Search results for: Swin transformer
64 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 5263 Design Considerations on Cathodic Protection for X65 Steel Tank Containing Fresh Water
Authors: A. M. Al-Sabagh, M. A. Deyab, M. N. Kroush
Abstract:
The present study focused on critical and detailed approach for using aluminum electrode as impressed current anode for cathodic protection of X65 steel tank containing fresh water. The impressed current design calculation showed 0.6 A of current demand and voltage of 0.33 V required to adequately protect the X65 steel tank with internal surface area of 421 m². We used here one transformer rectifier with current and voltage output of 25 A and 25 V, respectively. The data showed that the potentials ranged from -0.474 to -0.509 V (vs. Cu/CuSO₄), prior to the application of cathodic protection. When the potential was measured 1 h after the application of cathodic protection, the potential values showed considerable shift within protection range (-0.950 V vs. Cu/CuSO₄). The results confirmed that aluminum anode can be used in freshwater applications with high efficiency (current capacity) and low consumption rate.Keywords: cathodic protection, aluminum, steel, fresh water
Procedia PDF Downloads 15462 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India
Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh
Abstract:
Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.Keywords: 3D analysis, Himalayan geology, shear zone, underground power house
Procedia PDF Downloads 8861 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway
Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi
Abstract:
Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig
Procedia PDF Downloads 12960 A New Resonance Solution to Suppress the Voltage Stresses in the Forward Topology Used in a Switch Mode Power Supply
Authors: Maamar Latroch, Mohamed Bourahla
Abstract:
Forward topology used in switch mode power supply (SMPS) is one of the most famous configuration feeding DC systems such as telecommunication systems and other specific applications where the galvanic isolation is required. This configuration benefits of the high frequency feature of the transformer to provide a small size and light weight of the over all system. However, the stresses existing on the power switch during an ON/OFF commutation limit the transmitted power to the DC load. This paper investigates the main causes of the stresses in voltage existing during a commutation cycle and suggest a low cost solution that eliminates the overvoltage. As a result, this configuration will yield the possibility of the use of this configuration in higher power applications. Simulation results will show the efficiency of the presented method.Keywords: switch mode power supply, forward topology, resonance topology, high frequency commutation
Procedia PDF Downloads 43759 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present
Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Philippe Blanchard, Simon Richir
Abstract:
Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving
Procedia PDF Downloads 7358 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 20357 Generating Music with More Refined Emotions
Authors: Shao-Di Feng, Von-Wun Soo
Abstract:
To generate symbolic music with specific emotions is a challenging task due to symbolic music datasets that have emotion labels are scarce and incomplete. This research aims to generate more refined emotions based on the training datasets that are only labeled with four quadrants in Russel’s 2D emotion model. We focus on the theory of Music Fadernet and map arousal and valence to the low-level attributes, and build a symbolic music generation model by combining transformer and GM-VAE. We adopt an in-attention mechanism for the model and improve it by allowing modulation by conditional information. And we show the music generation model could control the generation of music according to the emotions specified by users in terms of high-level linguistic expression and by manipulating their corresponding low-level musical attributes. Finally, we evaluate the model performance using a pre-trained emotion classifier against a pop piano midi dataset called EMOPIA, and by subjective listening evaluation, we demonstrate that the model could generate music with more refined emotions correctly.Keywords: music generation, music emotion controlling, deep learning, semi-supervised learning
Procedia PDF Downloads 8956 Power Quality Issues: Power Supply Interruptions as Key Constraint to Development in Ekiti State, Nigeria
Authors: Oluwatosin S. Adeoye
Abstract:
The power quality issues in the world today are critical to the development of different nations. Prosperity of each nation depends on availability of constant power supply. Constant power supply is a major challenge in Africa particularly in Nigeria where the generated power is than thirty percent of the required power. The metrics of power quality are voltage dip, flickers, spikes, harmonics and interruptions. The level of interruptions in Ekiti State was examined through the investigation of the causes of power interruptions in the State. The method used was the collection of data from the Distribution Company, assessment through simple programming as a command for plotting the graphs through the use of MATLAB 2015 depicting the behavioural pattern of the interruption for a period of six months in 2016. The result shows that the interrelationship between the interruptions and development. Recommendations were suggested with the objective of solving the problems being set up by interruptions in the State and these include installation of reactors, automatic voltage regulators and effective tap changing system on the lines, busses and transformer substation respectively.Keywords: development, frequency, interruption, power, quality
Procedia PDF Downloads 16255 Single-Inductor Multi-Output Converters with Four-Level Output Voltages
Authors: Yasunori Kobori, Murong Li, Feng Zhao, Shu Wu, Nobukazu Takai, Haruo Kobayashi
Abstract:
This paper proposes an electrolytic capacitor-less transformer-less AC-DC LED driver with a current ripple canceller. The proposed LED driver includes a diode bridge, a buck-boost converter, a negative feedback controller and a current ripple cancellation circuit. The current ripple canceller works as a bi-directional current converter using a sub-inductor, a sub-capacitor and two switches for controlling current flow. LED voltage is controlled in order to regulate LED current by the negative feedback controller using a current sense resistor. There are two capacitors with capacitance of 5 uF. We describe circuit topologies, operation principles and simulation results for our proposed circuit. In addition, we show the line regulation for input voltage variation from 85V to 130V. The output voltage ripple is 2V and the LED current ripple is 65 mA which is less than 20% of the average of LED current of 350 mA.Keywords: DC-DC buck converter, four-level output voltage, single inductor multi output (SIMO), switching converter
Procedia PDF Downloads 54854 Maximizing the Output of Solar Photovoltaic System
Authors: Vipresh Mehta , Aman Abhishek, Jatin Batra, Gautam Iyer
Abstract:
Huge amount of solar radiation reaching the earth can be harnessed to provide electricity through Photo voltaic (PV) panels. The solar PV is an exciting technology but suffers from low efficiency. A study on low efficiency in multi MW solar power plants reveals that the electric yield of the PV modules is reduced due to reflection of the irradiation from the sun and when a module’s temperature is elevated, as there is decrease in the voltage and efficiency. We intend to alter the structure of the PV system, We also intend to improve the efficiency of the Solar Photo Voltaic Panels by active cooling to reduce the temperature losses considerably and decrease reflection losses to some extent. Reflectors/concentrators and anti-reflecting coatings are also used to intensify the amount of output produced from the system. Apart from this, transformer-less Grid-tied Inverter. And also, a T-LCL immitance circuit is used to reduce the harmonics and produce a constant output from the entire system.Keywords: PV panels, efficiency improvement, active cooling, quantum dots, organic-inorganic hybrid 3D panel, ground water tunneling
Procedia PDF Downloads 77253 Named Entity Recognition System for Tigrinya Language
Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager
Abstract:
The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF
Procedia PDF Downloads 13052 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet
Authors: Ma Lei-Lei, Zhou You
Abstract:
Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.Keywords: convolutional neural network, transformer, feature pyramid networks, loss function
Procedia PDF Downloads 9751 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator
Authors: A. Hassannia, S. Ramezani
Abstract:
The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.Keywords: coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator
Procedia PDF Downloads 17450 Development and Metrological Validation of a Control Strategy in Embedded Island Grids Using Battery-Hybrid-Systems
Authors: L. Wilkening, G. Ackermann, T. T. Do
Abstract:
This article presents an approach for stand-alone and grid-connected mode of a German low-voltage grid with high share of photovoltaic. For this purpose, suitable dynamic system models have been developed. This allows the simulation of dynamic events in very small time ranges and the operation management over longer periods of time. Using these simulations, suitable control parameters could be identified, and their effects on the grid can be analyzed. In order to validate the simulation results, a LV-grid test bench has been implemented at the University of Technology Hamburg. The developed control strategies are to be validated using real inverters, generators and different realistic loads. It is shown that a battery hybrid system installed next to a voltage transformer makes it possible to operate the LV-grid in stand-alone mode without using additional information and communication technology and without intervention in the existing grid units. By simulating critical days of the year, suitable control parameters for stable stand-alone operations are determined and set point specifications for different control strategies are defined.Keywords: battery, e-mobility, photovoltaic, smart grid
Procedia PDF Downloads 14349 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education
Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim
Abstract:
The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.Keywords: corona discharge, Tesla coil, high voltage application, high voltage education
Procedia PDF Downloads 32848 Concept, Design and Implementation of Power System Component Simulator Based on Thyristor Controlled Transformer and Power Converter
Authors: B. Kędra, R. Małkowski
Abstract:
This paper presents information on Power System Component Simulator – a device designed for LINTE^2 laboratory owned by Gdansk University of Technology in Poland. In this paper, we first provide an introductory information on the Power System Component Simulator and its capabilities. Then, the concept of the unit is presented. Requirements for the unit are described as well as proposed and introduced functions are listed. Implementation details are given. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Lastly, the results of experiments performed using Power System Component Simulator are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area.Keywords: power converter, Simulink Real-Time, Matlab, load, tap controller
Procedia PDF Downloads 24247 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 23246 Theory and Practice of Wavelets in Signal Processing
Authors: Jalal Karam
Abstract:
The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression
Procedia PDF Downloads 41645 Protection System Mis-operations: Fundamental Concepts and Learning from Indian Power Sector
Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh
Abstract:
Protection system is an essential feature of the electrical system which helps in detection and removal of faults. Protection system consists of many subsystems like relays, circuit breakers, instrument transformers, auxiliary DC system, auxiliary relays etc. Although the fundamental protective and relay operating concepts are similar throughout the world, there are very significant differences in their implementation. These differences arise through different traditions, operating philosophies, experiences and national standards. Protection system mis-operation due to problem in one or more of its subsystem or inadequate knowledge of numerical relay settings and configuration are very common throughout the world. Protection system mis-operation leads to unstable and unreliable grid operation. In this paper we will discuss about the fundamental concepts of protective relaying and the reasons for protection system mis-operation due to one or more of its subsystems. Many real-world case studies of protection system mis-operation from Indian power sector are discussed in detail in this paper.Keywords: auxiliary trip relays, bus zone, check zone, CT saturation, dead zone protection, DC ground faults, DMT, DR, end fault protection, instrument transformer, SOTF, STUB
Procedia PDF Downloads 7644 Text2Time: Transformer-Based Article Time Period Prediction
Authors: Karthick Prasad Gunasekaran, B. Chase Babrich, Saurabh Shirodkar, Hee Hwang
Abstract:
Construction preparation is crucial for the success of a construction project. By involving project participants early in the construction phase, project managers can plan ahead and resolve issues early, resulting in project success and satisfaction. This study uses quantitative data from construction management projects to determine the relationship between the pre-construction phase, construction schedule, and customer satisfaction. This study examined a total of 65 construction projects and 93 clients per job to (a) identify the relationship between the pre-construction phase and program reduction and (b) the pre-construction phase and customer retention. Based on a quantitative analysis, this study found a negative correlation between pre-construction status and project schedule in 65 construction projects. This finding means that the more preparatory work done on a particular project, the shorter the total construction time. The Net Promoter Score of 93 clients from 65 projects was then used to determine the relationship between construction preparation and client satisfaction. The pre-construction status and the projects were further analyzed, and a positive correlation between them was found. This shows that customers are happier with projects with a higher ready-to-build ratio than projects with less ready-to-build.Keywords: NLP, BERT, LLM, deep learning, classification
Procedia PDF Downloads 10443 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 15342 Effect of Gel Concentration on Physical Properties of an Electrochromic Device
Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos
Abstract:
In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer
Procedia PDF Downloads 13841 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 11440 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion
Authors: Andrey Khalov
Abstract:
The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER
Procedia PDF Downloads 1539 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM
Authors: Gaddafi Sani Shehu, Tankut Yalcınoz, Abdullahi Bala Kunya
Abstract:
Multilevel inverters such as flying capacitor, diode-clamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.Keywords: cascaded H-bridge multilevel inverter, power quality, selective harmonic elimination
Procedia PDF Downloads 41838 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network
Authors: Masoud Safarishaal
Abstract:
Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network
Procedia PDF Downloads 12337 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis
Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu
Abstract:
Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.Keywords: GPT, phantom-less QCT, large language model, osteoporosis
Procedia PDF Downloads 7136 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph
Procedia PDF Downloads 1635 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 123