Search results for: human toxicity potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18370

Search results for: human toxicity potential

460 Effectiveness of Participatory Ergonomic Education on Pain Due to Work Related Musculoskeletal Disorders in Food Processing Industrial Workers

Authors: Salima Bijapuri, Shweta Bhatbolan, Sejalben Patel

Abstract:

Ergonomics concerns the fitting of the environment and the equipment to the worker. Ergonomic principles can be employed in different dimensions of the industrial sector. Participation of all the stakeholders is the key to the formulation of a multifaceted and comprehensive approach to lessen the burden of occupational hazards. Taking responsibility for one’s own work activities by acquiring sufficient knowledge and potential to influence the practices and outcomes is the basis of participatory ergonomics and even hastens the process to identify workplace hazards. The study was aimed to check how participatory ergonomics can be effective in the management of work-related musculoskeletal disorders. Method: A mega kitchen was identified in a twin city of Karnataka, India. Consent was taken, and the screening of workers was done using observation methods. Kitchen work was structured to include different tasks, which included preparation, cooking, distributing, and serving food, packing food to be delivered to schools, dishwashing, cleaning and maintenance of kitchen and equipment, and receiving and storing raw material. Total 100 workers attended the education session on participatory ergonomics and its role in implementing the correct ergonomic practices, thus preventing WRMSDs. Demographic details and baseline data on related musculoskeletal pain and discomfort were collected using the Nordic pain questionnaire and VAS score pre- and post-study. Monthly visits were made, and the education sessions were reiterated on each visit, thus reminding, correcting, and problem-solving of each worker. After 9 months with a total of 4 such education session, the post education data was collected. The software SPSS 20 was used to analyse the collected data. Results: The majority of them (78%), depending on the availability and feasibility, participated in the intervention workshops were arranged four times. The average age of the participants was 39 years. The percentage of female participants was 79.49%, and 20.51% of participants comprised of males. The Nordic Musculoskeletal Questionnaire (NMQ) showed that knee pain was the most commonly reported complaint (62%) from the last 12 months with a mean VAS of 6.27, followed by low back pain. Post intervention, the mean VAS Score was reduced significantly to 2.38. The comparison of pre-post scores was made using Wilcoxon matched pairs test. Upon enquiring, it was found that, the participants learned the importance of applying ergonomics at their workplace which inturn was beneficial for them to handle any problems arising at their workplace on their own with self confidence. Conclusion: The participatory ergonomics proved effective with workers of mega kitchen, and it is a feasible and practical approach. The advantage of the given study area was that it had a sophisticated and ergonomically designed workstation; thus it was the lack of education and practical knowledge to use these stations was of utmost need. There was a significant reduction in VAS scores with the implementation of changes in the working style, and the knowledge of ergonomics helped to decrease physical load and improve musculoskeletal health.

Keywords: ergonomic awareness session, mega kitchen, participatory ergonomics, work related musculoskeletal disorders

Procedia PDF Downloads 127
459 The Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.

Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials

Procedia PDF Downloads 55
458 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 55
457 Supporting a Moral Growth Mindset Among College Students

Authors: Kate Allman, Heather Maranges, Elise Dykhuis

Abstract:

Moral Growth Mindset (MGM) is the belief that one has the capacity to become a more moral person, as opposed to a fixed conception of one’s moral ability and capacity (Han et al., 2018). Building from Dweck’s work in incremental implicit theories of intelligence (2008), Moral Growth Mindset (Han et al., 2020) extends growth mindsets into the moral dimension. The concept of MGM has the potential to help researchers understand how both mindsets and interventions can impact character development, and it has even been shown to have connections to voluntary service engagement (Han et al., 2018). Understanding the contexts in which MGM might be cultivated could help to promote the further cultivation of character, in addition to prosocial behaviors like service engagement, which may, in turn, promote larger scale engagement in social justice-oriented thoughts, feelings, and behaviors. In particular, college may be a place to intentionally cultivate a growth mindset toward moral capacities, given the unique developmental and maturational components of the college experience, including contextual opportunity (Lapsley & Narvaez, 2006) and independence requiring the constant consideration, revision, and internalization of personal values (Lapsley & Woodbury, 2016). In a semester-long, quasi-experimental study, we examined the impact of a pedagogical approach designed to cultivate college student character development on participants’ MGM. With an intervention (n=69) and a control group (n=97; Pre-course: 27% Men; 66% Women; 68% White; 18% Asian; 2% Black; <1% Hispanic/Latino), we investigated whether college courses that intentionally incorporate character education pedagogy (Lamb, Brant, Brooks, 2021) affect a variety of psychosocial variables associated with moral thoughts, feelings, identity, and behavior (e.g. moral growth mindset, honesty, compassion, etc.). The intervention group consisted of 69 undergraduate students (Pre-course: 40% Men; 52% Women; 68% White; 10.5% Black; 7.4% Asian; 4.2% Hispanic/Latino) that voluntarily enrolled in five undergraduate courses that encouraged students to engage with key concepts and methods of character development through the application of research-based strategies and personal reflection on goals and experiences. Moral Growth Mindset was measured using the four-item Moral Growth Mindset scale (Han et al., 2020), with items such as You can improve your basic morals and character considerably on a six-point Likert scale from 1 (strongly disagree) to 6 (strongly agree). Higher scores of MGM indicate a stronger belief that one can become a more moral person with personal effort. Reliability at Time 1 was Cronbach’s ɑ= .833, and at Time 2 Cronbach’s ɑ= .772. An Analysis of Covariance (ANCOVA) was conducted to explore whether post-course MGM scores were different between the intervention and control when controlling for pre-course MGM scores. The ANCOVA indicated significant differences in MGM between groups post-course, F(1,163) = 8.073, p = .005, R² = .11, where descriptive statistics indicate that intervention scores were higher than the control group at post-course. Results indicate that intentional character development pedagogy can be leveraged to support the development of Moral Growth Mindset and related capacities in undergraduate settings.

Keywords: moral personality, character education, incremental theories of personality, growth mindset

Procedia PDF Downloads 133
456 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa

Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak

Abstract:

Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.

Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 189
455 Mobile App versus Website: A Comparative Eye-Tracking Case Study of Topshop

Authors: Zofija Tupikovskaja-Omovie, David Tyler, Sam Dhanapala, Steve Hayes

Abstract:

The UK is leading in online retail and mobile adoption. However, there is a dearth of information relating to mobile apparel retail, and developing an understanding about consumer browsing and purchase behavior in m-retail channel would provide apparel marketers, mobile website and app developers with the necessary understanding of consumers’ needs. Despite the rapid growth of mobile retail businesses, no published study has examined shopping behaviour on fashion mobile websites and apps. A mixed method approach helped to understand why fashion consumers prefer websites on mobile devices, when mobile apps are also available. The following research methods were employed: survey, eye-tracking experiments, observation, and interview with retrospective think aloud. The mobile gaze tracking device by SensoMotoric Instruments was used to understand frustrations in navigation and other issues facing consumers in mobile channel. This method helped to validate and compliment other traditional user-testing approaches in order to optimize user experience and enhance the development of mobile retail channel. The study involved eight participants - females aged 18 to 35 years old, who are existing mobile shoppers. The participants used the Topshop mobile app and website on a smart phone to complete a task according to a specified scenario leading to a purchase. The comparative study was based on: duration and time spent at different stages of the shopping journey, number of steps involved and product pages visited, search approaches used, layout and visual clues, as well as consumer perceptions and expectations. The results from the data analysis show significant differences in consumer behaviour when using a mobile app or website on a smart phone. Moreover, two types of problems were identified, namely technical issues and human errors. Having a mobile app does not guarantee success in satisfying mobile fashion consumers. The differences in the layout and visual clues seem to influence the overall shopping experience on a smart phone. The layout of search results on the website was different from the mobile app. Therefore, participants, in most cases, behaved differently on different platforms. The number of product pages visited on the mobile app was triple the number visited on the website due to a limited visibility of products in the search results. Although, the data on traffic trends held by retailers to date, including retail sector breakdowns for visits and views, data on device splits and duration, might seem a valuable source of information, it cannot explain why consumers visit many product pages, stay longer on the website or mobile app, or abandon the basket. A comprehensive list of pros and cons was developed by highlighting issues for website and mobile app, and recommendations provided. The findings suggest that fashion retailers need to be aware of actual consumers’ behaviour on the mobile channel and their expectations in order to offer a seamless shopping experience. Added to which is the challenge of retaining existing and acquiring new customers. There seem to be differences in the way fashion consumers search and shop on mobile, which need to be explored in further studies.

Keywords: consumer behavior, eye-tracking technology, fashion retail, mobile app, m-retail, smart phones, topshop, user experience, website

Procedia PDF Downloads 449
454 Maintaining Energy Security in Natural Gas Pipeline Operations by Empowering Process Safety Principles Through Alarm Management Applications

Authors: Huseyin Sinan Gunesli

Abstract:

Process Safety Management is a disciplined framework for managing the integrity of systems and processes that handle hazardous substances. It relies on good design principles, well-implemented automation systems, and operating and maintenance practices. Alarm Management Systems play a critically important role in the safe and efficient operation of modern industrial plants. In that respect, Alarm Management is one of the critical factors feeding the safe operations of the plants in the manner of applying effective process safety principles. Trans Anatolian Natural Gas Pipeline (TANAP) is part of the Southern Gas Corridor, which extends from the Caspian Sea to Italy. TANAP transports Natural Gas from the Shah Deniz gas field of Azerbaijan, and possibly from other neighboring countries, to Turkey and through Trans Adriatic Pipeline (TAP) Pipeline to Europe. TANAP plays a crucial role in maintaining Energy Security for the region and Europe. In that respect, the application of Process Safety principles is vital to deliver safe, reliable and efficient Natural Gas delivery to Shippers both in the region and Europe. Effective Alarm Management is one of those Process Safety principles which feeds safe operations of the TANAP pipeline. Alarm Philosophy was designed and implemented in TANAP Pipeline according to the relevant standards. However, it is essential to manage the alarms received in the control room effectively to maintain safe operations. In that respect, TANAP has commenced Alarm Management & Rationalization program as of February 2022 after transferring to Plateau Regime, reaching the design parameters. While Alarm Rationalization started, there were more than circa 2300 alarms received per hour from one of the compressor stations. After applying alarm management principles such as reviewing and removal of bad actors, standing, stale, chattering, fleeting alarms, comprehensive review and revision of alarm set points through a change management principle, conducting alarm audits/design verification and etc., it has been achieved to reduce down to circa 40 alarms per hour. After the successful implementation of alarm management principles as specified above, the number of alarms has been reduced to industry standards. That significantly improved operator vigilance to focus on mainly important and critical alarms to avoid any excursion beyond safe operating limits leading to any potential process safety events. Following the ‟What Gets Measured, Gets Managed” principle, TANAP has identified key Performance Indicators (KPIs) to manage Process Safety principles effectively, where Alarm Management has formed one of the key parameters of those KPIs. However, review and analysis of the alarms were performed manually. Without utilizing Alarm Management Software, achieving full compliance with international standards is almost infeasible. In that respect, TANAP has started using one of the industry-wide known Alarm Management Applications to maintain full review and analysis of alarms and define actions as required. That actually significantly empowered TANAP’s process safety principles in terms of Alarm Management.

Keywords: process safety principles, energy security, natural gas pipeline operations, alarm rationalization, alarm management, alarm management application

Procedia PDF Downloads 88
453 Multi-Dimensional Experience of Processing Textual and Visual Information: Case Study of Allocations to Places in the Mind’s Eye Based on Individual’s Semantic Knowledge Base

Authors: Joanna Wielochowska, Aneta Wielochowska

Abstract:

Whilst the relationship between scientific areas such as cognitive psychology, neurobiology and philosophy of mind has been emphasized in recent decades of scientific research, concepts and discoveries made in both fields overlap and complement each other in their quest for answers to similar questions. The object of the following case study is to describe, analyze and illustrate the nature and characteristics of a certain cognitive experience which appears to display features of synaesthesia, or rather high-level synaesthesia (ideasthesia). The following research has been conducted on the subject of two authors, monozygotic twins (both polysynaesthetes) experiencing involuntary associations of identical nature. Authors made attempts to identify which cognitive and conceptual dependencies may guide this experience. Operating on self-introduced nomenclature, the described phenomenon- multi-dimensional processing of textual and visual information- aims to define a relationship that involuntarily and immediately couples the content introduced by means of text or image a sensation of appearing in a certain place in the mind’s eye. More precisely: (I) defining a concept introduced by means of textual content during activity of reading or writing, or (II) defining a concept introduced by means of visual content during activity of looking at image(s) with simultaneous sensation of being allocated to a given place in the mind’s eye. A place can be then defined as a cognitive representation of a certain concept. During the activity of processing information, a person has an immediate and involuntary feel of appearing in a certain place themselves, just like a character of a story, ‘observing’ a venue or a scenery from one or more perspectives and angles. That forms a unique and unified experience, constituting a background mental landscape of text or image being looked at. We came to a conclusion that semantic allocations to a given place could be divided and classified into the categories and subcategories and are naturally linked with an individual’s semantic knowledge-base. A place can be defined as a representation one’s unique idea of a given concept that has been established in their semantic knowledge base. A multi-level structure of selectivity of places in the mind’s eye, as a reaction to a given information (one stimuli), draws comparisons to structures and patterns found in botany. Double-flowered varieties of flowers and a whorl system (arrangement) which is characteristic to components of some flower species were given as an illustrative example. A composition of petals that fan out from one single point and wrap around a stem inspired an idea that, just like in nature, in philosophy of mind there are patterns driven by the logic specific to a given phenomenon. The study intertwines terms perceived through the philosophical lens, such as definition of meaning, subjectivity of meaning, mental atmosphere of places, and others. Analysis of this rare experience aims to contribute to constantly developing theoretical framework of the philosophy of mind and influence the way human semantic knowledge base and processing given content in terms of distinguishing between information and meaning is researched.

Keywords: information and meaning, information processing, mental atmosphere of places, patterns in nature, philosophy of mind, selectivity, semantic knowledge base, senses, synaesthesia

Procedia PDF Downloads 111
452 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 79
451 A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure

Authors: Sara Saboonian, Pierre Filion

Abstract:

The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential.

Keywords: ecosystem services, green infrastructure, intensification, planning

Procedia PDF Downloads 341
450 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 357
449 Sustainable Marine Tourism: Opinion and Segmentation of Italian Generation Z

Authors: M. Bredice, M. B. Forleo, L. Quici

Abstract:

Coastal tourism is currently facing huge challenges on how to balance environmental problems and tourist activities. Recent literature shows a growing interest in the issue of sustainable tourism from a so-called civilized tourists’ perspective by investigating opinions, perceptions, and behaviors. This study investigates the opinions of youth on what makes them responsible tourists and the ability of coastal marine areas to support tourism in future scenarios. A sample of 778 Italians attending the last year of high school was interviewed. Descriptive statistics, tests, and cluster analyses are applied to highlight the distribution of opinions among youth, detect significant differences based on demographic characteristics, and make segmentation of the different profiles based on students’ opinions and behaviors. Preliminary results show that students are largely convinced (62%) that by 2050 the quality of coastal environments could limit seaside tourism, while 10% of them believe that the problem can be solved simply by changing the tourist destination. Besides the cost of the holiday, the most relevant aspect respondents consider when choosing a marine destination is the presence of tourist attractions followed by the quality of the marine-coastal environment, the specificity of the local gastronomy and cultural traditions, and finally, the activities offered to guests such as sports and events. The reduction of waste and lower air emissions are considered the most important environmental areas in which marine-coastal tourism activities can contribute to preserving the quality of seas and coasts. Areas in which, as a tourist, they believe possible to give a personal contribution were (responses “very much” and “somewhat”); do not throw litter in the sea and on the beach (84%), do not buy single-use plastic products (66%), do not use soap or shampoo when showering in beaches (53%), do not have bonfires (47%), do not damage dunes (46%), and do not remove natural materials (e.g., sand, shells) from the beach (46%). About 6% of the sample stated that they were not interested in contributing to the aforementioned activities, while another 7% replied that they could not contribute at all. Finally, 80% of the sample has never participated in voluntary environmental initiatives or citizen science projects; moreover, about 64% of the students have never participated in events organized by environmental associations in marine or coastal areas. Regarding the test analysis -based on Kruskal-Wallis and Mann and Whitney tests - gender, region, and studying area of students reveals significance in terms of variables expressing knowledge and interest in sustainability topics and sustainable tourism behaviors. The classification of the education field is significant for a great number of variables, among which those related to several sustainable behaviors that respondents declare to be able to contribute as tourists. The ongoing cluster analysis will reveal different profiles in the sample and relevant variables. Based on preliminary results, implications are envisaged in the fields of education, policy, and business strategies for sustainable scenarios. Under these perspectives, the study has the potential to contribute to the conference debate about marine and coastal sustainable development and management.

Keywords: cluster analysis, education, knowledge, young people

Procedia PDF Downloads 67
448 A Textile-Based Scaffold for Skin Replacements

Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel

Abstract:

The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.

Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization

Procedia PDF Downloads 245
447 Eco-City Planning and Urban Design in Lagos, Nigeria: Recent Innovations, Trends, Concerns, Challenges, and Solutions

Authors: Dahunsi Michael Oluseyi

Abstract:

This paper aims to extensively examine eco-city planning and urban design in Lagos, Nigeria. It will delve into the city's developments, challenges, and potential solutions to offer insights for sustainable urban growth within the rapidly expanding urban landscape. The research will scrutinize recent innovations, emerging trends, and practical remedies to promote ecological sustainability within an urban framework. It will encompass a more in-depth review of current literature, case studies, and qualitative analyses, thereby augmenting the depth and breadth of the research. The objectives are to assess the current eco-city planning initiatives and urban design trends in Lagos, Nigeria, considering the city's unique characteristics and challenges. To identify and analyze the challenges encountered during the implementation of eco-friendly urban developments in Lagos, to explore and evaluate the innovative and practical solutions that are implemented to promote sustainability within the city, to provide comprehensive insights and actionable recommendations for policymakers, urban planners, and other stakeholders involved in sustainable urban development in Lagos, the rapid urbanization of Lagos has brought forth a myriad of challenges, including a burgeoning population, inadequate infrastructure, waste management issues, and environmental pollution. Eco-city planning has emerged as a promising approach to addressing these obstacles, striving to create urban spaces that are more habitable, resource-efficient, and environmentally friendly. This research holds substantial importance in exploring the application of eco-city planning principles within a megacity like Lagos. Analyzing recent innovations, trends, concerns, challenges, and solutions provides invaluable insights for policymakers, urban planners, and stakeholders dedicated to fostering sustainable urban development. The methodologies employed in this research are structured to embrace a multifaceted and intricate approach, aiming to facilitate a comprehensive understanding of the complexities inherent in eco-city planning and urban design in Lagos, Nigeria. This methodological framework is designed to encompass various diverse strategies and analytical tools to effectively capture the multidimensional aspects of sustainable urban development. It involves an in-depth analysis of academic publications, governmental reports, and urban planning documents to highlight global eco-city planning trends and gather Lagos-specific insights through a detailed exploration of eco-friendly initiatives and projects in Lagos to evaluate successes, challenges, and strategies for addressing environmental concerns by engaging key stakeholders, including urban planners, policymakers, environmental experts, and residents, to collect firsthand perspectives, concerns, and insights. Also, a thorough analysis will be carried out on data collected from literature reviews, case studies, interviews, and surveys used to extract prevalent patterns, challenges, and innovative solutions from diverse sources. This study aims to contribute to the discourse on sustainable urban development by offering a comprehensive analysis of eco-city planning in Lagos and providing practical recommendations for a more sustainable urban future.

Keywords: eco-friendly, innovation, sustainability, stakeholders

Procedia PDF Downloads 51
446 Extended Knowledge Exchange with Industrial Partners: A Case Study

Authors: C. Fortin, D. Tokmeninova, O. Ushakova

Abstract:

Among 500 Russian universities Skolkovo Institute of Science and Technology (Skoltech) is one of the youngest (established in 2011), quite small and vastly international, comprising 20 percent of international students and 70 percent of faculty with significant academic experience at top-100 universities (QS, THE). The institute has emerged from close collaboration with MIT and leading Russian universities. Skoltech is an entirely English speaking environment. Skoltech curriculum plans of ten Master programs are based on the CDIO learning outcomes model. However, despite the Institute’s unique focus on industrial innovations and startups, one of the main challenges has become an evident large proportion of nearly half of MSc graduates entering PhD programs at Skoltech or other universities rather than industry or entrepreneurship. In order to increase the share of students joining the industrial sector after graduation, Skoltech started implementing a number of unique practices with a focus on employers’ expectations incorporated into the curriculum redesign. In this sense, extended knowledge exchange with industrial partners via collaboration in learning activities, industrial projects and assessments became essential for students’ headway into industrial and entrepreneurship pathways. Current academic curriculum includes the following types of components based on extended knowledge exchange with industrial partners: innovation workshop, industrial immersion, special industrial tracks, MSc defenses. Innovation workshop is a 4 week full time diving into the Skoltech vibrant ecosystem designed to foster innovators, focuses on teamwork, group projects, and sparks entrepreneurial instincts from the very first days of study. From 2019 the number of mentors from industry and startups significantly increased to guide students across these sectors’ demands. Industrial immersion is an exclusive part of Skoltech curriculum where students after the first year of study spend 8 weeks in an industrial company carrying out an individual or team project and are guided jointly by both Skoltech and company supervisors. The aim of the industrial immersion is to familiarize students with relevant needs of Russian industry and to prepare graduates for job placement. During the immersion a company plays the role of a challenge provider for students. Skoltech has started a special industrial track comprising deep collaboration with IPG Photonics – a leading R&D company and manufacturer of high-performance fiber lasers and amplifiers for diverse applications. The track is aimed to train a new cohort of engineers and includes a variety of activities for students within the “Photonics” MSc program. It is expected to be a successful story and used as an example for similar initiatives with other Russian high-tech companies. One of the pathways of extended knowledge exchange with industrial partners is an active involvement of potential employers in MSc Defense Committees to review and assess MSc thesis projects and to participate in defense procedures. The paper will evaluate the effect and results of the above undertaken measures.

Keywords: Curriculum redesign, knowledge exchange model, learning outcomes framework, stakeholder engagement

Procedia PDF Downloads 70
445 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 114
444 Refurbishment Methods to Enhance Energy Efficiency of Brick Veneer Residential Buildings in Victoria

Authors: Hamid Reza Tabatabaiefar, Bita Mansoury, Mohammad Javad Khadivi Zand

Abstract:

The current energy and climate change impacts of the residential building sector in Australia are significant. Thus, the Australian Government has introduced more stringent regulations to improve building energy efficiency. In 2006, the Australian residential building sector consumed about 11% (around 440 Petajoule) of the total primary energy, resulting in total greenhouse gas emissions of 9.65 million tonnes CO2-eq. The gas and electricity consumption of residential dwellings contributed to 30% and 52% respectively, of the total primary energy utilised by this sector. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Employing sustainable design principles and effective use of construction materials can play a crucial role in improving thermal performance of new and existing buildings. Even though awareness has been raised, the design phase of refurbishment projects is often problematic. One of the issues concerning the refurbishment of residential buildings is mostly the consumer market, where most work consists of moderate refurbishment jobs, often without assistance of an architect and partly without a building permit. There is an individual and often fragmental approach that results in lack of efficiency. Most importantly, the decisions taken in the early stages of the design determine the final result; however, the assessment of the environmental performance only happens at the end of the design process, as a reflection of the design outcome. Finally, studies have identified the lack of knowledge, experience and best-practice examples as barriers in refurbishment projects. In the context of sustainable development and the need to reduce energy demand, refurbishing the ageing residential building constitutes a necessary action. Not only it does provide huge potential for energy savings, but it is also economically and socially relevant. Although the advantages have been identified, the guidelines come in the form of general suggestions that fail to address the diversity of each project. As a result, it has been recognised that there is a strong need to develop guidelines for optimised retrofitting of existing residential buildings in order to improve their energy performance. The current study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of residential brick veneer buildings in Victoria (Australia). Proposing different remedial solutions for improving the energy performance of residential brick veneer buildings, in the simulation stage, annual energy usage analyses have been carried out to determine heating and cooling energy consumptions of the buildings for different proposed retrofitting techniques. Then, the results of employing different retrofitting methods have been examined and compared in order to identify the most efficient and cost-effective remedial solution for improving the energy performance of those buildings with respect to the climate condition in Victoria and construction materials of the studied benchmark building.

Keywords: brick veneer residential buildings, building energy efficiency, climate change impacts, cost effective remedial solution, energy performance, sustainable design principles

Procedia PDF Downloads 279
443 Effect of Natural and Urban Environments on the Perception of Thermal Pain – Experimental Research Using Virtual Environments

Authors: Anna Mucha, Ewa Wojtyna, Anita Pollak

Abstract:

The environment in which an individual resides and observes may play a meaningful role in well-being and related constructs. Contact with nature may have a positive influence of natural environments on individuals, impacting mood and psychophysical sensations, such as pain relief. Conversely, urban settings, dominated by concrete elements, might lead to mood decline and heightened stress levels. Similarly, the situation may appear in the case of the perception of virtual environments. However, this is a topic that requires further exploration, especially in the context of relationships with pain. The aforementioned matters served as the basis for formulating and executing the outlined experimental research within the realm of environmental psychology, leveraging new technologies, notably virtual reality (VR), which is progressively gaining prominence in the domain of mental health. The primary objective was to investigate the impact of a simulated virtual environment, mirroring a natural setting abundant in greenery, on the perception of acute pain induced by thermal stimuli (high temperature) – encompassing intensity, unpleasantness, and pain tolerance. Comparative analyses were conducted between the virtual natural environment (intentionally constructed in the likeness of a therapeutic garden), virtual urban environment, and a control group devoid of virtual projections. Secondary objectives aimed to determine the mutual relationships among variables such as positive and negative emotions, preferences regarding virtual environments, sense of presence, and restorative experience in the context of the perception of presented virtual environments and induced thermal pain. The study encompassed 126 physically healthy Polish adults, distributing 42 individuals across each of the three comparative groups. Oculus Rift VR technology and the TSA-II neurosensory analyzer facilitated the experiment. Alongside demographic data, participants' subjective feelings concerning virtual reality and pain were evaluated using the Visual Analogue Scale (VAS), the original Restorative Experience in the Virtual World questionnaire (Doświadczenie Regeneracji w Wirtualnym Świecie), and an adapted Slater-Usoh-Steed (SUS) questionnaire. Results of statistical and psychometric analyses, such as Kruskal-Wallis tests, Wilcoxon tests, and contrast analyses, underscored the positive impact of the virtual natural environment on individual pain perception and mood. The virtual natural environment outperformed the virtual urban environment and the control group without virtual projection, particularly in subjective pain components like intensity and unpleasantness. Variables such as restorative experience, sense of presence and virtual environment preference also proved pivotal in pain perception and pain tolerance threshold alterations, contingent on specific conditions. This implies considerable application potential for virtual natural environments across diverse realms of psychology and related fields, among others as a supportive analgesic approach and a form of relaxation following psychotherapeutic sessions.

Keywords: environmental psychology, nature, acute pain, emotions, vitrual reality, virtual environments

Procedia PDF Downloads 50
442 Urban Heat Islands Analysis of Matera, Italy Based on the Change of Land Cover Using Satellite Landsat Images from 2000 to 2017

Authors: Giuseppina Anna Giorgio, Angela Lorusso, Maria Ragosta, Vito Telesca

Abstract:

Climate change is a major public health threat due to the effects of extreme weather events on human health and on quality of life in general. In this context, mean temperatures are increasing, in particular, extreme temperatures, with heat waves becoming more frequent, more intense, and longer lasting. In many cities, extreme heat waves have drastically increased, giving rise to so-called Urban Heat Island (UHI) phenomenon. In an urban centre, maximum temperatures may be up to 10° C warmer, due to different local atmospheric conditions. UHI occurs in the metropolitan areas as function of the population size and density of a city. It consists of a significant difference in temperature compared to the rural/suburban areas. Increasing industrialization and urbanization have increased this phenomenon and it has recently also been detected in small cities. Weather conditions and land use are one of the key parameters in the formation of UHI. In particular surface urban heat island is directly related to temperatures, to land surface types and surface modifications. The present study concern a UHI analysis of Matera city (Italy) based on the analysis of temperature, change in land use and land cover, using Corine Land Cover maps and satellite Landsat images. Matera, located in Southern Italy, has a typical Mediterranean climate with mild winters and hot and humid summers. Moreover, Matera has been awarded the international title of the 2019 European Capital of Culture. Matera represents a significant example of vernacular architecture. The structure of the city is articulated by a vertical succession of dug layers sometimes excavated or partly excavated and partly built, according to the original shape and height of the calcarenitic slope. In this study, two meteorological stations were selected: MTA (MaTera Alsia, in industrial zone) and MTCP (MaTera Civil Protection, suburban area located in a green zone). In order to evaluate the increase in temperatures (in terms of UHI occurrences) over time, and evaluating the effect of land use on weather conditions, the climate variability of temperatures for both stations was explored. Results show that UHI phenomena is growing in Matera city, with an increase of maximum temperature values at a local scale. Subsequently, spatial analysis was conducted by Landsat satellite images. Four years was selected in the summer period (27/08/2000, 27/07/2006, 11/07/2012, 02/08/2017). In Particular, Landsat 7 ETM+ for 2000, 2006 and 2012 years; Landsat 8 OLI/TIRS for 2017. In order to estimate the LST, Mono Window Algorithm was applied. Therefore, the increase of LST values spatial scale trend has been verified, in according to results obtained at local scale. Finally, the analysis of land use maps over the years by the LST and/or the maximum temperatures measured, show that the development of industrialized area produces a corresponding increase in temperatures and consequently a growth in UHI.

Keywords: climate variability, land surface temperature, LANDSAT images, urban heat island

Procedia PDF Downloads 110
441 Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction

Authors: Sabrina Neururer, Marco Schweitzer, Werner Hackl, Bernhard Tilg, Patrick Raudaschl, Andreas Huber, Bernhard Pfeifer

Abstract:

History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring.

Keywords: modelling, simulation, agent-based, SARS-Cov-2, COVID-19

Procedia PDF Downloads 161
440 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning

Authors: Christina Largent, Tazley Hobbs

Abstract:

Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.

Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent

Procedia PDF Downloads 116
439 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand

Authors: Mathuravech Thanaphon, Thephasit Nat

Abstract:

The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.

Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm

Procedia PDF Downloads 44
438 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 259
437 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 108
436 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurenţiu Mihai Ionescu, Agnieszka Misztal

Abstract:

The automotive industry is one of the most important industries in the world that concerns not only the economy, but also the world culture. In the present financial and economic context, this field faces new challenges posed by the current crisis, companies must maintain product quality, deliver on time and at a competitive price in order to achieve customer satisfaction. Two of the most recommended techniques of quality management by specific standards of the automotive industry, in the product development, are Failure Mode and Effects Analysis (FMEA) and Control Plan. FMEA is a methodology for risk management and quality improvement aimed at identifying potential causes of failure of products and processes, their quantification by risk assessment, ranking of the problems identified according to their importance, to the determination and implementation of corrective actions related. The companies use Control Plans realized using the results from FMEA to evaluate a process or product for strengths and weaknesses and to prevent problems before they occur. The Control Plans represent written descriptions of the systems used to control and minimize product and process variation. In addition Control Plans specify the process monitoring and control methods (for example Special Controls) used to control Special Characteristics. In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: automotive industry, FMEA, control plan, automotive technology

Procedia PDF Downloads 397
435 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach

Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota

Abstract:

Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.

Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics

Procedia PDF Downloads 491
434 Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste

Authors: Kuo Chieh Chao, Thishani Amarathunga, Sangam Shrestha

Abstract:

Rainfall induced slope failures are one of the most damaging and disastrous natural hazards which occur frequently in the world. This type of sliding mainly occurs in the zone above the groundwater level in silty/sandy soils. When the rainwater begins to infiltrate into the vadose zone of the soil, the negative pore-water pressure tends to decrease and reduce the shear strength of soil material. Climate change has resulted in excessive and unpredictable rainfall in all around the world, resulting in landslides with dire consequences to human lives and infrastructure. Such problems could be overcome by examining in detail the causes for such slope failures and recommending effective repair plans for vulnerable locations by considering future climatic change. The selected area for this study is located in the road rehabilitation section from Maubara to Mota Ain road in Timor-Leste. Slope failures and cracks have occurred in 2013 and after repairs reoccurred again in 2017 subsequent to heavy rains. Both observed and future predicted climate data analyses were conducted to understand the severe precipitation conditions in past and future. Observed climate data were collected from NOAA global climate data portal. CORDEX data portal was used to collect Regional Climate Model (RCM) future predicted climate data. Both observed and RCM data were extracted to location-based data using ArcGIS Software. Linear scaling method was used for the bias correction of future data and bias corrected climate data were assigned to GeoStudio Software. Precipitations of wet seasons (December to March ) in 2007 to 2013 is higher than 2001-2006 period and it is more than nearly 40% higher precipitation than usual monthly average precipitation of 160mm.The results of seepage analyses which were carried out using SEEP/W model with observed climate, clearly demonstrated that the pore water pressure within the fill slope was significantly increased due to the increase of the infiltration during the wet season of 2013.One main Regional Climate Models (RCM) was analyzed in order to predict future climate variation under two Representative Concentration Pathways (RCPs).In the projected period of 76 years ahead from 2014, shows that the amount of precipitation is considerably getting higher in the future in both RCP 4.5 and RCP 8.5 emission scenarios. Critical pore water pressure conditions during 2014-2090 were used in order to recommend appropriate remediation methods. Results of slope stability analyses indicated that the factor of safety of the fill slopes was reduced from 1.226 to 0.793 during the dry season to wet season in 2013.Results of future slope stability which were obtained using SLOPE/W model for the RCP emissions scenarios depict that, the use of tieback anchors and geogrids in slope protection could be effective in increasing the stability of slopes to an acceptable level during the wet seasons. Moreover, methods and procedures like monitoring of slopes showing signs or susceptible for movement and installing surface protections could be used to increase the stability of slopes.

Keywords: climate change, precipitation, SEEP/W, SLOPE/W, unsaturated soil

Procedia PDF Downloads 127
433 Identification of the Target Genes to Increase the Immunotherapy Response in Bladder Cancer Patients using Computational and Experimental Approach

Authors: Sahar Nasr, Lin Li, Edwin Wang

Abstract:

Bladder cancer (BLCA) is known as the 13th cause of death among cancer patients worldwide, and ~575,000 new BLCA cases are diagnosed each year. Urothelial carcinoma (UC) is the most prevalent subtype among BLCA patients, which can be categorized into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Currently, various therapeutic options are available for UC patients, including (1) transurethral resection followed by intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin for NMIBC patients, (2) neoadjuvant platinum-based chemotherapy (NAC) plus radical cystectomy is the standard of care for localized MIBC patients, and (3) systematic chemotherapy for metastatic UC. However, conventional treatments may lead to several challenges for treating patients. As an illustration, some patients may suffer from recurrence of the disease after the first line of treatment. Recently, immune checkpoint therapy (ICT) has been introduced as an alternative treatment strategy for the first or second line of treatment in advanced or metastatic BLCA patients. Although ICT showed lucrative results for a fraction of BLCA patients, ~80% of patients were not responsive to it. Therefore, novel treatment methods are required to augment the ICI response rate within BLCA patients. It has been shown that the infiltration of T-cells into the tumor microenvironment (TME) is positively correlated with the response to ICT within cancerous patients. Therefore, the goal of this study is to enhance the infiltration of cytotoxic T-cells into TME through the identification of target genes within the tumor that are responsible for the non-T-cell inflamed TME and their inhibition. BLCA bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and immune score for TCGA samples were used to determine the Pearson correlation score between the expression of different genes and immune score for each sample. The genes with strong negative correlations were selected (r < -0.2). Thereafter, the correlation between the expression of each gene and survival in BLCA patients was calculated using the TCGA data and Cox regression method. The genes that are common in both selected gene lists were chosen for further analysis. Afterward, BLCA bulk and single-cell RNA-sequencing data were ranked based on the expression of each selected gene and the top and bottom 25% samples were used for pathway enrichment analysis. If the pathways related to the T-cell infiltration (e.g., antigen presentation, interferon, or chemokine pathways) were enriched within the low-expression group, the gene was included for downstream analysis. Finally, the selected genes will be used to calculate the correlation between their expression and the infiltration rate of the activated CD+8 T-cells, natural killer cells and the activated dendric cells. A list of potential target genes has been identified and ranked based on the above-mentioned analysis and criteria. SUN-1 got the highest score within the gene list and other identified genes in the literature as benchmarks. In conclusion, inhibition of SUN1 may increase the tumor-infiltrating lymphocytes and the efficacy of ICI in BLCA patients. BLCA tumor cells with and without SUN-1 CRISPR/Cas9 knockout will be injected into the syngeneic mouse model to validate the predicted SUN-1 effect on increasing tumor-infiltrating lymphocytes.

Keywords: data analysis, gene expression analysis, gene identification, immunoinformatic, functional genomics, transcriptomics

Procedia PDF Downloads 146
432 Towards Sustainable Evolution of Bioeconomy: The Role of Technology and Innovation Management

Authors: Ronald Orth, Johanna Haunschild, Sara Tsog

Abstract:

The bioeconomy is an inter- and cross-disciplinary field covering a large number and wide scope of existing and emerging technologies. It has a great potential to contribute to the transformation process of industry landscape and ultimately drive the economy towards sustainability. However, bioeconomy per se is not necessarily sustainable and technology should be seen as an enabler rather than panacea to all our ecological, social and economic issues. Therefore, to draw and maximize benefits from bioeconomy in terms of sustainability, we propose that innovative activities should encompass not only novel technologies and bio-based new materials but also multifocal innovations. For multifocal innovation endeavors, innovation management plays a substantial role, as any innovation emerges in a complex iterative process where communication and knowledge exchange among relevant stake holders has a pivotal role. The knowledge generation and innovation are although at the core of transition towards a more sustainable bio-based economy, to date, there is a significant lack of concepts and models that approach bioeconomy from the innovation management approach. The aim of this paper is therefore two-fold. First, it inspects the role of transformative approach in the adaptation of bioeconomy that contributes to the environmental, ecological, social and economic sustainability. Second, it elaborates the importance of technology and innovation management as a tool for smooth, prompt and effective transition of firms to the bioeconomy. We conduct a qualitative literature study on the sustainability challenges that bioeconomy entails thus far using Science Citation Index and based on grey literature, as major economies e.g. EU, USA, China and Brazil have pledged to adopt bioeconomy and have released extensive publications on the topic. We will draw an example on the forest based business sector that is transforming towards the new green economy more rapidly as expected, although this sector has a long-established conventional business culture with consolidated and fully fledged industry. Based on our analysis we found that a successful transition to sustainable bioeconomy is conditioned on heterogenous and contested factors in terms of stakeholders , activities and modes of innovation. In addition, multifocal innovations occur when actors from interdisciplinary fields engage in intensive and continuous interaction where the focus of innovation is allocated to a field of mutually evolving socio-technical practices that correspond to the aims of the novel paradigm of transformative innovation policy. By adopting an integrated and systems approach as well as tapping into various innovation networks and joining global innovation clusters, firms have better chance of creating an entire new chain of value added products and services. This requires professionals that have certain capabilities and skills such as: foresight for future markets, ability to deal with complex issues, ability to guide responsible R&D, ability of strategic decision making, manage in-depth innovation systems analysis including value chain analysis. Policy makers, on the other hand, need to acknowledge the essential role of firms in the transformative innovation policy paradigm.

Keywords: bioeconomy, innovation and technology management, multifocal innovation, sustainability, transformative innovation policy

Procedia PDF Downloads 116
431 Nano-Enabling Technical Carbon Fabrics to Achieve Improved Through Thickness Electrical Conductivity in Carbon Fiber Reinforced Composites

Authors: Angelos Evangelou, Katerina Loizou, Loukas Koutsokeras, Orestes Marangos, Giorgos Constantinides, Stylianos Yiatros, Katerina Sofocleous, Vasileios Drakonakis

Abstract:

Owing to their outstanding strength to weight properties, carbon fiber reinforced polymer (CFRPs) composites have attracted significant attention finding use in various fields (sports, automotive, transportation, etc.). The current momentum indicates that there is an increasing demand for their employment in high value bespoke applications such as avionics and electronic casings, damage sensing structures, EMI (electromagnetic interference) structures that dictate the use of materials with increased electrical conductivity both in-plane and through the thickness. Several efforts by research groups have focused on enhancing the through-thickness electrical conductivity of FRPs, in an attempt to combine the intrinsically high relative strengths exhibited with improved z-axis electrical response as well. However, only a limited number of studies deal with printing of nano-enhanced polymer inks to produce a pattern on dry fabric level that could be used to fabricate CFRPs with improved through thickness electrical conductivity. The present study investigates the employment of screen-printing process on technical dry fabrics using nano-reinforced polymer-based inks to achieve the required through thickness conductivity, opening new pathways for the application of fiber reinforced composites in niche products. Commercially available inks and in-house prepared inks reinforced with electrically conductive nanoparticles are employed, printed in different patterns. The aim of the present study is to investigate both the effect of the nanoparticle concentration as well as the droplet patterns (diameter, inter-droplet distance and coverage) to optimize printing for the desired level of conductivity enhancement in the lamina level. The electrical conductivity is measured initially at ink level to pinpoint the optimum concentrations to be employed using a “four-probe” configuration. Upon printing of the different patterns, the coverage of the dry fabric area is assessed along with the permeability of the resulting dry fabrics, in alignment with the fabrication of CFRPs that requires adequate wetting by the epoxy matrix. Results demonstrated increased electrical conductivities of the printed droplets, with increase of the conductivity from the benchmark value of 0.1 S/M to between 8 and 10 S/m. Printability of dense and dispersed patterns has exhibited promising results in terms of increasing the z-axis conductivity without inhibiting the penetration of the epoxy matrix at the processing stage of fiber reinforced composites. The high value and niche prospect of the resulting applications that can stem from CFRPs with increased through thickness electrical conductivities highlights the potential of the presented endeavor, signifying screen printing as the process to to nano-enable z-axis electrical conductivity in composite laminas. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: ENTERPRISES/0618/0013).

Keywords: CFRPs, conductivity, nano-reinforcement, screen-printing

Procedia PDF Downloads 138