Search results for: vigilant attention stroop effect
480 Monitoring the Responses to Nociceptive Stimuli During General Anesthesia Based on Electroencephalographic Signals in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway (LMA)
Authors: Ofelia Loani Elvir Lazo, Roya Yumul, Sevan Komshian, Ruby Wang, Jun Tang
Abstract:
Background: Monitoring the anti-nociceptive drug effect is useful because a sudden and strong nociceptive stimulus may result in untoward autonomic responses and muscular reflex movements. Monitoring the anti-nociceptive effects of perioperative medications has long been desiredas a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively.To this end, electroencephalogram (EEG) based tools includingBIS and qCON were designed to provide information about the depth of sedation whileqNOXwas produced to informon the degree of antinociception.The goal of this study was to compare the reliability of qCON/qNOX to BIS asspecific indicators of response to nociceptive stimulation. Methods: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board(IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed o62n all patientsprior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. Results: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from74±13 mm Hg at baseline to 84± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76±12 BPM at baseline to 80±13BPM during noxious stimuli[p=0.078] respectively). Conclusion: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices.Keywords: antinociception, bispectral index (BIS), general anesthesia, laryngeal mask airway, qCON/qNOX
Procedia PDF Downloads 92479 Prevalence and Risk Factors of Musculoskeletal Disorders among School Teachers in Mangalore: A Cross Sectional Study
Authors: Junaid Hamid Bhat
Abstract:
Background: Musculoskeletal disorders are one of the main causes of occupational illness. Mechanisms and the factors like repetitive work, physical effort and posture, endangering the risk of musculoskeletal disorders would now appear to have been properly identified. Teacher’s exposure to work-related musculoskeletal disorders appears to be insufficiently described in the literature. Little research has investigated the prevalence and risk factors of musculoskeletal disorders in teaching profession. Very few studies are available in this regard and there are no studies evident in India. Purpose: To determine the prevalence of musculoskeletal disorders and to identify and measure the association of such risk factors responsible for developing musculoskeletal disorders among school teachers. Methodology: An observational cross sectional study was carried out. 500 school teachers from primary, middle, high and secondary schools were selected, based on eligibility criteria. A signed consent was obtained and a self-administered, validated questionnaire was used. Descriptive statistics was used to compute the statistical mean and standard deviation, frequency and percentage to estimate the prevalence of musculoskeletal disorders among school teachers. The data analysis was done by using SPSS version 16.0. Results: Results indicated higher pain prevalence (99.6%) among school teachers during the past 12 months. Neck pain (66.1%), low back pain (61.8%) and knee pain (32.0%) were the most prevalent musculoskeletal complaints of the subjects. Prevalence of shoulder pain was also found to be high among school teachers (25.9%). 52.0% subjects reported pain as disabling in nature, causing sleep disturbance (44.8%) and pain was found to be associated with work (87.5%). A significant association was found between musculoskeletal disorders and sick leaves/absenteeism. Conclusion: Work-related musculoskeletal disorders particularly neck pain, low back pain, and knee pain, is highly prevalent and risk factors are responsible for the development of same in school teachers. There is little awareness of musculoskeletal disorders among school teachers, due to work load and prolonged/static postures. Further research should concentrate on specific risk factors like repetitive movements, psychological stress, and ergonomic factors and should be carried out all over the country and the school teachers should be studied carefully over a period of time. Also, an ergonomic investigation is needed to decrease the work-related musculoskeletal disorder problems. Implication: Recall bias and self-reporting can be considered as limitations. Also, cause and effect inferences cannot be ascertained. Based on these results, it is important to disseminate general recommendations for prevention of work-related musculoskeletal disorders with regards to the suitability of furniture, equipment and work tools, environmental conditions, work organization and rest time to school teachers. School teachers in the early stage of their careers should try to adapt the ergonomically favorable position whilst performing their work for a safe and healthy life later. Employers should be educated on practical aspects of prevention to reduce musculoskeletal disorders, since changes in workplace and work organization and physical/recreational activities are required.Keywords: work related musculoskeletal disorders, school teachers, risk factors funding, medical and health sciences
Procedia PDF Downloads 280478 Cardiac Rehabilitation Program and Health-Related Quality of Life; A Randomized Control Trial
Authors: Zia Ul Haq, Saleem Muhammad, Naeem Ullah, Abbas Shah, Abdullah Shah
Abstract:
Pakistan being the developing country is facing double burden of communicable and non-communicable disease. The aspect of secondary prevention of ischemic heart disease in developing countries is the dire need for public health specialists, clinicians and policy makers. There is some evidence that psychotherapeutic measures, including psychotherapy, recreation, exercise and stress management training have positive impact on secondary prevention of cardiovascular diseases but there are some contradictory findings as well. Cardiac rehabilitation program (CRP) has not yet fully implemented in Pakistan. Psychological, physical and specific health-related quality of life (HRQoL) outcomes needs assessment with respect to its practicality, effectiveness, and success. Objectives: To determine the effect of cardiac rehabilitation program (CRP) on the health-related quality of life (HRQoL) measures of post MI patients compared to the usual care. Hypothesis: Post MI patients who receive the interventions (CRP) will have better HRQoL as compared to those who receive the usual cares. Methods: The randomized control trial was conducted at a Cardiac Rehabilitation Unit of Lady Reading Hospital (LRH), Peshawar. LRH is the biggest hospital of the Province Khyber Pakhtunkhwa (KP). A total 206 participants who had recent first myocardial infarction were inducted in the study. Participants were randomly allocated into two group i.e. usual care group (UCG) and cardiac rehabilitation group (CRG) by permuted-block randomization (PBR) method. CRP was conducted in CRG in two phases. Three HRQoL outcomes i.e. general health questionnaire (GHQ), self-rated health (SRH) and MacNew quality of life after myocardial infarction (MacNew QLMI) were assessed at baseline and follow-up visits among both groups. Data were entered and analyzed by appropriate statistical test in STATA version 12. Results: A total of 195 participants were assessed at the follow-up period due to lost-to-follow-up. The mean age of the participants was 53.66 + 8.3 years. Males were dominant in both groups i.e. 150 (76.92%). Regarding educational status, majority of the participants were illiterate in both groups i.e. 128 (65.64%). Surprisingly, there were 139 (71.28%) who were non-smoker on the whole. The comorbid status was positive in 120 (61.54%) among all the patients. The SRH at follow-up among UCG and CRG was 4.06 (95% CI: 3.93, 4.19) and 2.36 (95% CI: 2.2, 2.52) respectively (p<0.001). GHQ at the follow-up of UCG and CRG was 20.91 (95% CI: 18.83, 21.97) and 7.43 (95% CI: 6.59, 8.27) respectively (p<0.001). The MacNew QLMI at follow-up of UCG and CRG was 3.82 (95% CI: 3.7, 3.94) and 5.62 (95% CI: 5.5, 5.74) respectively (p<0.001). All the HRQoL measures showed strongly significant improvement in the CRG at follow-up period. Conclusion: HRQOL improved in post MI patients after comprehensive CRP. Education of the patients and their supervision is needed when they are involved in their rehabilitation activities. It is concluded that establishing CRP in cardiac units, recruiting post-discharged MI patients and offering them CRP does not impose high costs and can result in significant improvement in HRQoL measures. Trial registration no: ACTRN12617000832370Keywords: cardiovascular diseases, cardiac rehabilitation, health-related quality of life, HRQoL, myocardial infarction, quality of life, QoL, rehabilitation, randomized control trial
Procedia PDF Downloads 228477 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles
Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan
Abstract:
Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity
Procedia PDF Downloads 69476 Medical Dressing Induced Digital Ischemia in Patient with Congenital Insensitivity to Pain and Anhidrosis
Authors: Abdulwhab Alotaibi, Abdullah Alzahrani, Ziyad Bokhari, Abdulelah Alghamdi
Abstract:
First described in 1975 by Dr. Miller, Medical dressings are uncommon but possible cause of hand digital ischemia due the tourniquet-like effect. The incident of this complication has been reported across wide range of age-groups, yet it seems like that the pediatric population are specifically vulnerable. Multiple dressing types were reported to have caused ischemic injury, such as elastic wrap, tubular gauze, and self-adherent dressings. We present a case of medical dressing induced digital ischemia in patient with Congenital insensitivity to pain and anhidrosis (CIPA), which further challenge the discovery of the condition. An 8-year-old girl known case of CIPA. Brought by her mother to the ER after nail bed injury, which she managed by application of elastic wrap that was left for 24 hours. When the mother found out she immediately removed the elastic band, and noticed the fingertip was black and cold with tense bullae. The color then changed later when she arrived to the ER to dark purple with bluish discoloration on the tip. On examination there was well demarcated tense bullae on the distal right fifth finger. Neurovascular intact, pulse oximetry on distal digit 100%, capillary refill time was delayed. She was seen under Plastic surgery and conservative management recommended, and patient was discharged with safety netting. Two days later the patient came as follow-up visit at which her condition demonstrated significant improvement, the bullae has since ruptured leaving behind sloughed skin, capillary refill and pulse oximetry were both within normal limits, sensory function couldn’t be assessed but her motor function and ROM were normal, topical bacitracin and bandage dressings were applied for the eroded skin. Patient was scheduled for a follow-up in 2 weeks. Preventatively it’s advisable to avoid the commonly implicated dressings such as elastic, tubular gauze or self-adherent wraps in hand or digital injuries when possible, but in cases where the use of these dressings is of necessity the appropriate precautions must be taken, Dr. Makarewich proposed the following 5 measures to help minimize the incidence of the injury: 1-Unwrapping 12 inches of the dressing before rolling the injured finger. 2-Wrapping from distal to proximal with minimal tension to avoid vascular embarrassment. 3-The use of 5-25 inch to overlap the entire wrap. 4-Maintaining light pressure over the wrap to allow adherence of the dressing. 5-Minimization of the number of layers used to wrap the affected digit. Also assessing the capillary refill after the application can help in determining the patency of the supplying blood vessels. It’s also important to selectively determine if the patient is a candidate for conservative management, as tailored approach can help in maximizing the positive outcomes for our patients.Keywords: congenital insensitivity to pain, digital ischemia, medical dressing, conservative management
Procedia PDF Downloads 64475 Unifying RSV Evolutionary Dynamics and Epidemiology Through Phylodynamic Analyses
Authors: Lydia Tan, Philippe Lemey, Lieselot Houspie, Marco Viveen, Darren Martin, Frank Coenjaerts
Abstract:
Introduction: Human respiratory syncytial virus (hRSV) is the leading cause of severe respiratory tract infections in infants under the age of two. Genomic substitutions and related evolutionary dynamics of hRSV are of great influence on virus transmission behavior. The evolutionary patterns formed are due to a precarious interplay between the host immune response and RSV, thereby selecting the most viable and less immunogenic strains. Studying genomic profiles can teach us which genes and consequent proteins play an important role in RSV survival and transmission dynamics. Study design: In this study, genetic diversity and evolutionary rate analysis were conducted on 36 RSV subgroup B whole genome sequences and 37 subgroup A genome sequences. Clinical RSV isolates were obtained from nasopharyngeal aspirates and swabs of children between 2 weeks and 5 years old of age. These strains, collected during epidemic seasons from 2001 to 2011 in the Netherlands and Belgium by either conventional or 454-sequencing. Sequences were analyzed for genetic diversity, recombination events, synonymous/non-synonymous substitution ratios, epistasis, and translational consequences of mutations were mapped to known 3D protein structures. We used Bayesian statistical inference to estimate the rate of RSV genome evolution and the rate of variability across the genome. Results: The A and B profiles were described in detail and compared to each other. Overall, the majority of the whole RSV genome is highly conserved among all strains. The attachment protein G was the most variable protein and its gene had, similar to the non-coding regions in RSV, more elevated (two-fold) substitution rates than other genes. In addition, the G gene has been identified as the major target for diversifying selection. Overall, less gene and protein variability was found within RSV-B compared to RSV-A and most protein variation between the subgroups was found in the F, G, SH and M2-2 proteins. For the F protein mutations and correlated amino acid changes are largely located in the F2 ligand-binding domain. The small hydrophobic phosphoprotein and nucleoprotein are the most conserved proteins. The evolutionary rates were similar in both subgroups (A: 6.47E-04, B: 7.76E-04 substitution/site/yr), but estimates of the time to the most recent common ancestor were much lower for RSV-B (B: 19, A: 46.8 yrs), indicating that there is more turnover in this subgroup. Conclusion: This study provides a detailed description of whole RSV genome mutations, the effect on translation products and the first estimate of the RSV genome evolution tempo. The immunogenic G protein seems to require high substitution rates in order to select less immunogenic strains and other conserved proteins are most likely essential to preserve RSV viability. The resulting G gene variability makes its protein a less interesting target for RSV intervention methods. The more conserved RSV F protein with less antigenic epitope shedding is, therefore, more suitable for developing therapeutic strategies or vaccines.Keywords: drug target selection, epidemiology, respiratory syncytial virus, RSV
Procedia PDF Downloads 414474 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulationsKeywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow
Procedia PDF Downloads 502473 Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany
Authors: Dustin Schöder
Abstract:
The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed.Keywords: highly automated driving, autonomous driving, SAE level 4, railport operations, container depot, intermodal logistics, potentials of autonomization
Procedia PDF Downloads 80472 Concentrations of Leptin, C-Peptide and Insulin in Cord Blood as Fetal Origins of Insulin Resistance and Their Effect on the Birth Weight of the Newborn
Authors: R. P. Hewawasam, M. H. A. D. de Silva, M. A. G. Iresha
Abstract:
Obesity is associated with an increased risk of developing insulin resistance. Insulin resistance often progresses to type-2 diabetes mellitus and is linked to a wide variety of other pathophysiological features including hypertension, hyperlipidemia, atherosclerosis (metabolic syndrome) and polycystic ovarian syndrome. Macrosomia is common in infants born to not only women with gestational diabetes mellitus but also non-diabetic obese women. During the past two decades, obesity in children and adolescents has risen significantly in Asian populations including Sri Lanka. There is increasing evidence to believe that infants who are born large for gestational age (LGA) are more likely to be obese in childhood. It is also established from previous studies that Asian populations have higher percentage body fat at a lower body mass index compared to Caucasians. High leptin levels in cord blood have been reported to correlate with fetal adiposity at birth. Previous studies have also shown that cord blood C-peptide and insulin levels are significantly and positively correlated with birth weight. Therefore, the objective of this preliminary study was to determine the relationship between parameters of fetal insulin resistance such as leptin, C-peptide and insulin and the birth weight of the newborn in a study population in Southern Sri Lanka. Umbilical cord blood was collected from 90 newborns and the concentration of insulin, leptin, and C-peptide were measured by ELISA technique. Birth weight, length, occipital frontal, chest, hip and calf circumferences of newborns were measured and characteristics of the mother such as age, height, weight before pregnancy and weight gain were collected. The relationship between insulin, leptin, C-peptide, and anthropometrics were assessed by Pearson’s correlation while the Mann-Whitney U test was used to assess the differences in cord blood leptin, C-peptide, and insulin levels between groups. A significant difference (p < 0.001) was observed between the insulin levels of infants born LGA (18.73 ± 0.64 µlU/ml) and AGA (13.08 ± 0.43 µlU/ml). Consistently, A significant increase in concentration (p < 0.001) was observed in C-peptide levels of infants born LGA (9.32 ± 0.77 ng/ml) compared to AGA (5.44 ± 0.19 ng/ml). Cord blood leptin concentration of LGA infants (12.67 ng/mL ± 1.62) was significantly higher (p < 0.001) compared to the AGA infants (7.10 ng/mL ± 0.97). Significant positive correlations (p < 0.05) were observed among cord leptin levels and the birth weight, pre-pregnancy maternal weight and BMI between the infants of AGA and LGA. Consistently, a significant positive correlation (p < 0.05) was observed between the birth weight and the C peptide concentration. Significantly high concentrations of leptin, C-peptide and insulin levels in the cord blood of LGA infants suggest that they may be involved in regulating fetal growth. Although previous studies suggest comparatively high levels of body fat in the Asian population, values obtained in this study are not significantly different from values previously reported from Caucasian populations. According to this preliminary study, maternal pre-pregnancy BMI and weight may contribute as significant indicators of cord blood parameters of insulin resistance and possibly the birth weight of the newborn.Keywords: large for gestational age, leptin, C-peptide, insulin
Procedia PDF Downloads 158471 Methodology for the Determination of Triterpenic Compounds in Apple Extracts
Authors: Mindaugas Liaudanskas, Darius Kviklys, Kristina Zymonė, Raimondas Raudonis, Jonas Viškelis, Norbertas Uselis, Pranas Viškelis, Valdimaras Janulis
Abstract:
Apples are among the most commonly consumed fruits in the world. Based on data from the year 2014, approximately 84.63 million tons of apples are grown per annum. Apples are widely used in food industry to produce various products and drinks (juice, wine, and cider); they are also used unprocessed. Apples in human diet are an important source of different groups of biological active compounds that can positively contribute to the prevention of various diseases. They are a source of various biologically active substances – especially vitamins, organic acids, micro- and macro-elements, pectins, and phenolic, triterpenic, and other compounds. Triterpenic compounds, which are characterized by versatile biological activity, are the biologically active compounds found in apples that are among the most promising and most significant for human health. A specific analytical procedure including sample preparation and High Performance Liquid Chromatography (HPLC) analysis was developed, optimized, and validated for the detection of triterpenic compounds in the samples of different apples, their peels, and flesh from widespread apple cultivars 'Aldas', 'Auksis', 'Connel Red', 'Ligol', 'Lodel', and 'Rajka' grown in Lithuanian climatic conditions. The conditions for triterpenic compound extraction were optimized: the solvent of the extraction was 100% (v/v) acetone, and the extraction was performed in an ultrasound bath for 10 min. Isocratic elution (the eluents ratio being 88% (solvent A) and 12% (solvent B)) for a rapid separation of triterpenic compounds was performed. The validation of the methodology was performed on the basis of the ICH recommendations. The following characteristics of validation were evaluated: the selectivity of the method (specificity), precision, the detection and quantitation limits of the analytes, and linearity. The obtained parameters values confirm suitability of methodology to perform analysis of triterpenic compounds. Using the optimised and validated HPLC technique, four triterpenic compounds were separated and identified, and their specificity was confirmed. These compounds were corosolic acid, betulinic acid, oleanolic acid, and ursolic acid. Ursolic acid was the dominant compound in all the tested apple samples. The detected amount of betulinic acid was the lowest of all the identified triterpenic compounds. The greatest amounts of triterpenic compounds were detected in whole apple and apple peel samples of the 'Lodel' cultivar, and thus apples and apple extracts of this cultivar are potentially valuable for use in medical practice, for the prevention of various diseases, for adjunct therapy, for the isolation of individual compounds with a specific biological effect, and for the development and production of dietary supplements and functional food enriched in biologically active compounds. Acknowledgements. This work was supported by a grant from the Research Council of Lithuania, project No. MIP-17-8.Keywords: apples, HPLC, triterpenic compounds, validation
Procedia PDF Downloads 173470 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation
Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou
Abstract:
The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.Keywords: acceleration, comfort, motorcycle, safety, skew superelevation
Procedia PDF Downloads 155469 Iraqi Women’s Rights Under State Civil Law and Conservative Influences: A Study of Legal Documents and Social Implementation
Authors: Rose Hattab
Abstract:
Women have been an important dynamic in religious context and the state-building process of Arab countries throughout history. During the 1970s as the movement for women’s activism and rights developed, the Iraqi state under the Ba’ath Party began to provide Iraqi women with legal and civil rights. This was done to liberate women from the grasps of social traditions and was a tangible espousing of equality between men and women in the process of nation-building. Whereas women’s rights were stronger and more supported throughout the earliest years of the Ba’ath Regime (1970-1990), the aftermath of the Gulf War and economic sanctions on the conditions of Iraqi society laid the foundation for a division of women’s rights between civil and religious authorities. Personal status codes that were secured in 1959 were being pushed back by amendments made in coordination with religious leaders. Civil laws were present on paper, but religious authority took prominence in practice. The written legal codes were inclusive of women’s rights, but there is not an active or ensured practice of these rights within Iraqi society. This is due to many different factors, such as religious, sectarian, political and conservative reasons that hold back or limit the ability for Iraqi women to have autonomy in aspects such as participation in the workforce, getting married, and ensuring social justice. This paper argues that the Personal Status Code introduced in 1959 – which replaced Sharia-run courts with personal status courts – provided Iraqi women with equality and increased mobility in social and economic dynamics. The statewide crisis felt after the Gulf War and the economic sanctions imposed by the United Nations led to a stark shift in the Ba’ath party’s political ideology. This ideological turn guided the social system to the embracement of social conservatism and religious traditions in the 1990s. The effect of this implementation continued after the establishment of a new Iraqi government during 2003-2005. Consequently, Iraqi women's rights in employment, marriage, and family became divided into paper and practice by religious authorities and civil law from that period to the present day. This paper also contributes to the literature by expanding on the gap between legal codes on paper and in practice, through providing an analysis of Iraqi women’s rights in the Iraqi Constitution of 2005 and Iraq’s Penal Code. The turn to conservative and religious traditions is derived from the multiplicity of identities that make up the Iraqi social fabric. In the aftermath of a totalitarian regime, active wars, and economic sanctions, the Iraqi people attempted to unite together through their different identities to create a sense of security in the midst of violence and chaos. This is not an excuse to diminish the importance of women’s rights, but in the process of building a new nation-state, women were lost from the narrative. Thus, the presence of gender equity is found in the written text but is not practiced and upheld in the social context.Keywords: civil rights, Iraqi women, nation building, religion and conflict
Procedia PDF Downloads 143468 Leadership Education for Law Enforcement Mid-Level Managers: The Mediating Role of Effectiveness of Training on Transformational and Authentic Leadership Traits
Authors: Kevin Baxter, Ron Grove, James Pitney, John Harrison, Ozlem Gumus
Abstract:
The purpose of this research is to determine the mediating effect of effectiveness of the training provided by Northwestern University’s School of Police Staff and Command (SPSC), on the ability of law enforcement mid-level managers to learn transformational and authentic leadership traits. This study will also evaluate the leadership styles, of course, graduates compared to non-attendees using a static group comparison design. The Louisiana State Police pay approximately $40,000 in salary, tuition, housing, and meals for each state police lieutenant attending the 10-week program of the SPSC. This school lists the development of transformational leaders as an increasing element. Additionally, the SPSC curriculum addresses all four components of authentic leadership - self-awareness, transparency, ethical/moral, and balanced processing. Upon return to law enforcement in roles of mid-level management, there are questions as to whether or not students revert to an “autocratic” leadership style. Insufficient evidence exists to support claims for the effectiveness of management training or leadership development. Though it is widely recognized that transformational styles are beneficial to law enforcement, there is little evidence that suggests police leadership styles are changing. Police organizations continue to hold to a more transactional style (i.e., most senior police leaders remain autocrats). Additionally, research in the application of transformational, transactional, and laissez-faire leadership related to police organizations is minimal. The population of the study is law enforcement mid-level managers from various states within the United States who completed leadership training presented by the SPSC. The sample will be composed of 66 active law enforcement mid-level managers (lieutenants and captains) who have graduated from SPSC and 65 active law enforcement mid-level managers (lieutenants and captains) who have not attended SPSC. Participants will answer demographics questions, Multifactor Leadership Questionnaire, Authentic Leadership Questionnaire, and the Kirkpatrick Hybrid Evaluation Survey. Analysis from descriptive statistics, group comparison, one-way MANCOVA, and the Kirkpatrick Evaluation Model survey will be used to determine training effectiveness in the four levels of reaction, learning, behavior, and results. Independent variables are SPSC graduates (two groups: upper and lower) and no-SPSC attendees, and dependent variables are transformational and authentic leadership scores. SPSC graduates are expected to have higher MLQ scores for transformational leadership traits and higher ALQ scores for authentic leadership traits than SPSC non-attendees. We also expect the graduates to rate the efficacy of SPSC leadership training as high. This study will validate (or invalidate) the benefits, costs, and resources required for leadership development from a nationally recognized police leadership program, and it will also help fill the gap in the literature that exists between law enforcement professional development and transformational and authentic leadership styles.Keywords: training effectiveness, transformational leadership, authentic leadership, law enforcement mid-level manager
Procedia PDF Downloads 106467 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 286466 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion
Authors: Ali Kadir, O. Anwar Beg
Abstract:
Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.Keywords: thermal coating, corrosion, ANSYS FEA, CFD
Procedia PDF Downloads 136465 Soft Power Contestation in South Asia: Analyzing Bollywood and Chinese Cinema as Strategic Tools in the India-China Rivalry and Their Impact on Cultural Diplomacy and Regional Identity
Authors: Julia Mathew
Abstract:
This paper explores the use of Bollywood and Chinese movies as soft power instruments within the larger context of India-China contention in South Asia. As India and China compete for influence in South Asia, they have increasingly relied on cultural diplomacy, using cinema to change perceptions, promote goodwill, and build cultural linkages. Bollywood, with its long-standing popularity and cultural resonance, has been a powerful instrument for projecting Indian ideals and identity throughout South Asia. In contrast, China has made concerted attempts in recent years to promote its own films, showing Chinese culture and values in a positive manner to offset Bollywood’s effect. This study examines the ways in which Chinese and Bollywood films influence public opinion and appeal to South Asian audiences while also supporting their respective countries’ soft power goals. To learn about this, we take a mixed-methods approach that incorporates content analysis of popular Bollywood and Chinese films released in South Asia, focussing on issues such as cultural identity, nationalism, and social values. In addition, we use sentiment analysis and surveys to map how these two cinematic traditions are received in various South Asian countries. This study takes into account government activities and cultural policies that promote each country’s cinema industry as a diplomatic instrument. The present study uses case studies from Nepal, Sri Lanka, Bangladesh, and Bhutan to demonstrate the subtle ways in which Bollywood and Chinese movies influence regional attitudes. For example, in Nepal and Bangladesh, Bollywood’s deep cultural ties have historically given India an advantage, but China’s growing economic relations and media presence have presented Chinese cinema as an alternative cultural influence. In contrast, Sri Lanka exemplifies a complicated relationship in which Bollywood’s cultural attraction is strong, but Chinese state-backed media diplomacy is making inroads, altering the cultural landscape. Due to limited cultural interchange and Bhutan’s historical alignment with India, Chinese cinema has a small presence in the country. The findings highlight cinema’s significance as a soft power tool in India and China’s regional ambitions. Bollywood’s emotional resonance and cultural familiarity have long bolstered India’s prominence, but Chinese cinema’s expansion reflects China’s desire to shift cultural narratives in its favour. This paper closes by presenting insights into the broader implications of cultural diplomacy within the India-China competition, arguing that as India and China continue to compete for influence in South Asia, film will play an increasingly crucial role in defining the soft power environment.Keywords: soft power, China, India, Bollywood, Chinese cinema
Procedia PDF Downloads 18464 Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate
Authors: Arinze Ezieke, Antonio Serrano, William Clarke, Denys Villa-Gomez
Abstract:
Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system.Keywords: anaerobic digestion, alkalinity, co-smoldered digestate ash, trace elements
Procedia PDF Downloads 123463 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding
Authors: Ines Oliveira, Ana Reis
Abstract:
Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation
Procedia PDF Downloads 211462 Unfolding Architectural Assemblages: Mapping Contemporary Spatial Objects' Affective Capacity
Authors: Panagiotis Roupas, Yota Passia
Abstract:
This paper aims at establishing an index of design mechanisms - immanent in spatial objects - based on the affective capacity of their material formations. While spatial objects (design objects, buildings, urban configurations, etc.) are regarded as systems composed of interacting parts, within the premises of assemblage theory, their ability to affect and to be affected has not yet been mapped or sufficiently explored. This ability lies in excess, a latent potentiality they contain, not transcendental but immanent in their pre-subjective aesthetic power. As spatial structures are theorized as assemblages - composed of heterogeneous elements that enter into relations with one another - and since all assemblages are parts of larger assemblages, their components' ability to engage is contingent. We thus seek to unfold the mechanisms inherent in spatial objects that allow to the constituent parts of design assemblages to perpetually enter into new assemblages. To map architectural assemblage's affective ability, spatial objects are analyzed in two axes. The first axis focuses on the relations that the assemblage's material and expressive components develop in order to enter the assemblages. Material components refer to those material elements that an assemblage requires in order to exist, while expressive components includes non-linguistic (sense impressions) as well as linguistic (beliefs). The second axis records the processes known as a-signifying signs or a-signs, which are the triggering mechanisms able to territorialize or deterritorialize, stabilize or destabilize the assemblage and thus allow it to assemble anew. As a-signs cannot be isolated from matter, we point to their resulting effects, which without entering the linguistic level they are expressed in terms of intensity fields: modulations, movements, speeds, rhythms, spasms, etc. They belong to a molecular level where they operate in the pre-subjective world of perceptions, effects, drives, and emotions. A-signs have been introduced as intensities that transform the object beyond meaning, beyond fixed or known cognitive procedures. To that end, from an archive of more than 100 spatial objects by contemporary architects and designers, we have created an effective mechanisms index is created, where each a-sign is now connected with the list of effects it triggers and which thoroughly defines it. And vice versa, the same effect can be triggered by different a-signs, allowing the design object to lie in a perpetual state of becoming. To define spatial objects, A-signs are categorized in terms of their aesthetic power to affect and to be affected on the basis of the general categories of form, structure and surface. Thus, different part's degree of contingency are evaluated and measured and finally, we introduce as material information that is immanent in the spatial object while at the same time they confer no meaning; they only convey some information without semantic content. Through this index, we are able to analyze and direct the final form of the spatial object while at the same time establishing the mechanism to measure its continuous transformation.Keywords: affective mechanisms index, architectural assemblages, a-signifying signs, cartography, virtual
Procedia PDF Downloads 129461 Impact of Traffic Restrictions due to Covid19, on Emissions from Freight Transport in Mexico City
Authors: Oscar Nieto-Garzón, Angélica Lozano
Abstract:
In urban areas, on-road freight transportation creates several social and environmental externalities. Then, it is crucial that freight transport considers not only economic aspects, like retailer distribution cost reduction and service improvement, but also environmental effects such as global CO2 and local emissions (e.g. Particulate Matter, NOX, CO) and noise. Inadequate infrastructure development, high rate of urbanization, the increase of motorization, and the lack of transportation planning are characteristics that urban areas from developing countries share. The Metropolitan Area of Mexico City (MAMC), the Metropolitan Area of São Paulo (MASP), and Bogota are three of the largest urban areas in Latin America where air pollution is often a problem associated with emissions from mobile sources. The effect of the lockdown due to COVID-19 was analyzedfor these urban areas, comparing the same period (January to August) of years 2016 – 2019 with 2020. A strong reduction in the concentration of primary criteria pollutants emitted by road traffic were observed at the beginning of 2020 and after the lockdown measures.Daily mean concentration of NOx decreased 40% in the MAMC, 34% in the MASP, and 62% in Bogota. Daily mean ozone levels increased after the lockdown measures in the three urban areas, 25% in MAMC, 30% in the MASP and 60% in Bogota. These changes in emission patterns from mobile sources drastically changed the ambient atmospheric concentrations of CO and NOX. The CO/NOX ratioat the morning hours is often used as an indicator of mobile sources emissions. In 2020, traffic from cars and light vehicles was significantly reduced due to the first lockdown, but buses and trucks had not restrictions. In theory, it implies a decrease in CO and NOX from cars or light vehicles, maintaining the levels of NOX by trucks(or lower levels due to the congestion reduction). At rush hours, traffic was reduced between 50% and 75%, so trucks could get higher speeds, which would reduce their emissions. By means an emission model, it was found that an increase in the average speed (75%) would reduce the emissions (CO, NOX, and PM) from diesel trucks by up to 30%. It was expected that the value of CO/NOXratio could change due to thelockdownrestrictions. However, although there was asignificant reduction of traffic, CO/NOX kept its trend, decreasing to 8-9 in 2020. Hence, traffic restrictions had no impact on the CO/NOX ratio, although they did reduce vehicle emissions of CO and NOX. Therefore, these emissions may not adequately represent the change in the vehicle emission patterns, or this ratio may not be a good indicator of emissions generated by vehicles. From the comparison of the theoretical data and those observed during the lockdown, results that the real NOX reduction was lower than the theoretical reduction. The reasons could be that there are other sources of NOX emissions, so there would be an over-representation of NOX emissions generated by diesel vehicles, or there is an underestimation of CO emissions. Further analysis needs to consider this ratioto evaluate the emission inventories and then to extend these results forthe determination of emission control policies to non-mobile sources.Keywords: COVID-19, emissions, freight transport, latin American metropolis
Procedia PDF Downloads 137460 The Antioxidant Activity of Grape Chkhaveri and Its Wine Cultivated in West Georgia (Adjaria)
Authors: Maia Kharadze, Indira Djaparidze, Maia Vanidze, Aleko Kalandia
Abstract:
Modern scientific world studies chemical components and antioxidant activity of different kinds of vines according to their breed purity and location. To our knowledge, this kind of research has not been conducted in Georgia yet. The object of our research was to study Chkhaveri vine, which is included in the oldest varieties of the Black Sea basin vine. We have studied different-altitude Chkaveri grapes, juice, and wine (half dry rose-colored produced with European technologies) and their technical markers, qualitative and quantitive composition of their biologically active compounds and their antioxidant activity. We were determining the amount of phenols using Folin-Ciocalteu reagent, Flavonoids, Catechins and Anthocyanins using Spectral method and antioxidant activity using DPPH method. Several compounds were identified using –HPLC-UV-Vis, UPLC-MS methods. Six samples of Chkhaveri species– 5, 300, 360, 380, 400, 780 meter altitudes were taken and analyzed. The sample taken from 360 m altitude is distinguished by its cluster mass (383.6 grams) and high amount of sugar (20.1%). The sample taken from the five-meter altitude is distinguished by having high acidity (0.95%). Unlike other grapes varieties, such concentration of sugar and relatively low levels of citric acid ultimately leads to Chkhaveri wine individuality. Biologically active compounds of Chkhaveri were researched in 2014, 2015, 2016. The amount of total phenols in samples of 2016 fruit varies from 976.7 to 1767.0 mg/kg. Amount of Anthocians is 721.2-1630.2 mg/kg, and the amount of Flavanoids varies from 300.6 to 825.5 mg/kg. Relatively high amount of anthocyanins was found in the Chkhaveri at 780-meter altitude - 1630.2 mg/kg. Accordingly, the amount of Phenols and Flavanoids is high- 1767.9 mg/kg and 825.5 mg/kg. These characteristics are low in samples gathered from 5 meters above sea level, Anthocyanins-721.2 mg/ kg, total Phenols-976.7 mg/ kg, and Flavanoids-300.6 mg/kg. The highest amount of bioactive compounds can be found in the Chkhaveri samples of high altitudes because with rising height environment becomes harsh, the plant has to develop a better immune system using Phenolic compounds. The technology that is used for the production of wine also plays a huge role in the composition of the final product. Optimal techniques of maceration and ageing were worked out. While squeezing Chkhaveri, there are no anthocyanins in the juice. However, the amount of Anthocyanins rises during maceration. After the fermentation of dregs, the amount of anthocyanins is 55%, 521.3 gm/l, total Phenols 80% 1057.7 mg/l and Flavanoids 23.5 mg/l. Antioxidant activity of samples was also determined using the effect of 50% inhibition of the samples. All samples have high antioxidant activity. For instance, in samples at 780 meters above the sea-level antioxidant activity was 53.5%. It is relatively high compared to the sample at 5 m above sea-level with the antioxidant activity of 30.5%. Thus, there is a correlation between the amount Anthocyanins and antioxidant activity. The designated project has been fulfilled by financial support of the Georgia National Science Foundation (Grant AP/96/13, Grant 216816), Any idea in this publication is possessed by the author and may not represent the opinion of the Georgia National Science Foundation.Keywords: antioxidants, bioactive content, wine, chkhaveri
Procedia PDF Downloads 230459 Direct Contact Ultrasound Assisted Drying of Mango Slices
Authors: E. K. Mendez, N. A. Salazar, C. E. Orrego
Abstract:
There is undoubted proof that increasing the intake of fruit lessens the risk of hypertension, coronary heart disease, stroke, and probable evidence that lowers the risk of cancer. Proper fruit drying is an excellent alternative to make their shelf-life longer, commercialization easier, and ready-to-eat healthy products or ingredients. The conventional way of drying is by hot air forced convection. However, this process step often requires a very long residence time; furthermore, it is highly energy consuming and detrimental to the product quality. Nowadays, power ultrasound (US) technic has been considered as an emerging and promising technology for industrial food processing. Most of published works dealing with drying food assisted by US have studied the effect of ultrasonic pre-treatment prior to air-drying on food and the airborne US conditions during dehydration. In this work a new approach was tested taking in to account drying time and two quality parameters of mango slices dehydrated by convection assisted by 20 KHz power US applied directly using a holed plate as product support and sound transmitting surface. During the drying of mango (Mangifera indica L.) slices (ca. 6.5 g, 0.006 m height and 0.040 m diameter), their weight was recorded every hour until final moisture content (10.0±1.0 % wet basis) was reached. After previous tests, optimization of three drying parameters - frequencies (2, 5 and 8 minutes each half-hour), air temperature (50-55-60⁰C) and power (45-70-95W)- was attempted by using a Box–Behnken design under the response surface methodology for the optimal drying time, color parameters and rehydration rate of dried samples. Assays involved 17 experiments, including a quintuplicate of the central point. Dried samples with and without US application were packed in individual high barrier plastic bags under vacuum, and then stored in the dark at 8⁰C until their analysis. All drying assays and sample analysis were performed in triplicate. US drying experimental data were fitted with nine models, among which the Verna model resulted in the best fit with R2 > 0.9999 and reduced χ2 ≤ 0.000001. Significant reductions in drying time were observed for the assays that used lower frequency and high US power. At 55⁰C, 95 watts and 2 min/30 min of sonication, 10% moisture content was reached in 211 min, as compared with 320 min for the same test without the use of US (blank). Rehydration rates (RR), defined as the ratio of rehydrated sample weight to that of dry sample and measured, was also larger than those of blanks and, in general, the higher the US power, the greater the RR. The direct contact and intermittent US treatment of mango slices used in this work improve drying rates and dried fruit rehydration ability. This technique can thus be used to reduce energy processing costs and the greenhouse gas emissions of fruit dehydration.Keywords: ultrasonic assisted drying, fruit drying, mango slices, contact ultrasonic drying
Procedia PDF Downloads 345458 Allylation of Active Methylene Compounds with Cyclic Baylis-Hillman Alcohols: Why Is It Direct and Not Conjugate?
Authors: Karim Hrratha, Khaled Essalahb, Christophe Morellc, Henry Chermettec, Salima Boughdiria
Abstract:
Among the carbon-carbon bond formation types, allylation of active methylene compounds with cyclic Baylis-Hillman (BH) alcohols is a reliable and widely used method. This reaction is a very attractive tool in organic synthesis of biological and biodiesel compounds. Thus, in view of an insistent and peremptory request for an efficient and straightly method for synthesizing the desired product, a thorough analysis of various aspects of the reaction processes is an important task. The product afforded by the reaction of active methylene with BH alcohols depends largely on the experimental conditions, notably on the catalyst properties. All experiments reported that catalysis is needed for this reaction type because of the poor ability of alcohol hydroxyl group to be as a suitable leaving group. Within the catalysts, several transition- metal based have been used such as palladium in the presence of acid or base and have been considered as reliable methods. Furthemore, acid catalysts such as BF3.OEt2, BiX3 (X= Cl, Br, I, (OTf)3), InCl3, Yb(OTf)3, FeCl3, p-TsOH and H-montmorillonite have been employed to activate the C-C bond formation through the alkylation of active methylene compounds. Interestingly a report of a smoothly process for the ability of 4-imethyaminopyridine(DMAP) to catalyze the allylation reaction of active methylene compounds with cyclic Baylis-Hillman (BH) alcohol appeared recently. However, the reaction mechanism remains ambiguous, since the C- allylation process leads to an unexpected product (noted P1), corresponding to a direct allylation instead of conjugate allylation, which involves the most electrophilic center according to the electron withdrawing group CO effect. The main objective of the present theoretical study is to better understand the role of the DMAP catalytic activity as well as the process leading to the end- product (P1) for the catalytic reaction of a cyclic BH alcohol with active methylene compounds. For that purpose, we have carried out computations of a set of active methylene compounds varying by R1 and R2 toward the same alcohol, and we have attempted to rationalize the mechanisms thanks to the acid–base approach, and conceptual DFT tools such as chemical potential, hardness, Fukui functions, electrophilicity index and dual descriptor, as these approaches have shown a good prediction of reactions products.The present work is then organized as follows: In a first part some computational details will be given, introducing the reactivity indexes used in the present work, then Section 3 is dedicated to the discussion of the prediction of the selectivity and regioselectivity. The paper ends with some concluding remarks. In this work, we have shown, through DFT method at the B3LYP/6-311++G(d,p) level of theory that: The allylation of active methylene compounds with cyclic BH alcohol is governed by orbital control character. Hence the end- product denoted P1 is generated by direct allylation.Keywords: DFT calculation, gas phase pKa, theoretical mechanism, orbital control, charge control, Fukui function, transition state
Procedia PDF Downloads 307457 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling
Authors: Alastair Hales, Xi Jiang
Abstract:
Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics
Procedia PDF Downloads 221456 Potency of Some Dietary Acidifiers on Productive Performance and Controlling Salmonella enteritidis in Broilers
Authors: Mohamed M. Zaki, Maha M. Hady
Abstract:
Salmonella spp. have been categorized as the world’s biggest threats to human health and poultry products are mostly incriminated sources. In Egypt, it was found that S. enteritidis and S. typhimurium are the most prevalent ones in poultry farms. It is recommended to eliminate salmonella from living bird by competing for salmonella contamination in feed in order to establish a healthy gut. The Feed acidifiers are the group of feed additives containing low-molecular-weight organic acids and/ or their salts which act as performance promoters by lowering the pH in the gut, optimizes digestion and inhibit bacterial growth. The inclusion of organic acid in pure form nonetheless effective in feed, yet, it is difficult to handle in feed mills as it is corrosive and produce more losses during pelleting process. The current study aimed at to evaluate the impact of incorporation of sodium diformate (SDF) and a commercial acidifier, CA (a mixture of butyric and propionic acids and their ammonium salts) at 0.4% dietary levels on broilers performance and the control S. enteritidis infection. Two hundreds and seventy unsexed cobb chickens were allotted in one of three treatments (90/ group) which were, the control (no acidifier, C- &C+), the 0.4% SDF (SDF- & SDF +) and the 0.4% CA (CA- & CA +) dietary levels for 35 days. Before the allocation of the groups, ten extra birds and a diet sample were bacteriologically examined to ensure negative contamination with salmonella. The birds were raised on deep-litter separated pens and had free access to feed and water all the time. The experimentally formulated diets were kept at 40C. After 24h access to the different dietary treatments, all the birds in the positive groups (n=15/ replicate) were inoculated intra-crop with 0.2 ml of 24 h broth culture of S. entertidis containing 1X 107 organisms while the negative-treated groups were inoculated with the same amount of the negative broth and second inoculation was done at 22 d of age. Colocal swabs were collected individually from all birds 2 h pre-inoculation to assure the absence of salmonella, then 1, 3, 5, 7, 21 days post-inoculation to recover salmonella. Performance parameter (body weight gain and feed efficiency) were calculated. Mortalities were recorded and reisolation of the salmonella was adopted to ensure it was the inoculated ones. The results revealed that the dietary acidification with sodium diformate significantly improved broilers performance and tends to produce heavier birds as compared to the negative control and CA groups. Moreover, the dietary inclusion of both acidifiers at level of 0.4% was able to eliminate mortalities completely at the relevant inoculation time. Regarding the shedding of S. enteritidius in positive groups, the SDF treatment resulted in significant (p<0.05) cessation of the shedding at 3 days post-inoculation compared to 7 days post-inoculation for the CA-group. In conclusion, sodium diformate at 0.4% dietary level in broiler diets has a valuable effect not only on broilers performance but also by eliminating S. enteritidis the main source of salmonella contamination in poultry farms which is feed.Keywords: acidifier, broilers, Salmonalla spp, sodium diformate
Procedia PDF Downloads 288455 Social Economic Factors Associated with the Nutritional Status of Children In Western Uganda
Authors: Baguma Daniel Kajura
Abstract:
The study explores socio-economic factors, health related and individual factors that influence the breastfeeding habits of mothers and their effect on the nutritional status of their infants in the Rwenzori region of Western Uganda. A cross-sectional research design was adopted, and it involved the use of self-administered questionnaires, interview guides, and focused group discussion guides to assess the extent to which socio-demographic factors associated with breastfeeding practices influence child malnutrition. Using this design, data was collected from 276 mother-paired infants out of the selected 318 mother-paired infants over a period of ten days. Using a sample size formula by Kish Leslie for cross-sectional studies N= Zα2 P (1- P) / δ2, where N= sample size estimate of paired mother paired infants. P= assumed true population prevalence of mother–paired infants with malnutrition cases, P = 29.3%. 1-P = the probability of mother-paired infants not having malnutrition, so 1-P = 70.7% Zα = Standard normal deviation at 95% confidence interval corresponding to 1.96.δ = Absolute error between the estimated and true population prevalence of malnutrition of 5%. The calculated sample size N = 1.96 × 1.96 (0.293 × 0.707) /0,052= 318 mother paired infants. Demographic and socio-economic data for all mothers were entered into Microsoft Excel software and then exported to STATA 14 (StataCorp, 2015). Anthropometric measurements were taken for all children by the researcher and the trained assistants who physically weighed the children. The use of immunization card was used to attain the age of the child. The bivariate logistic regression analysis was used to assess the relationship between socio-demographic factors associated with breastfeeding practices and child malnutrition. The multivariable regression analysis was used to draw a conclusion on whether or not there are any true relationships between the socio-demographic factors associated with breastfeeding practices as independent variables and child stunting and underweight as dependent variables in relation to breastfeeding practices. Descriptive statistics on background characteristics of the mothers were generated and presented in frequency distribution tables. Frequencies and means were computed, and the results were presented using tables, then, we determined the distribution of stunting and underweight among infants by the socioeconomic and demographic factors. Findings reveal that children of mothers who used milk substitutes besides breastfeeding are over two times more likely to be stunted compared to those whose mothers exclusively breastfed them. Feeding children with milk substitutes instead of breastmilk predisposes them to both stunting and underweight. Children of mothers between 18 and 34 years of age are less likely to be underweight, as were those who were breastfed over ten times a day. The study further reveals that 55% of the children were underweight, and 49% were stunted. Of the underweight children, an equal number (58/151) were either mildly or moderately underweight (38%), and 23% (35/151) were severely underweight. Empowering community outreach programs by increasing knowledge and increased access to services on integrated management of child malnutrition is crucial to curbing child malnutrition in rural areas.Keywords: infant and young child feeding, breastfeeding, child malnutrition, maternal health
Procedia PDF Downloads 24454 The Psycho-Linguistic Aspect of Translation Gaps in Teaching English for Specific Purposes
Authors: Elizaveta Startseva, Elena Notina, Irina Bykova, Valentina Ulyumdzhieva, Natallia Zhabo
Abstract:
With the various existing models of intercultural communication that contain a vast number of stages for foreign language acquisition, there is a need for conscious perception of the foreign culture. Such a process is associated with the emergence of linguistic conflict with the consistent students’ desire to solve the problem of the language differences, along with cultural discrepancies. The aim of this study is to present the modern ways and methods of removing psycholinguistic conflict through skills development in professional translation and intercultural communication. The study was conducted in groups of 1-4-year students of Medical Institute and Agro-Technological Institute RUDN university. In the course of training, students got knowledge in such disciplines as basic grammar and vocabulary of the English language, phonetics, lexicology, introduction to linguistics, theory of translation, annotating and referencing media texts and texts in specialty. The students learned to present their research work, participated in the University and exit conferences with their reports and presentations. Common strategies of removing linguistic and cultural conflict can be attributed to the development of such abilities of a language personality as a commitment to communication and cooperation, the formation of cultural awareness and empathy of other cultures of the individual, realistic self-esteem, emotional stability, tolerance, etc. The process of mastering a foreign language and culture of the target language leads to a reduplication of linguistic identity, which leads to successive formation of the so-called 'secondary linguistic personality.' In our study, we tried to approach the problem comprehensively, focusing on the translation gaps for technical and non-technical language still missing such a typology which could classify all of the lacunas on the same principle. When obtaining the background knowledge, students learn to overcome the difficulties posed by the national-specific and linguistic differences of cultures in contact, i.e., to eliminate the gaps (to fill in and compensate). Compensation gaps is a means of fixing it, the initial phase of elimination, followed in some cases and some not is filling semantic voids (plenus). The concept of plenus occurs in most cases of translation gaps, for example in the transcription and transliteration of (intercultural and exoticism), the replication (reproduction of the morphemic structure of words or idioms. In all the above cases the task of the translator is to ensure an identical response of the receptors of the original and translated texts, since any statement is created with the goal of obtaining communicative effect, and hence pragmatic potential is the most important part of its contents. The practical value of our work lies in improving the methodology of teaching English for specific purposes on the basis of psycholinguistic concept of the secondary language personality.Keywords: lacuna, language barrier, plenus, secondary language personality
Procedia PDF Downloads 291453 A Novel Nanocomposite Membrane Designed for the Treatment of Oil/Gas Produced Water
Authors: Zhaoyang Liu, Detao Qin, Darren Delai Sun
Abstract:
The onshore production of oil and gas (for example, shale gas) generates large quantities of wastewater, referred to be ‘produced water’, which contains high contents of oils and salts. The direct discharge of produced water, if not appropriately treated, can be toxic to the environment and human health. Membrane filtration has been deemed as an environmental-friendly and cost-effective technology for treating oily wastewater. However, conventional polymeric membranes have their drawbacks of either low salt rejection rate or high membrane fouling tendency when treating oily wastewater. Recent years, forward osmosis (FO) membrane filtration has emerged as a promising technology with its unique advantages of low operation pressure and less membrane fouling tendency. However, until now there is still no report about FO membranes specially designed and fabricated for treating the oily and salty produced water. In this study, a novel nanocomposite FO membrane was developed specially for treating oil- and salt-polluted produced water. By leveraging the recent advance of nanomaterials and nanotechnology, this nanocomposite FO membrane was designed to be made of double layers: an underwater oleophobic selective layer on top of a nanomaterial infused polymeric support layer. Wherein, graphene oxide (GO) nanosheets were selected to add into the polymeric support layer because adding GO nanosheets can optimize the pore structures of the support layer, thus potentially leading to high water flux for FO membranes. In addition, polyvinyl alcohol (PVA) hydrogel was selected as the selective layer because hydrated and chemically-crosslinked PVA hydrogel is capable of simultaneously rejecting oil and salt. After nanocomposite FO membranes were fabricated, the membrane structures were systematically characterized with the instruments of TEM, FESEM, XRD, ATR-FTIR, surface zeta-potential and Contact angles (CA). The membrane performances for treating produced waters were tested with the instruments of TOC, COD and Ion chromatography. The working mechanism of this new membrane was also analyzed. Very promising experimental results have been obtained. The incorporation of GO nanosheets can reduce internal concentration polarization (ICP) effect in the polymeric support layer. The structural parameter (S value) of the new FO membrane is reduced by 23% from 265 ± 31 μm to 205 ± 23 μm. The membrane tortuosity (τ value) is decreased by 20% from 2.55 ± 0.19 to 2.02 ± 0.13 μm, which contributes to the decrease of S value. Moreover, the highly-hydrophilic and chemically-cross-linked hydrogel selective layer present high antifouling property under saline oil/water emulsions. Compared with commercial FO membrane, this new FO membrane possesses three times higher water flux, higher removal efficiencies for oil (>99.9%) and salts (>99.7% for multivalent ions), and significantly lower membrane fouling tendency (<10%). To our knowledge, this is the first report of a nanocomposite FO membrane with the combined merits of high salt rejection, high oil repellency and high water flux for treating onshore oil/gas produced waters. Due to its outstanding performance and ease of fabrication, this novel nanocomposite FO membrane possesses great application potential in wastewater treatment industry.Keywords: nanocomposite, membrane, polymer, graphene oxide
Procedia PDF Downloads 250452 Impact of Lined and Unlined Water Bodies on the Distribution and Abundance of Fresh Water Snails in Certain Governorates in Egypt
Authors: Nahed Mohamed Ismail, Bayomy Mostafa, Ahmed Abdel Kader, Ahmed Mohamed Azzam
Abstract:
Effect of lining watercourses on the distribution and abundance of fresh water snails at two Egyptian governorates, Baheria (new reclaimed area) and Giza was studied. Seasonal survey in lined and unlined sites during two successive years was carried out. Samples of snails and water were collected from each examined site and the ecological conditions were recorded. The collected snails from each site were placed in plastic aquaria and transferred to the laboratory, where they were sorted out, identified, counted and examined for natural infection. The size frequency distribution was calculated for each snail species. Results revealed that snails were represented in all examined watercourses (lined and unlined) at the two tested habitats by 14 species. (Biomphalaria alexandrina, B. glabrata, Bulinus truncatus, Physa acuta. Helisoma duryi, Lymnaea natalensis, Planorbis planorbis, Cleopatra bulimoids, Lanistes carinatus, Bellamya unicolor, Melanoides tuberculata, Theodoxus nilotica, Succinia cleopatra and Gabbiella senaarensis). During spring, the percentage of live (45%) and dead (55%) snail species was extremely highly significant lower (p>0.001) in lined water bodies compared to the unlined ones (93.5% and 6.5%, respectively) in the examined sites at Baheria. At Giza, the percentage values of live snail species from all lined watercourses (82.6% and 60.2%, during winter and spring, respectively) was significantly lower (p>0.05 & p>0.01) than those in unlined ones (91.1% and 79%, respectively). Size frequency distribution of snails collected from the lined and unlined water bodies at Baheria and Giza governorates during all seasons revealed that during survey, snail populations were stable and the recruitment of young to adult was continuing for some species, where the recruits were observed with adults. However, there was no sign of small snails occurrence in case of B. glabrata and B. alexandrina during autumn, winter and spring and disappear during summer at Giza. Meanwhile they completely absent during all seasons at Baheria Governorate. Chemical analysis of some heavy metals of water samples collected from lined and unlined sites from Baheria and Giza governorates during autumn, winter and spring were approximately as the same in both lined and unlined water bodies. However, Zn and Fe were higher in lined sites (0.78±0.37and 17.4 ± 4.3, respectively) than that of unlined ones (0.4±0.1 and 10.95 ± 1.93, respectively) and Cu was absent in both lined and unlined sites during summer at Baheria governorate. At Giza, Cu and Pb were absent and Fe were higher in lined sites (4.7± 4.2) than that of unlined ones (2.5 ± 1.4) during summer. Statistical analysis showed that no significant difference in all physico-chemical parameters of water in lined and unlined water bodies at the two tested habitats during all seasons. However, it was found that the water conductivity and TDS showed a lower mean values in lined sites than those of unlined ones. Thus, the present obtained data support the concept of utilizing environmental modification such as lining of water courses to help in minimizing the population density of certain vector snails and consequently reduce the transmission of snails born diseases.Keywords: lining, fresh water, snails, watercourses
Procedia PDF Downloads 254451 Effect of Ion Irradiation on the Microstructure and Properties of Chromium Coatings on Zircaloy-4 Substrate
Authors: Alexia Wu, Joel Ribis, Jean-Christophe Brachet, Emmanuel Clouet, Benoit Arnal, Elodie Rouesne, Stéphane Urvoy, Justine Roubaud, Yves Serruys, Frederic Lepretre
Abstract:
To enhance the safety of Light Water Reactor, accident tolerant fuel (ATF) claddings materials are under development. In the framework of CEA-AREVA-EDF collaborative program on ATF cladding materials, CEA has engaged specific studies on chromium coated zirconium alloys. Especially for Loss-of-Coolant-Accident situations, chromium coated claddings have shown some additional 'coping' time before achieving full embrittlement of the oxidized cladding, when compared to uncoated references – both tested in steam environment up to 1300°C. Nevertheless, the behavior of chromium coatings and the stability of the Zr-Cr interface under neutron irradiation remain unknown. Two main points are addressed: 1. Bulk Cr behavior under irradiation: Due to its BCC crystallographic structure, Cr is prone to Ductile-to-Brittle-Transition at quite high temperature. Irradiation could be responsible for a significant additional DBTT shift towards higher temperatures. 2. Zircaloy/Cr interface behavior under irradiation: Preliminary TEM examinations of un-irradiated samples revealed a singular Zircaloy-4/Cr interface with nanometric intermetallic phase layers. Such particular interfaces highlight questions of how they would behave under irradiation - intermetallic zirconium phases are known to be more or less stable under irradiations. Another concern is a potential enhancement of chromium diffusion into the zirconium-alpha based substrate. The purpose of this study is then to determine the behavior of such coatings after ion irradiations, as a surrogate to neutron irradiation. Ion irradiations were performed at the Jannus-Saclay facility (France). 20 MeV Kr8+ ions at 400°C with a flux of 2.8x1011 ions.cm-2.s-1 were used to irradiate chromium coatings of 1-2 µm thick on Zircaloy-4 sheets substrate. At the interface, the calculated damage is close to 10 dpa (SRIM, Quick Calculation Damage mode). Thin foil samples were prepared with FIB for both as-received and irradiated coated samples. Transmission Electron Microscopy (TEM) and in-situ tensile tests in a Scanning Electron Microscope are being used to characterize the un-irradiated and irradiated materials. High Resolution TEM highlights a great complexity of the interface before irradiation since it is formed of an alternation of intermetallic phases – C14 and C15. The interfaces formed by these intermetallic phases with chromium and zirconium show semi-coherency. Chemical analysis performed before irradiation shows some iron enrichment at the interface. The chromium coating bulk microstructures and properties are also studied before and after irradiation. On-going in-situ tensile tests focus on the capacity of chromium coatings to sustain some plastic deformation when tested up to 350°C. The stability of the Cr/Zr interface is shown after ion irradiation up to 10 dpa. This observation constitutes the first result after irradiation on these new coated claddings materials.Keywords: accident tolerant fuel, HRTEM, interface, ion-irradiation
Procedia PDF Downloads 363