Search results for: Weibull parameter
1952 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix
Procedia PDF Downloads 3581951 Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft
Authors: Arun Prasath Subramanian
Abstract:
The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness.Keywords: gas turbine blade, cooling technologies, internal cooling, pin-fin cooling, jet impingement cooling, rib turbulated cooling, metallic foam cooling
Procedia PDF Downloads 3201950 A Bayesian Parameter Identification Method for Thermorheological Complex Materials
Authors: Michael Anton Kraus, Miriam Schuster, Geralt Siebert, Jens Schneider
Abstract:
Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes.Keywords: bayesian parameter identification, generalized Maxwell model, linear viscoelasticity, thermorheological complex
Procedia PDF Downloads 2631949 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems
Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune
Abstract:
This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction
Procedia PDF Downloads 1461948 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 4101947 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 831946 Directed-Wald Test for Distinguishing Long Memory and Nonlinearity Time Series: Power and Size Simulation
Authors: Heri Kuswanto, Philipp Sibbertsen, Irhamah
Abstract:
A Wald type test to distinguish between long memory and ESTAR nonlinearity has been developed. The test uses a directed-Wald statistic to overcome the problem of restricted parameters under the alternative. The test is derived from a model specification i.e. allows the transition parameter to appear as a nuisance parameter in the transition function. A simulation study has been conducted and it indicates that the approach leads a test with good size and power properties to distinguish between stationary long memory and ESTAR.Keywords: directed-Wald test, ESTAR, long memory, distinguish
Procedia PDF Downloads 4821945 Parameters Estimation of Power Function Distribution Based on Selective Order Statistics
Authors: Moh'd Alodat
Abstract:
In this paper, we discuss the power function distribution and derive the maximum likelihood estimator of its parameter as well as the reliability parameter. We derive the large sample properties of the estimators based on the selective order statistic scheme. We conduct simulation studies to investigate the significance of the selective order statistic scheme in our setup and to compare the efficiency of the new proposed estimators.Keywords: fisher information, maximum likelihood estimator, power function distribution, ranked set sampling, selective order statistics sampling
Procedia PDF Downloads 4641944 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink
Authors: Bandari Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreementKeywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet
Procedia PDF Downloads 2751943 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 3781942 Prey-Predator Eco-Epidemiological Model with Nonlinear Transmission Disease
Authors: Qamar J. A. Khan, Fatma Ahmed Al Kharousi
Abstract:
A prey-predator eco-epidemiological model is studied where transmission of the disease between infected and uninfected prey is nonlinear. The interaction of the predator with infected and uninfected prey species depend on their numerical superiority. Harvesting of both uninfected and infected prey is considered. Stability analysis is carried out for equilibrium values. Using the parameter µ, the death rate of infected prey as a bifurcation parameter it is shown that Hopf bifurcation could occur. The theoretical results are compared with numerical results for different set of parameters.Keywords: bifurcation, optimal harvesting, predator, prey, stability
Procedia PDF Downloads 3021941 Frustration Measure for Dipolar Spin Ice and Spin Glass
Authors: Konstantin Nefedev, Petr Andriushchenko
Abstract:
Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.Keywords: frustrations, parameter of order, statistical physics, magnetism
Procedia PDF Downloads 1691940 Analyzing the Water Quality of Settling Pond after Revegetation at Ex-Mining Area
Authors: Iis Diatin, Yani Hadiroseyani, Muhammad Mujahid, Ahmad Teduh, Juang R. Matangaran
Abstract:
One of silica quarry managed by a mining company is located at Sukabumi District of West Java Province Indonesia with an area of approximately 70 hectares. Since 2013 this company stopped the mining activities. The company tries to restore the ecosystem post-mining with rehabilitation activities such as reclamation and revegetation of their ex-mining area. After three years planting the area the trees grown well. Not only planting some tree species but also some cover crop has covered the soil surface. There are two settling ponds located in the middle of the ex-mining area. Those settling pond were built in order to prevent the effect of acid mine drainage. Acid mine drainage (AMD) or the acidic water is created when sulphide minerals are exposed to air and water and through a natural chemical reaction produce sulphuric acid. AMD is the main pollutant at the open pit mining. The objective of the research was to analyze the effect of revegetation on water quality change at the settling pond. The physical and chemical of water quality parameter were measured and analysed at site and at the laboratory. Physical parameter such as temperature, turbidity and total organic matter were analyse. Also heavy metal and some other chemical parameter such as dissolved oxygen, alkalinity, pH, total ammonia nitrogen, nitrate and nitrite were analysed. The result showed that the acidity of first settling pond was higher than that of the second settling pond. Both settling pond water’s contained heavy metal. The turbidity and total organic matter were the parameter of water quality which become better after revegetation.Keywords: acid mine drainage, ex-mining area, revegetation, settling pond, water quality
Procedia PDF Downloads 3031939 A Flexible Pareto Distribution Using α-Power Transformation
Authors: Shumaila Ehtisham
Abstract:
In Statistical Distribution Theory, considering an additional parameter to classical distributions is a usual practice. In this study, a new distribution referred to as α-Power Pareto distribution is introduced by including an extra parameter. Several properties of the proposed distribution including explicit expressions for the moment generating function, mode, quantiles, entropies and order statistics are obtained. Unknown parameters have been estimated by using maximum likelihood estimation technique. Two real datasets have been considered to examine the usefulness of the proposed distribution. It has been observed that α-Power Pareto distribution outperforms while compared to different variants of Pareto distribution on the basis of model selection criteria.Keywords: α-power transformation, maximum likelihood estimation, moment generating function, Pareto distribution
Procedia PDF Downloads 2151938 Investigation of Optimal Parameter Settings in Super Duplex Stainless Steel Welding Welding
Authors: R. M. Chandima Ratnayake, Daniel Dyakov
Abstract:
Super steel materials play vital role in construction and fabrication of structural, piping and pipeline components. They enable to minimize the life cycle costs in assuring the integrity of onshore and offshore operating systems. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications play a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, the factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process play a vital role on the final joint performance. Hence, an experimental investigation has been performed using engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of verification experiment.Keywords: duplex stainless steel welding, engineering robust design, mathematical framework, optimal parameter settings
Procedia PDF Downloads 4161937 Sampled-Data Model Predictive Tracking Control for Mobile Robot
Authors: Wookyong Kwon, Sangmoon Lee
Abstract:
In this paper, a sampled-data model predictive tracking control method is presented for mobile robots which is modeled as constrained continuous-time linear parameter varying (LPV) systems. The presented sampled-data predictive controller is designed by linear matrix inequality approach. Based on the input delay approach, a controller design condition is derived by constructing a new Lyapunov function. Finally, a numerical example is given to demonstrate the effectiveness of the presented method.Keywords: model predictive control, sampled-data control, linear parameter varying systems, LPV
Procedia PDF Downloads 3101936 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability
Procedia PDF Downloads 2741935 Parameter Estimation for Contact Tracing in Graph-Based Models
Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar
Abstract:
We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference
Procedia PDF Downloads 781934 Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine
Authors: Dodi Ikhsanshaleh
Abstract:
When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plantKeywords: block foundation, dynamic load, lumped mass parameter
Procedia PDF Downloads 4901933 Epistemic Uncertainty Analysis of Queue with Vacations
Authors: Baya Takhedmit, Karim Abbas, Sofiane Ouazine
Abstract:
The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters.Keywords: epistemic uncertainty, M/G/1/N queue with vacations, non-parametric sensitivity analysis, Taylor series expansion
Procedia PDF Downloads 4331932 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer
Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang
Abstract:
In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction
Procedia PDF Downloads 2481931 Finite Element Analysis of a Dynamic Linear Crack Problem
Authors: Brian E. Usibe
Abstract:
This paper addresses the problem of a linear crack located in the middle of a homogeneous elastic media under normal tension-compression harmonic loading. The problem of deformation of the fractured media is solved using the direct finite element numerical procedure, including the analysis of the dynamic field variables of the problem. A finite element algorithm that satisfies the unilateral Signorini contact constraint is also presented for the solution of the contact interaction of the crack faces and how this accounts for the qualitative and quantitative changes in the solution when determining the dynamic fracture parameter.Keywords: harmonic loading, linear crack, fracture parameter, wave number, FEA, contact interaction
Procedia PDF Downloads 431930 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 891929 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan
Authors: Tasir Khan, Yejuan Wang
Abstract:
The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments
Procedia PDF Downloads 821928 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models
Authors: Azadeh Jafari, Robert G. Owens
Abstract:
In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics
Procedia PDF Downloads 3611927 Practical Challenges of Tunable Parameters in Matlab/Simulink Code Generation
Authors: Ebrahim Shayesteh, Nikolaos Styliaras, Alin George Raducu, Ozan Sahin, Daniel Pombo VáZquez, Jonas Funkquist, Sotirios Thanopoulos
Abstract:
One of the important requirements in many code generation projects is defining some of the model parameters tunable. This helps to update the model parameters without performing the code generation again. This paper studies the concept of embedded code generation by MATLAB/Simulink coder targeting the TwinCAT Simulink system. The generated runtime modules are then tested and deployed to the TwinCAT 3 engineering environment. However, defining the parameters tunable in MATLAB/Simulink code generation targeting TwinCAT is not very straightforward. This paper focuses on this subject and reviews some of the techniques tested here to make the parameters tunable in generated runtime modules. Three techniques are proposed for this purpose, including normal tunable parameters, callback functions, and mask subsystems. Moreover, some test Simulink models are developed and used to evaluate the results of proposed approaches. A brief summary of the study results is presented in the following. First of all, the parameters defined tunable and used in defining the values of other Simulink elements (e.g., gain value of a gain block) could be changed after the code generation and this value updating will affect the values of all elements defined based on the values of the tunable parameter. For instance, if parameter K=1 is defined as a tunable parameter in the code generation process and this parameter is used to gain a gain block in Simulink, the gain value for the gain block is equal to 1 in the gain block TwinCAT environment after the code generation. But, the value of K can be changed to a new value (e.g., K=2) in TwinCAT (without doing any new code generation in MATLAB). Then, the gain value of the gain block will change to 2. Secondly, adding a callback function in the form of “pre-load function,” “post-load function,” “start function,” and will not help to make the parameters tunable without performing a new code generation. This means that any MATLAB files should be run before performing the code generation. The parameters defined/calculated in this file will be used as fixed values in the generated code. Thus, adding these files as callback functions to the Simulink model will not make these parameters flexible since the MATLAB files will not be attached to the generated code. Therefore, to change the parameters defined/calculated in these files, the code generation should be done again. However, adding these files as callback functions forces MATLAB to run them before the code generation, and there is no need to define the parameters mentioned in these files separately. Finally, using a tunable parameter in defining/calculating the values of other parameters through the mask is an efficient method to change the value of the latter parameters after the code generation. For instance, if tunable parameter K is used in calculating the value of two other parameters K1 and K2 and, after the code generation, the value of K is updated in TwinCAT environment, the value of parameters K1 and K2 will also be updated (without any new code generation).Keywords: code generation, MATLAB, tunable parameters, TwinCAT
Procedia PDF Downloads 2281926 Kinetic Modelling of Drying Process of Jumbo Squid (Dosidicus Gigas) Slices Subjected to an Osmotic Pretreatment under High Pressure
Authors: Mario Perez-Won, Roberto Lemus-Mondaca, Constanza Olivares-Rivera, Fernanda Marin-Monardez
Abstract:
This research presents the simultaneous application of high hydrostatic pressure (HHP) and osmotic dehydration (DO) as a pretreatment to hot –air drying of jumbo squid (Dosidicus gigas) cubes. The drying time was reduced to 2 hours at 60ºC and 5 hours at 40°C as compared to the jumbo squid samples untreated. This one was due to osmotic pressure under high-pressure treatment where increased salt saturation what caused an increasing water loss. Thus, a more reduced time during convective drying was reached, and so water effective diffusion in drying would play an important role in this research. Different working conditions such as pressure (350-550 MPa), pressure time (5-10 min), salt concentration, NaCl (10 y 15%) and drying temperature (40-60ºC) were optimized according to kinetic parameters of each mathematical model. The models used for drying experimental curves were those corresponding to Weibull, Page and Logarithmic models, however, the latest one was the best fitted to the experimental data. The values for water effective diffusivity varied from 4.82 to 6.59x10-9 m2/s for the 16 curves (DO+HHP) whereas the control samples obtained a value of 1.76 and 5.16×10-9 m2/s, for 40 and 60°C, respectively. On the other hand, quality characteristics such as color, texture, non-enzymatic browning, water holding capacity (WHC) and rehydration capacity (RC) were assessed. The L* (lightness) color parameter increased, however, b * (yellowish) and a* (reddish) parameters decreased for the DO+HHP treated samples, indicating treatment prevents sample browning. The texture parameters such as hardness and elasticity decreased, but chewiness increased with treatment, which resulted in a product with a higher tenderness and less firmness compared to the untreated sample. Finally, WHC and RC values of the most treatments increased owing to a minor damage in tissue cellular compared to untreated samples. Therefore, a knowledge regarding to the drying kinetic as well as quality characteristics of dried jumbo squid samples subjected to a pretreatment of osmotic dehydration under high hydrostatic pressure is extremely important to an industrial level so that the drying process can be successful at different pretreatment conditions and/or variable processes.Keywords: diffusion coefficient, drying process, high pressure, jumbo squid, modelling, quality aspects
Procedia PDF Downloads 2461925 Breast Cancer Incidence Estimation in Castilla-La Mancha (CLM) from Mortality and Survival Data
Authors: C. Romero, R. Ortega, P. Sánchez-Camacho, P. Aguilar, V. Segur, J. Ruiz, G. Gutiérrez
Abstract:
Introduction: Breast cancer is a leading cause of death in CLM. (2.8% of all deaths in women and 13,8% of deaths from tumors in womens). It is the most tumor incidence in CLM region with 26.1% from all tumours, except nonmelanoma skin (Cancer Incidence in Five Continents, Volume X, IARC). Cancer registries are a good information source to estimate cancer incidence, however the data are usually available with a lag which makes difficult their use for health managers. By contrast, mortality and survival statistics have less delay. In order to serve for resource planning and responding to this problem, a method is presented to estimate the incidence of mortality and survival data. Objectives: To estimate the incidence of breast cancer by age group in CLM in the period 1991-2013. Comparing the data obtained from the model with current incidence data. Sources: Annual number of women by single ages (National Statistics Institute). Annual number of deaths by all causes and breast cancer. (Mortality Registry CLM). The Breast cancer relative survival probability. (EUROCARE, Spanish registries data). Methods: A Weibull Parametric survival model from EUROCARE data is obtained. From the model of survival, the population and population data, Mortality and Incidence Analysis MODel (MIAMOD) regression model is obtained to estimate the incidence of cancer by age (1991-2013). Results: The resulting model is: Ix,t = Logit [const + age1*x + age2*x2 + coh1*(t – x) + coh2*(t-x)2] Where: Ix,t is the incidence at age x in the period (year) t; the value of the parameter estimates is: const (constant term in the model) = -7.03; age1 = 3.31; age2 = -1.10; coh1 = 0.61 and coh2 = -0.12. It is estimated that in 1991 were diagnosed in CLM 662 cases of breast cancer (81.51 per 100,000 women). An estimated 1,152 cases (112.41 per 100,000 women) were diagnosed in 2013, representing an increase of 40.7% in gross incidence rate (1.9% per year). The annual average increases in incidence by age were: 2.07% in women aged 25-44 years, 1.01% (45-54 years), 1.11% (55-64 years) and 1.24% (65-74 years). Cancer registries in Spain that send data to IARC declared 2003-2007 the average annual incidence rate of 98.6 cases per 100,000 women. Our model can obtain an incidence of 100.7 cases per 100,000 women. Conclusions: A sharp and steady increase in the incidence of breast cancer in the period 1991-2013 is observed. The increase was seen in all age groups considered, although it seems more pronounced in young women (25-44 years). With this method you can get a good estimation of the incidence.Keywords: breast cancer, incidence, cancer registries, castilla-la mancha
Procedia PDF Downloads 3111924 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation
Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale
Abstract:
It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition
Procedia PDF Downloads 1691923 Fuzzy Rules Based Improved BEENISH Protocol for Wireless Sensor Networks
Authors: Rishabh Sharma
Abstract:
The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.Keywords: wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system
Procedia PDF Downloads 106