA published new guidelines for the management of hypercholesterolemia that incorporate the use of coronary artery calcium (CAC) scanning as a decision tool for ascertaining which patients may benefit from statin therapy. This use is based on the recognition that the absence of calcium on CAC scanning (i.e., a CAC score of zero) usually signifies the absence of significant atherosclerotic deposits in the coronary arteries. Specifically, in patients with a high risk for atherosclerotic cardiovascular disease (ASCVD), initiation of statin therapy is generally recommended to decrease ASCVD risk. However, among patients with intermediate ASCVD risk, the need for statin therapy is less certain. However, there is a need for new outcome studies that provide evidence that the management of hypercholesterolemia based on these new ACC/AHA recommendations is safe for patients. Based on a Pub-Med and Google Scholar literature search, four relevant population-based or patient-based cohort studies that studied the relationship between CAC scanning, risk assessment or mortality, and statin therapy that were published between 2017 and 2021 were identified (see references). In each of these studies, patients were assessed for their baseline risk for atherosclerotic cardiovascular disease (ASCVD) using the Pooled Cohorts Equation (PCE), an ACC/AHA calculator for determining patient risk based on assessment of patient age, gender, ethnicity, and coronary artery disease risk factors. The combined findings of these four studies provided concordant evidence that a zero CAC score defines patients who remain at low clinical risk despite the non-use of statin therapy. Thus, these new studies confirm the use of CAC scanning as a safe tool for reducing the potential overuse of statin therapy among patients with zero CAC scores. Incorporating these new data suggest the following best practice: (1) ascertain ASCVD risk according to the PCE in all patients; (2) following an initial attempt trial to lower ASCVD risk with optimal diet among patients with elevated ASCVD risk, initiate statin therapy for patients who have a high ASCVD risk score; (3) if the ASCVD score is intermediate, refer patients for CAC scanning; and (4) and if the CAC score is zero among the intermediate risk ASCVD patients, statin therapy can be safely withheld despite the presence of an elevated serum cholesterol level.Keywords: cholesterol, cardiovascular disease, statin therapy, coronary calcium
Procedia PDF Downloads 1157211 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction
Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong
Abstract:
Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.Keywords: data refinement, machine learning, mutual information, short-term latency prediction
Procedia PDF Downloads 1697210 Establishment of a Nomogram Prediction Model for Postpartum Hemorrhage during Vaginal Delivery
Authors: Yinglisong, Jingge Chen, Jingxuan Chen, Yan Wang, Hui Huang, Jing Zhnag, Qianqian Zhang, Zhenzhen Zhang, Ji Zhang
Abstract:
Purpose: The study aims to establish a nomogram prediction model for postpartum hemorrhage (PPH) in vaginal delivery. Patients and Methods: Clinical data were retrospectively collected from vaginal delivery patients admitted to a hospital in Zhengzhou, China, from June 1, 2022 - October 31, 2022. Univariate and multivariate logistic regression were used to filter out independent risk factors. A nomogram model was established for PPH in vaginal delivery based on the risk factors coefficient. Bootstrapping was used for internal validation. To assess discrimination and calibration, receiver operator characteristics (ROC) and calibration curves were generated in the derivation and validation groups. Results: A total of 1340 cases of vaginal delivery were enrolled, with 81 (6.04%) having PPH. Logistic regression indicated that history of uterine surgery, induction of labor, duration of first labor, neonatal weight, WBC value (during the first stage of labor), and cervical lacerations were all independent risk factors of hemorrhage (P <0.05). The area-under-curve (AUC) of ROC curves of the derivation group and the validation group were 0.817 and 0.821, respectively, indicating good discrimination. Two calibration curves showed that nomogram prediction and practical results were highly consistent (P = 0.105, P = 0.113). Conclusion: The developed individualized risk prediction nomogram model can assist midwives in recognizing and diagnosing high-risk groups of PPH and initiating early warning to reduce PPH incidence.Keywords: vaginal delivery, postpartum hemorrhage, risk factor, nomogram
Procedia PDF Downloads 777209 Effect of Retained Posterior Horn of Medial Meniscus on Functional Outcome of ACL Reconstructed Knees
Authors: Kevin Syam, Devendra K. Chauhan, Mandeep Singh Dhillon
Abstract:
Background: The posterior horn of medial meniscus (PHMM) is a secondary stabilizer against anterior translation of tibia. Cadaveric studies have revealed increased strain on the ACL graft and greater instrumented laxity in Posterior horn deficient knees. Clinical studies have shown higher prevalence of radiological OA after ACL reconstruction combined with menisectomy. However, functional outcomes in ACL reconstructed knee in the absence of Posterior horn is less discussed, and specific role of posterior horn is ill-documented. This study evaluated functional and radiological outcomes in posterior horn preserved and posterior horn sacrificed ACL reconstructed knees. Materials: Of the 457 patients who had ACL reconstruction done over a 6 year period, 77 cases with minimum follow up of 18 months were included in the study after strict exclusion criteria (associated lateral meniscus injury, other ligamentous injuries, significant cartilage degeneration, repeat injury and contralateral knee injuries were excluded). 41 patients with intact menisci were compared with 36 patients with absent posterior horn of medial meniscus. Radiological and clinical tests for instability were conducted, and knees were evaluated using subjective International Knee Documentation Committee (IKDC) score and the Orthopadische Arbeitsgruppe Knie score (OAK). Results: We found a trend towards significantly better overall outcome (OAK) in cases with intact PHMM at average follow-up of 43.03 months (p value 0.082). Cases with intact PHMM had significantly better objective stability (p value 0.004). No significant differences were noted in the subjective IKDC score (p value 0.526) and the functional OAK outcome (category D) (p value 0.363). More cases with absent posterior horn had evidence of radiological OA (p value 0.022) even at mid-term follow-up. Conclusion: Even though the overall OAK and subjective IKDC scores did not show significant difference between the two subsets, the poorer outcomes in terms of objective stability and radiological OA noted in the absence of PHMM, indicates the importance of preserving this important part of the meniscus.Keywords: ACL, functional outcome, knee, posterior of medial meniscus
Procedia PDF Downloads 3597208 Automatic Music Score Recognition System Using Digital Image Processing
Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng
Abstract:
Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.Keywords: connected component labeling, image processing, morphological processing, optical musical recognition
Procedia PDF Downloads 4197207 Rehabilitation of CP Using Pediatric Functional Independent Measure (WeeFIM) as Indicator Instruments Suitable for CP: Saudi's Perspective
Authors: Bara M. Yousef
Abstract:
Kingdome of Saudi Arabia (KSA). High numbers of traffic accidents with sever, moderate and mild level of impairments admits to Sultan bin Abdulaziz humanitarian city. Over a period of 4 months the city received 111 male and 79 female subjects with CP, who received 4-6 weeks of rehabilitation and using WeeFIM score to measure rehabilitation outcomes. WeeFIM measures and covers various domains, such as: self-care, mobility, locomotion, communication and other psycho-social aspects. Our findings shed the light on the fact that nearly 85% of people at admission got better after rehabilitation program services at individual sever moderate and mild and has arrange of (59 out of 128 WeeFIM score) and by the time of discharge they leave the city with better FIM score close to (72 out of 128 WeeFIM score) for the entire study sample. WeeFIM score is providing fair evidence to rehabilitation specialists to assess their outcomes. However there is a need to implement other instruments and compare it to WeeFIM in order to reach better outcomes at discharge level.Keywords: Cerepral Palsy (CP), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability
Procedia PDF Downloads 2267206 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1437205 Cross Professional Team-Assisted Teaching Effectiveness
Authors: Shan-Yu Hsu, Hsin-Shu Huang
Abstract:
The main purpose of this teaching research is to design an interdisciplinary team-assisted teaching method for trainees and interns and review the effectiveness of this teaching method on trainees' understanding of peritoneal dialysis. The teaching research object is the fifth and sixth-grade trainees in a medical center's medical school. The teaching methods include media teaching, demonstration of technical operation, face-to-face communication with patients, special case discussions, and field visits to the peritoneal dialysis room. Evaluate learning effectiveness before, after, and verbally. Statistical analysis was performed using the SPSS paired-sample t-test to analyze whether there is a difference in peritoneal dialysis professional cognition before and after teaching intervention. Descriptive statistics show that the average score of the previous test is 74.44, the standard deviation is 9.34, the average score of the post-test is 95.56, and the standard deviation is 5.06. The results of the t-test of the paired samples are shown as p-value = 0.006, showing the peritoneal dialysis professional cognitive test. Significant differences were observed before and after. The interdisciplinary team-assisted teaching method helps trainees and interns to improve their professional awareness of peritoneal dialysis. At the same time, trainee physicians have positive feedback on the inter-professional team-assisted teaching method. This teaching research finds that the clinical ability development education of trainees and interns can provide cross-professional team-assisted teaching methods to assist clinical teaching guidance.Keywords: monitor quality, patient safety, health promotion objective, cross-professional team-assisted teaching methods
Procedia PDF Downloads 1437204 Effect of Peppermint Essential Oil versus a Mixture of Formic and Propionic Acids on Corn Silage Volatile Fatty Acid Score
Authors: Mohsen Danesh Mesgaran, Ali Hodjatpanah Montazeri, Alireza Vakili, Mansoor Tahmasbei
Abstract:
To compare peppermint essential oil versus a mixture of formic and propionic acids a study was conducted to their effects on volatile fatty acid proportion and VFA score of corn silage. Chopped whole crop corn (control) was treated with peppermint essential oil (240 mg kg-1 DM) or a mixture of formic and propionic acids (2:1) at 0.4% of fresh forage weight, and ensiled for 30 days. Then, silage extract was provided and the concentration of each VFA was determined using gas chromatography. The VFA score was calculated according to the patented formula proposed by Dairy One Scientific Committee. The score is calculated based on the positive impact of lactic and acetic acids versus the negative effect of butyric acid to achieve a single value for evaluating silage quality. The essential oil declined pH and increased the concentration of lactic and acetic acids in the silage extract. All corn silages evaluated in this study had a VFA score between 6 through 8. However, silage with peppermint essential oils had lower volatile fatty acids score than those of the other treatments. Both of applied additives caused a significant improvement in silage aerobic stability.Keywords: peppermint, essential oil, corn silage, VFA (volatile fatty acids)
Procedia PDF Downloads 4077203 The Psychosis Prodrome: Biomarkers of the Glutamatergic System and Their Potential Role in Prediction and Treatment
Authors: Peter David Reiss
Abstract:
The concept of the psychosis prodrome has allowed for the identification of adolescent and young adult patients who have a significantly elevated risk of developing schizophrenia spectrum disorders. A number of different interventions have been tested in order to prevent or delay progression of symptoms. To date, there has been no consistent meta-analytical evidence to support efficacy of antipsychotic treatment for patients in the prodromal state, and their use remains therefore inconclusive. Although antipsychotics may manage symptoms transiently, they have not been found to prevent or delay onset of psychotic disorders. Furthermore, pharmacological intervention in high-risk individuals remains controversial, because of the antipsychotic side effect profile in a population in which only about 20 to 35 percent will eventually convert to psychosis over a two-year period, with even after two years conversion rates not exceeding 30 to 40 percent. This general estimate is additionally problematic, in that it ignores the fact that there is significant variation in individual risk among clinical high-risk cases. The current lack of reliable tests for at-risk patients makes it difficult to justify individual treatment decisions. Preventive treatment should ideally be dictated by an individual’s risk while minimizing potentially harmful medication exposure. This requires more accurate predictive assessments by using valid and accessible prognostic markers. The following will compare prediction and risk modification potential of behavioral biomarkers such as disturbances of basic sense of self and emotion awareness, neurocognitive biomarkers such as attention, working and declarative memory, and neurophysiological biomarkers such as glutamatergic abnormalities and NMDA receptor dysfunction. Identification of robust biomarkers could therefore not only provide more reliable means of psychosis prediction, but also help test and develop new clinical interventions targeted at the prodromal state.Keywords: at-risk mental state, biomarkers, glutamatergic system, NMDA receptor, psychosis prodrome, schizophrenia
Procedia PDF Downloads 1957202 Prevalence Post Partum Depression in NICU
Authors: Ahmad Shahfarhat, Ashraf Mohammadzade, Reza Saeedi, Hadi Hesari
Abstract:
Background: Mothers of infants admitted at NICU are vulnerable to depression (affecting 10 to 20% of mothers during the first year after delivery) As you know, about half of women with prominent postpartum depression (PPD) symptoms are not diagnosed. The Edinburgh Postnatal Depression Scale (EPDS) is the most widely used screening instrument for PPD. In this study, we checked EPDS score of 12 or more on the second day (D2), discharge, day 28(D28), and day42 (D42) postpartum to determine the risk factors as well as the prevalence of PPD in a sample of mothers of NICU admitted neonates. Methods: A sample of 682 women used the EPDS on admission and at discharge. An assessment for PPD was performed on D28 and D42 by a telephone interview. Results: On admission, the average score on EPDS was 9.72 (SD = 4.4), and 27.4% of women (187) had an EPDS score ≥12. On Discharge, 4weeks and 6weeks postpartum the average score was ordinary 9.34 (SD = 3.8), 9.12 (SD = 3.7), 8.52(SD = 3.36), and (173)25.4 %,( 141)23.3 %,( 88)15.3% of women presented with PPD. a positive correlation was found between scores on EPDS on admission and D42 (P = 0.001). An analysis shows that mothers of twins (P = 0.001) and higher age mothers (P=0.001) are significantly associated with PPD. Conclusion: Women with EPDS score more than 12 and/or older will benefit from a closer follow-up during the rest of the post-partum period, and it is better to be under psychological support.Keywords: NICU, depression, pregnancy, mothers
Procedia PDF Downloads 1047201 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 5287200 Educational Theatre Making Project: Prior Conditions
Authors: Larisa Akhmylovskaia, Andriana Barysh
Abstract:
The present paper is introducing the translation score developing methodology and methods in the cross-cultural communication. The ideas and examples presented by the authors illustrate the universal character of translation score developing methods under analysis. Personal experience in the international theatre-making projects, opera laboratories, cross-cultural master-classes give more opportunities to single out the conditions, forms, means and principles of translation score developing as well as the translator/interpreter’s functions as cultural liaison for multiethnic collaboration.Keywords: methodology of translation score developing, pre-production, analysis, production, post-production, ethnic scene theory, theatre anthropology, laboratory, master-class, educational project, academic project, participant observation, super-objective
Procedia PDF Downloads 5147199 Virtual Reality Based 3D Video Games and Speech-Lip Synchronization Superseding Algebraic Code Excited Linear Prediction
Authors: P. S. Jagadeesh Kumar, S. Meenakshi Sundaram, Wenli Hu, Yang Yung
Abstract:
In 3D video games, the dominance of production is unceasingly growing with a protruding level of affordability in terms of budget. Afterward, the automation of speech-lip synchronization technique is customarily onerous and has advanced a critical research subject in virtual reality based 3D video games. This paper presents one of these automatic tools, precisely riveted on the synchronization of the speech and the lip movement of the game characters. A robust and precise speech recognition segment that systematized with Algebraic Code Excited Linear Prediction method is developed which unconventionally delivers lip sync results. The Algebraic Code Excited Linear Prediction algorithm is constructed on that used in code-excited linear prediction, but Algebraic Code Excited Linear Prediction codebooks have an explicit algebraic structure levied upon them. This affords a quicker substitute to the software enactments of lip sync algorithms and thus advances the superiority of service factors abridged production cost.Keywords: algebraic code excited linear prediction, speech-lip synchronization, video games, virtual reality
Procedia PDF Downloads 4747198 Turkish Validation of the Nursing Outcomes for Urinary Incontinence and Their Sensitivities on Nursing Interventions
Authors: Dercan Gencbas, Hatice Bebis, Sue Moorhead
Abstract:
In the nursing process, many of the nursing classification systems were created to be used in international. From these, NANDA-I, Nursing Outcomes Classification (NOC) and Nursing Interventions Classification (NIC). In this direction, the main objective of this study is to establish a model for caregivers in hospitals and communities in Turkey and to ensure that nursing outputs are assessed by NOC-based measures. There are many scales to measure Urinary Incontinence (UI), which is very common in children, in old age, vaginal birth, NOC scales are ideal for use in the nursing process for comprehensive and holistic assessment, with surveys available. For this reason, the purpose of this study is to evaluate the validity of the NOC outputs and indicators used for UI NANDA-I. This research is a methodological study. In addition to the validity of scale indicators in the study, how much they will contribute to recovery after the nursing intervention was assessed by experts. Scope validations have been applied and calculated according to Fehring 1987 work model. According to this, nursing inclusion criteria and scores were determined. For example, if experts have at least four years of clinical experience, their score was 4 points or have at least one year of the nursing classification system, their score was 1 point. The experts were a publication experience about nursing classification, their score was 1 point, or have a doctoral degree in nursing, their score was 2 points. If the expert has a master degree, their score was 1 point. Total of 55 experts rated Fehring as a “senior degree” with a score of 90 according to the expert scoring. The nursing interventions to be applied were asked to what extent these indicators would contribute to recovery. For coverage validity tailored to Fehring's model, each NOC and NOC indicator from specialists was asked to score between 1-5. Score for the significance of indicators was from 1=no precaution to 5=very important. After the expert opinion, these weighted scores obtained for each NOC and NOC indicator were classified as 0.8 critical, 0.8 > 0.5 complements, > 0.5 are excluded. In the NANDA-I / NOC / NIC system (guideline), 5 NOCs proposed for nursing diagnoses for UI were proposed. These outputs are; Urinary Continence, Urinary Elimination, Tissue Integrity, Self CareToileting, Medication Response. After the scales are translated into Turkish, the weighted average of the scores obtained from specialists for the coverage of all 5 NOCs and the contribution of nursing initiatives exceeded 0.8. After the opinions of the experts, 79 of the 82 indicators were calculated as critical, 3 of the indicators were calculated as supplemental. Because of 0.5 > was not obtained, no substance was removed. All NOC outputs were identified as valid and usable scales in Turkey. In this study, five NOC outcomes were verified for the evaluation of the output of individuals who have received nursing knowledge of UI and variant types. Nurses in Turkey can benefit from the outputs of the NOC scale to perform the care of the elderly incontinence.Keywords: nursing outcomes, content validity, nursing diagnosis, urinary incontinence
Procedia PDF Downloads 1257197 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: software metrics, fault prediction, cross project, within project.
Procedia PDF Downloads 3447196 Dental Students’ Self-Assessment of Their Performance in a Preclinical Endodontic Practice
Authors: Minseock Seo
Abstract:
Dental education consists of both theoretical and practical learning for students. When dental students encounter practical courses as a new educational experience, they must also learn to evaluate themselves. The aim of this study was to investigate the self-assessment scores of third-year dental students and compare with the scores graded by the faculty in preclinical endodontic practice in a dental school in Korea. Faculty- and student-assigned scores were calculated from preclinical endodontic practice performed on phantom patients. The students were formally instructed on grading procedures for endodontic treatment. After each step, each item was assessed by the student. The students’ self-assessment score was then compared to the score by the faculty. The students were divided into 4 groups by analyzing the scores of self-assessment and faculty-assessment and statistically analyzed by summing the theoretical and practical examination scores. In the theoretical exam score, the group who over-estimated their performance (H group) was lower than the group with lower evaluation (L group). When comparing the first and last score determined by the faculty, H groups didn’t show any improvement, while the other group did. In H group, the less improvement of the self-assessment, the higher the theoretical exam score. In L group, the higher improvement of the self-assessment, the better the theoretical exam score. The results point to the need to develop students’ self-insight with more exercises and practical training.Keywords: dental students, endodontic, preclinical practice, self-assessment
Procedia PDF Downloads 2537195 Concept-Based Assessment in Curriculum
Authors: Nandu C. Nair, Kamal Bijlani
Abstract:
This paper proposes a concept-based assessment to track the performance of the students. The idea behind this approach is to map the exam questions with the concepts learned in the course. So at the end of the course, each student will know how well he learned each concept. This system will give a self assessment for the students as well as instructor. By analyzing the score of all students, instructor can decide some concepts need to be teaching again or not. The system’s efficiency is proved using three courses from M-tech program in E-Learning technologies and results show that the concept-wise assessment improved the score in final exam of majority students on various courses.Keywords: assessment, concept, examination, question, score
Procedia PDF Downloads 4697194 Education Quality Assurance Administration of Suan Sunandha Rajabhat University
Authors: Nopadol Burananuth, Tawatpupisit Pattaradapa
Abstract:
The objective of this research is to study opinion of staff responsible for Quality Assurance. Research sample is 50 staff at Suan Sunandha Rajabhat University related to Quality Assurance works from each faculty and organization within the university. Data were analyzed using the computer program. The statistics used in data analysis were frequency, percentage, mean and standard deviation. The results reveal that most of the respondents were female, 92%, aged between 31-40 years, 44%. Most of them have been working on Quality Assurance for 1-3 years, 44%. The staff opinion survey showed that the operation received the highest score. In terms of Planning, committee appointment and job descriptions received the highest mean score. For Checking, acknowledging the results and reviewing quality in education received the highest mean score. For Acting, participating in the meeting in order to revise approach to Quality Assurance received the highest mean score. For Doing, planning an internal quality assurance by assigning period, budget and responsibilities received the highest mean score.Keywords: education quality assurance, administration, staff, Suan Sunandha Rajabhat University
Procedia PDF Downloads 3947193 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 707192 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3167191 Traffic Safety and Risk Assessment Model by Analysis of Questionnaire Survey: A Case Study of S. G. Highway, Ahmedabad, India
Authors: Abhijitsinh Gohil, Kaushal Wadhvaniya, Kuldipsinh Jadeja
Abstract:
Road Safety is a multi-sectoral and multi-dimensional issue. An effective model can assess the risk associated with highway safety. A questionnaire survey is very essential to identify the events or activities which are causing unsafe condition for traffic on an urban highway. A questionnaire of standard questions including vehicular, human and infrastructure characteristics can be made. Responses from the age wise group of road users can be taken on field. Each question or an event holds a specific risk weightage, which contributes in creating an inappropriate and unsafe flow of traffic. The probability of occurrence of an event can be calculated from the data collected from the road users. Finally, the risk score can be calculated by considering the risk factor and the probability of occurrence of individual event and addition of all risk score for the individual event will give the total risk score of a particular road. Standards for risk score can be made and total risk score can be compared with the standards. Thus road can be categorized based on risk associated and traffic safety on it. With this model, one can assess the need for traffic safety improvement on a given road, and qualitative data can be analysed.Keywords: probability of occurrence, questionnaire, risk factor, risk score
Procedia PDF Downloads 3387190 Prediction of CO2 Concentration in the Korea Train Express (KTX) Cabins
Authors: Yong-Il Lee, Do-Yeon Hwang, Won-Seog Jeong, Duckshin Park
Abstract:
Recently, because of the high-speed trains forced ventilation, it is important to control the ventilation. The ventilation is for controlling various contaminants, temperature, and humidity. The high-speed train route is straight to a destination having a high speed. And there are many mountainous areas in Korea. So, tunnel rate is higher then other country. KTX HVAC block off the outdoor air, when entering tunnel. So the high tunnel rate is an effect of ventilation in the KTX cabin. It is important to reduction rate in CO2 concentration prediction. To meet the air quality of the public transport vehicles recommend standards, the KTX cabin of CO2 concentration should be managed. In this study, the concentration change was predicted by CO2 prediction simulation in route to be opened.Keywords: CO2 prediction, KTX, ventilation, infrastructure and transportation engineering
Procedia PDF Downloads 5437189 Clinical Outcomes of Critically Ill Patients with Sepsis Receiving Extended and Standard Meropenem Infusion in Malaysian Hospitals
Authors: Fahmi Hassan, Noorizan Abdul Aziz, Yahaya Hassan, Hazlinda Abu Hassan
Abstract:
Sepsis incidence in critical care settings is a major problem in health care. Extended antibiotic infusion is thought to be superior to traditional dosing especially when treating critically ill patients with sepsis. We compared clinical outcomes of critically ill patients with sepsis receiving 30-minute meropenem infusion and three-hour meropenem infusion. A retrospective case-control study was conducted among septic patients treated with meropenem infusion in ICUs of three hospitals. Patients included in the study received either extended or standard meropenem infusion as per the practice of individual settings. Outcomes and clinical data were retrospectively collected from the electronic databases and patients’ files. A total of 108 patients received extended meropenem infusion while another 117 patients received standard meropenem infusion. Patients receiving the extended meropenem infusion were found to have a significantly lower shorter length of hospital and ICU stay. It was also found that among those receiving extended meropenem infusion, 54.7% (64/117) had a reduction of SAPS II score, while only 44% (48/108) of patients receiving standard meropenem infusion had reduced scores. This study will strengthen the evidence in using extended meropenem infusion as a standard practice in critical care settings. As this is the first study of its kind done in Malaysia, it proves that prolonged meropenem infusion may be beneficial to critically ill patients with sepsis. However, randomized clinical trials with large sample size should be carried out in local settings in order to minimize other confounders that may influence with the result of the study.Keywords: antibiotics, beta lactams, critical care, extended infusion, meropenem
Procedia PDF Downloads 408