Search results for: wind seed measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4424

Search results for: wind seed measurement

2684 Providing Healthy Food in Primary and Secondary Schools of Saudi Arabia to Significantly Reduce Obesity and Improve Health by Using the Star Rating System for a Healthier Diet

Authors: Emran M. Badghish

Abstract:

Overweight and obesity have now become an epidemic around the globe, both in high-, as well as low-income regions. It is important to use preventive measures that are cost-effective. Schools are the essence of building societies and engaging them in healthy nutrition will offer a way to reach individuals at an early stage in life, with many positive and significant impacts. Aim: Provide healthy food in schools of children aged 5 to 18 years old. Methods: Distributing healthy food to a school and implementation of a star rating system for healthier foods, with five stars for the healthiest option to a half a star for the unhealthiest. The stars system was developed in Australia and should motivate children to consume the healthier nutritional options. Each canteen should be allowed a minimum of 3.5 stars rating for the food provided. Outcome Measurement: Body-mass-index as an indicator of overweight and obesity should be checked at the beginning of the study annually for five years for all children. Another side measurement is the performance by checking the grades and a questionnaire on eating habits at the start of the study and yearly. Expected Outcome: A lower health-risk behaviour and assistance to children in reaching their potentials as they will adapt to eating healthier. Nutrition during childhood has the potential to prevent obesity, type 2 diabetes, dental diseases, hypertension and, in later life, cardiovascular disease, osteoporosis and a variety of cancers. In Australia NSW starting from 2016 is expecting a 5% reduction of childhood overweight and obesity by 2025. As for Saudi-Arabia, it is expected to have an, even more, reduction by 2023 as a lot of our children are canteen-dependent. Conclusion: Introducing healthy food in schools is a preventative method that would have significant influence on the reduction of the prevalence of obesity in Saudi-Arabia and improves its general health.

Keywords: food, healthy, children, obesity, schools

Procedia PDF Downloads 181
2683 Effect of Band Application of Organic Manures on Growth and Yield of Pigeonpea (Cajanus cajan (L.) Millsp.)

Authors: S. B. Kalaghatagi, A. K. Guggari, Pallavi S. Manikashetti

Abstract:

A field experiment to study the effect of band application of organic manures on growth and yield of pigeon pea was conducted during 2016-17 at Kharif Seed Farm, College of Agriculture, Vijayapura. The experiment was carried out in randomized block design with thirteen treatments viz., T1 to T6 were band application of vermicompost at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 t ha⁻¹, respectively. The treatments T7 to T12 include band application of sieved FYM at 1, 2, 3, 4, 5 and 6 t ha⁻¹, respectively and were compared with already recommended practice of broadcasting of FYM at 6 t ha⁻¹ (T13); and recommended dose of fertilizer (25:50:0 NPK kg ha⁻¹) was applied commonly to all the treatments. The results revealed that band application of vermicompost (VC) at 3 t ha⁻¹ recorded significantly higher number of pods plant⁻¹ (116), grain weight plant⁻¹ (37.35 g), grain yield (1,647 kg ha⁻¹), stalk yield (2,920 kg ha⁻¹) and harvest index (0.36) and was on par with the band application of VC at 2.0 and 2.5 t ha⁻¹ and sieved FYM at 4.0 and 5.0 t ha⁻¹ as compared to broadcasting of FYM at 6 t ha-1 (99.33, 24.07 g, 1,061 kg ha⁻¹, 2,920 kg ha⁻¹ and 0.36, respectively). Significantly higher net return (Rupees 59,410 ha⁻¹) and benefit cost ratio of 2.92 recorded with band application of VC at 3 t ha⁻¹ over broadcasting of FYM at 6 tonnes per ha (Rupees 25,401 ha⁻¹ and 1.78, respectively). It indicates from the above results that, growing of pigeon pea with band application of VC at 2, 2.5 and 3 t ha⁻¹ and sieved FYM at 4 and 5 t ha⁻¹ leads to saving of 1 tonne of VC and 2 tonnes of FYM per ha.

Keywords: organic manures, rainfed pigeonpea, sieved FYM, vermicompost

Procedia PDF Downloads 192
2682 Information Technology Service Management System Measurement Using ISO20000-1 and ISO15504-8

Authors: Imam Asrowardi, Septafiansyah Dwi Putra, Eko Subyantoro

Abstract:

Process assessments can improve IT service management system (IT SMS) processes but the assessment method is not always transparent. This paper outlines a project to develop a solution- mediated process assessment tool to enable transparent and objective SMS process assessment. Using the international standards for SMS and process assessment, the tool is being developed following the International standard approach in collaboration and evaluate by expert judgment from committee members and ITSM practitioners.

Keywords: SMS, tools evaluation, ITIL, ISO service

Procedia PDF Downloads 462
2681 Monitoring of Educational Achievements of Kazakhstani 4th and 9th Graders

Authors: Madina Tynybayeva, Sanya Zhumazhanova, Saltanat Kozhakhmetova, Merey Mussabayeva

Abstract:

One of the leading indicators of the education quality is the level of students’ educational achievements. The processes of modernization of Kazakhstani education system have predetermined the need to improve the national system by assessing the quality of education. The results of assessment greatly contribute to addressing questions about the current state of the educational system in the country. The monitoring of students’ educational achievements (MEAS) is the systematic measurement of the quality of education for compliance with the state obligatory standard of Kazakhstan. This systematic measurement is independent of educational organizations and approved by the order of the Minister of Education and Scienceof Kazakhstan. The MEAS was conducted in the regions of Kazakhstanfor the first time in 2022 by the National Testing Centre. The measurement does not have legal consequences either for students or for educational organizations. Students’ achievements were measured in three subject areas: reading, mathematics and science literacy. MEAS was held for the first time in April this year, 105 thousand students from 1436 schools of Kazakhstan took part in the testing. The monitoring was accompanied by a survey of students, teachers, and school leaders. The goal is to identify which contextual factors affect learning outcomes. The testing was carried out in a computer format. The test tasks of MEAS are ranked according to the three levels of difficulty: basic, medium, and high. Fourth graders are asked to complete 30 closed-type tasks. The average score of the results is 21 points out of 30, which means 70% of tasks were successfully completed. The total number of test tasks for 9th grade students – 75 questions. The results of ninth graders are comparatively lower, the success rate of completing tasks is 63%. MEAS participants did not reveal a statistically significant gap in results in terms of the language of instruction, territorial status, and type of school. The trend of reducing the gap in these indicators is also noted in the framework of recent international studies conducted across the country, in particular PISA for schools in Kazakhstan. However, there is a regional gap in MOES performance. The difference in the values of the indicators of the highest and lowest scores of the regions was 11% of the success of completing tasks in the 4th grade, 14% in the 9thgrade. The results of the 4th grade students in reading, mathematics, and science literacy are: 71.5%, 70%, and 66.9%, respectively. The results of ninth-graders in reading, mathematics, and science literacy are 69.6%, 54%, and 60.8%, respectively. From the surveys, it was revealed that the educational achievements of students are considerably influenced by such factors as the subject competences of teachers, as well as the school climate and motivation of students. Thus, the results of MEAS indicate the need for an integrated approach to improving the quality of education. In particular, the combination of improving the content of curricula and textbooks, internal and external assessment of the educational achievements of students, educational programs of pedagogical specialties, and advanced training courses is required.

Keywords: assessment, secondary school, monitoring, functional literacy, kazakhstan

Procedia PDF Downloads 91
2680 Development of an Experiment for Impedance Measurement of Structured Sandwich Sheet Metals by Using a Full Factorial Multi-Stage Approach

Authors: Florian Vincent Haase, Adrian Dierl, Anna Henke, Ralf Woll, Ennes Sarradj

Abstract:

Structured sheet metals and structured sandwich sheet metals are three-dimensional, lightweight structures with increased stiffness which are used in the automotive industry. The impedance, a figure of resistance of a structure to vibrations, will be determined regarding plain sheets, structured sheets, and structured sandwich sheets. The aim of this paper is generating an experimental design in order to minimize costs and duration of experiments. The design of experiments will be used to reduce the large number of single tests required for the determination of correlation between the impedance and its influencing factors. Full and fractional factorials are applied in order to systematize and plan the experiments. Their major advantages are high quality results given the relatively small number of trials and their ability to determine the most important influencing factors including their specific interactions. The developed full factorial experimental design for the study of plain sheets includes three factor levels. In contrast to the study of plain sheets, the respective impedance analysis used on structured sheets and structured sandwich sheets should be split into three phases. The first phase consists of preliminary tests which identify relevant factor levels. These factor levels are subsequently employed in main tests, which have the objective of identifying complex relationships between the parameters and the reference variable. Possible post-tests can follow up in case additional study of factor levels or other factors are necessary. By using full and fractional factorial experimental designs, the required number of tests is reduced by half. In the context of this paper, the benefits from the application of design for experiments are presented. Furthermore, a multistage approach is shown to take into account unrealizable factor combinations and minimize experiments.

Keywords: structured sheet metals, structured sandwich sheet metals, impedance measurement, design of experiment

Procedia PDF Downloads 359
2679 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 399
2678 Investigating the Influence of Solidification Rate on the Microstructural, Mechanical and Physical Properties of Directionally Solidified Al-Mg Based Multicomponent Eutectic Alloys Containing High Mg Alloys

Authors: Fatih Kılıç, Burak Birol, Necmettin Maraşlı

Abstract:

The directional solidification process is generally used for homogeneous compound production, single crystal growth, and refining (zone refining), etc. processes. The most important two parameters that control eutectic structures are temperature gradient and grain growth rate which are called as solidification parameters The solidification behavior and microstructure characteristics is an interesting topic due to their effects on the properties and performance of the alloys containing eutectic compositions. The solidification behavior of multicomponent and multiphase systems is an important parameter for determining various properties of these materials. The researches have been conducted mostly on the solidification of pure materials or alloys containing two phases. However, there are very few studies on the literature about multiphase reactions and microstructure formation of multicomponent alloys during solidification. Because of this situation, it is important to study the microstructure formation and the thermodynamical, thermophysical and microstructural properties of these alloys. The production process is difficult due to easy oxidation of magnesium and therefore, there is not a comprehensive study concerning alloys containing high Mg (> 30 wt.% Mg). With the increasing amount of Mg inside Al alloys, the specific weight decreases, and the strength shows a slight increase, while due to formation of β-Al8Mg5 phase, ductility lowers. For this reason, production, examination and development of high Mg containing alloys will initiate the production of new advanced engineering materials. The original value of this research can be described as obtaining high Mg containing (> 30% Mg) Al based multicomponent alloys by melting under vacuum; controlled directional solidification with various growth rates at a constant temperature gradient; and establishing relationship between solidification rate and microstructural, mechanical, electrical and thermal properties. Therefore, within the scope of this research, some > 30% Mg containing ternary or quaternary Al alloy compositions were determined, and it was planned to investigate the effects of directional solidification rate on the mechanical, electrical and thermal properties of these alloys. Within the scope of the research, the influence of the growth rate on microstructure parameters, microhardness, tensile strength, electrical conductivity and thermal conductivity of directionally solidified high Mg containing Al-32,2Mg-0,37Si; Al-30Mg-12Zn; Al-32Mg-1,7Ni; Al-32,2Mg-0,37Fe; Al-32Mg-1,7Ni-0,4Si; Al-33,3Mg-0,35Si-0,11Fe (wt.%) alloys with wide range of growth rate (50-2500 µm/s) and fixed temperature gradient, will be investigated. The work can be planned as; (a) directional solidification of Al-Mg based Al-Mg-Si, Al-Mg-Zn, Al-Mg-Ni, Al-Mg-Fe, Al-Mg-Ni-Si, Al-Mg-Si-Fe within wide range of growth rates (50-2500 µm/s) at a constant temperature gradient by Bridgman type solidification system, (b) analysis of microstructure parameters of directionally solidified alloys by using an optical light microscopy and Scanning Electron Microscopy (SEM), (c) measurement of microhardness and tensile strength of directionally solidified alloys, (d) measurement of electrical conductivity by four point probe technique at room temperature (e) measurement of thermal conductivity by linear heat flow method at room temperature.

Keywords: directional solidification, electrical conductivity, high Mg containing multicomponent Al alloys, microhardness, microstructure, tensile strength, thermal conductivity

Procedia PDF Downloads 246
2677 Production of Biodiesel from Avocado Waste in Hossana City, Ethiopia

Authors: Tarikayehu Amanuel, Abraham Mohammed

Abstract:

The production of biodiesel from waste materials is becoming an increasingly important research area in the field of renewable energy. One potential waste material source is avocado, a fruit with a large seed and peel that are typically discarded after consumption. This research aims to investigate the feasibility of using avocado waste as a feedstock for the production of biodiesel. The study focuses on extracting oil from the waste material using the transesterification technique and then characterizing the properties of oil to determine its suitability for conversion to biodiesel. The study was conducted experimentally, and a maximum oil yield of 11.583% (150g of oil produced from 1.295kg of avocado waste powder) was obtained from avocado waste powder at an extraction time of 4hr. An 87% fatty acid methyl ester (biodiesel) conversion was also obtained using a methanol/oil ratio of 6:1, 1.3g NaOH, reaction time 60min, and 65°C reaction temperature. Furthermore, from 145 ml of avocado waste oil, 126.15 ml of biodiesel was produced, indicating a high percentage of conversion (87%). Conclusively, the produced biodiesel showed comparable physical and chemical characteristics to that of standard biodiesel samples considered for the study. The results of this research could help to identify a new source of biofuel production while also addressing the issue of waste disposal in the food industry.

Keywords: biodiesel, avocado, transesterification, soxhlet extraction

Procedia PDF Downloads 52
2676 Occurrence of High Nocturnal Surface Ozone at a Tropical Urban Area

Authors: S. Dey, P. Sibanda, S. Gupta, A. Chakraborty

Abstract:

The occurrence of high nocturnal surface ozone over a tropical urban area (23̊ 32′16.99″ N and 87̊ 17′ 38.95″ E) is analyzed in this paper. Five incidences of nocturnal ozone maxima are recorded during the observational span of two years (June, 2013 to May, 2015). The maximum and minimum values of the surface ozone during these five occasions are 337.630 μg/m3 and 13.034 μg/m3 respectively. HYSPLIT backward trajectory analyses and wind rose diagrams support the horizontal transport of ozone from distant polluted places. Planetary boundary layer characteristics, concentration of precursor (NO2) and meteorology are found to play important role in the horizontal and vertical transport of surface ozone during nighttime.

Keywords: nocturnal ozone, planetary boundary layer, horizontal transport, meteorology, urban area

Procedia PDF Downloads 271
2675 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy

Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa

Abstract:

Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.

Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator

Procedia PDF Downloads 189
2674 Unraveling the Complexities of Competitive Aggressiveness: A Qualitative Exploration in the Oil and Gas Industry

Authors: Salim Al Harthy, Alexandre A. Bachkirov

Abstract:

This study delves into the complexities of competitive aggressiveness in the oil and gas industry, focusing on the characteristics of the identified competitive actions. The current quantitative research on competitive aggressiveness lacks agreement on the connection between antecedents and outcomes, prompting a qualitative investigation. To address this gap, the research utilizes qualitative interviews with CEOs from Oman's oil and gas service industry to explore the dynamics of competitive aggressiveness. Using Noklenain's typology, the study categorizes and analyzes identified actions, shedding light on the spectrum of competitive behaviors within the industry. Notably, actions predominantly fall under the "Bring about" and "Preserve" elements, with a notable absence in the "Forebear" and "Destroy" categories, possibly linked to the study's focus on service-oriented businesses. The study also explores the detectability of actions, revealing that "Bring about" actions are detectable, while those in "Preserve" and "Suppress" are not. This challenges conventional definitions of competitive aggressiveness, suggesting that not all actions are readily detectable despite being considered competitive. The presence of non-detectable actions introduces complexity to measurement methods reliant on visible empirical data. Moreover, the study contends that companies can adopt an aggressive competitive approach without directly challenging rivals. This challenges traditional views and emphasizes the innovative and entrepreneurial aspects of actions not explicitly aimed at competitors. By not revealing strategic intentions, such actions put rivals at a disadvantage, underscoring the need for a nuanced understanding of competitive aggressiveness. In summary, the lack of consensus in existing literature regarding the relationship between antecedents and outcomes in competitive aggressiveness is addressed. The study reveals a spectrum of detectable and undetectable actions, posing challenges in measurement and emphasizing the need for alternative methods to assess undetectable actions in competitive behavior. This research contributes to a more nuanced understanding of competitive aggressiveness, acknowledging the diverse actions shaping a company's strategic positioning in dynamic business environments.

Keywords: competitive aggressiveness, qualitative exploration, noklenain's typology, oil and gas industry

Procedia PDF Downloads 40
2673 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process

Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois

Abstract:

Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.

Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor

Procedia PDF Downloads 122
2672 The Concentration of Formaldehyde in Rainwater and Typhoon Rainwater at Sakai City, Japan

Authors: Chinh Nguyen Nhu Bao, Hien To Thi, Norimichi Takenaka

Abstract:

Formaldehyde (HCHO) concentrations in rainwater including in tropical storms in Sakai City, Osaka, Japan have been measured continuously during rain event by developed chemiluminescence method. The level of formaldehyde was ranged from 15 µg/L to 500 µg/L. The high concentration of HCHO in rainwater is related to the wind direction from the south and west sides of Sakai City where manufactures related to chemicals, oil-refinery, and steel. The in-situ irradiated experiment on rainwater sample was conducted to prove the aqueous phase photo-production of HCHO and the degradation of HCHO. In the daytime, the aqueous phase photolysis is the source of HCHO in rainwater (4.52 ± 5.74 µg/L/h for UV light source in-situ condition, 2.84-8.96 µg/L/h under sunlight). However, in the night time, the degradation is the function of microorganism.

Keywords: chemiluminescence, formaldehyde, rainwater, typhoon

Procedia PDF Downloads 150
2671 Nonlinear Dynamic Response of Helical Gear with Torque-Limiter

Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire

Abstract:

This paper investigates the nonlinear dynamic response of a mechanical torque limiter which is used to protect drive parts from overload (helical transmission gears). The system is driven by four excitations: two external excitations (aerodynamics torque and force) and two internal excitations (two mesh stiffness fluctuations). In this work, we develop a dynamic model with lumped components and 28 degrees of freedom. We use the Runge Kutta step-by-step time integration numerical algorithm to solve the equations of motion obtained by Lagrange formalism. The numerical results have allowed us to identify the sources of vibration in the wind turbine. Also, they are useful to help the designer to make the right design and correctly choose the times for maintenance.

Keywords: two-stage helical gear, lumped model, dynamic response, torque-limiter

Procedia PDF Downloads 338
2670 Application of Japanese Origami Ball for Floating Multirotor Aerial Robot

Authors: P. H. Le, J. Molina, S. Hirai

Abstract:

In this work, we propose the application of Japanese “Origami” art for a floating function of a small aerial vehicle such as a hexarotor. A preliminary experiment was conducted using Origami magic balls mounted under a hexarotor. This magic ball can expand and shrink using an air pump during free flying. Using this interesting and functional concept, it promises to reduce the resistance of wind as well as reduce the energy consumption when the Origami balls are deflated. This approach can be particularly useful in rescue emergency situations. Furthermore, there are many unexpected reasons that may cause the multi-rotor has to land on the surface of water due to problems with the communication between the aircraft and the ground station. In addition, a complementary experiment was designed to prove that the hexarotor can fly maintaining the stability and also, takes off and lands on the surface of water using air balloons.

Keywords: helicopter, Japanese origami ball, floating, aerial robots, rescue

Procedia PDF Downloads 373
2669 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant

Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih

Abstract:

ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.

Keywords: PWR, ALOHA, habitability, Maanshan

Procedia PDF Downloads 184
2668 An Approach to Maximize the Influence Spread in the Social Networks

Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel

Abstract:

In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.

Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network

Procedia PDF Downloads 233
2667 Effect of Sowing Dates on Growth, Agronomic Traits and Yield of Tossa Jute (Corchorus olitorius L.)

Authors: Amira Racha Ben Yakoub, Ali Ferchichi

Abstract:

In order to investigate the impact of sowing time on growth parameters, the length of the development cycle and yield of tossa jute (Corchorus olitorius L.), a field experiment was conducted from March to May 2011 at the Laboratoire d’Aridoculture et Cultures Oasiennes, ‘Institut des Régions Arides de Médénine’, Tunisia. Results of the experiment revealed that the early sowing (the middle of March, the beginning of April) induced a cycle of more than 100 days to reach the stage maturity and generates a marked drop in production. This period of plantation affects plant development and leads to a sharp drop in performance marked primarily by a reduction in growth, number and size of leaves, number of flowers and pods and weight of different parts of plant. Sowing from the end of April seems appropriate for shortening the development cycle and better profitability than the first two dates. Seeding of C. olitorius during May enhance the development of plants more dense, which explains the superiority of production marked by the increase of seed yield and leaf fresh and dry weight of this leafy vegetables.

Keywords: tossa jute (Corchorus olitorius L), sowing date, growth, yield

Procedia PDF Downloads 332
2666 Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia

Authors: Pelangi Wiyantika

Abstract:

Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz.

Keywords: geothermal, magnetotelluric, renewable energy, resistivity, sustainable energy

Procedia PDF Downloads 288
2665 Protective Effect of Germinated Fenugreek Seeds on Keratoachantoma Cancer Skin

Authors: Zahra Sokar, Sara Oufquir, Brahim Eddafali, Abderrahman Chait

Abstract:

Fenugreek is one of the oldest plants used in traditional herbal medicine. Several studies have demonstrated the anticancer effects of seeds by inhibiting the proliferation, angiogenesis, invasion and metastasis of various cancers. While there is plenty of research demonstrating the antineoplastic effects of dormant seeds, little is known about the potential of sprouts in fighting cancer. Therefore, we propose to study the chemoprotective effect of germinating fenugreek seeds on keratoacanthoma skin cancer induced by cutaneous exposure to DMA/Croton oil in mice. The results obtained show that oral administration of 250 and 500 mg/kg aqueous sprout seed extract reduces the incidence, rate, volume, and tumor weight in a very significant manner. Histological examination revealed that mice treated with 250 mg/kg showed strong inhibition of squamous cell carcinoma formation with thickening of the epithelial layer and mild acanthosis and hyperkeratosis. A dose of 500 mg/kg prevented invasion and the occurrence of hyperkeratosis. Fenugreek sprouts appear to be a promising natural product for preventing keratoacanthoma skin cancer. Nevertheless, further studies in the same field need to be developed to evaluate the antineoplastic potential of germinated seeds.

Keywords: anticancer, fenugreek, keratoacanthoma, sprouts

Procedia PDF Downloads 55
2664 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 345
2663 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 363
2662 Applying Systems Thinking and a System of Systems Approach to Facilitate Sustainable Grid Integration of Variable Renewable Energy

Authors: Edward B. Ssekulima, Amir Etemadi

Abstract:

This paper presents a Systems Thinking and System of Systems (SoS) viewpoint for managing requirements complexity in the grid integration of Variable Renewable Energy (VRE). To achieve a SoS approach, it is often necessary to inculcate a Systems Thinking (ST) perspective in the planning and design of the attendant system. We show how this approach can support the enhanced integration of VRE (wind, solar small hydro) for which intermittency is a key inhibiting factor to their sustainable grid integration. The results indicate that a ST and SoS approach are a critical tool for decision makers in the planning, design and deployment of VRE Sources for their sustainable grid-integration in accordance with relevant techno-economic, social and environmental requirements.

Keywords: sustainable grid-integration, system of systems, systems thinking, variable energy resources

Procedia PDF Downloads 102
2661 On the Market Prospects of Long-Term Electricity Storages

Authors: Reinhard Haas, Amela Ajanovic

Abstract:

In recent years especially electricity generation from intermittent sources like wind and solar has increased remarkably. To balance electricity supply over time calls for storages has been launched. Because intermittency also exists over longer periods – months, years, especially the need for long-term electricity storages is discussed. The major conclusions of our analysis are: (i) Despite many calls for a prophylactic construction of new storage capacities with respect to all centralized long-term storage technologies the future perspectives will be much less promising than currently indicated in several papers and discussions; (ii) new long term hydro storages will not become economically attractive in general in the next decades; however, daily storages will remain the cheapest option and the most likely to be competitive; (iii) For PtG-technologies it will also become very hard to compete in the electricity markets despite a high technological learning potential. Yet, for hydrogen and methane there are prospects for use in the transport sector.

Keywords: storages, electricity markets, power-to-gas, hydro pump storages, economics

Procedia PDF Downloads 467
2660 Psychodiagnostic Tool Development for Measurement of Social Responsibility in Ukrainian Organizations

Authors: Olena Kovalchuk

Abstract:

How to define the understanding of social responsibility issues by Ukrainian companies is a contravention question. Thus, one of the practical uses of social responsibility is a diagnostic tool development for educational, business or scientific purposes. So the purpose of this research is to develop a tool for measurement of social responsibility in organization. Methodology: A 21-item questionnaire “Organization Social Responsibility Scale” was developed. This tool was adapted for the Ukrainian sample and based on the questionnaire “Perceived Role of Ethics and Social Responsibility” which connects ethical and socially responsible behavior to different aspects of the organizational effectiveness. After surveying the respondents, the factor analysis was made by the method of main compounds with orthogonal rotation VARIMAX. On the basis of the obtained results the 21-item questionnaire was developed (Cronbach’s alpha – 0,768; Inter-Item Correlations – 0,34). Participants: 121 managers at all levels of Ukrainian organizations (57 males; 65 females) took part in the research. Results: Factor analysis showed five ethical dilemmas concerning the social responsibility and profit compatibility in Ukrainian organizations. Below we made an attempt to interpret them: — Social responsibility vs profit. Corporate social responsibility can be a way to reduce operational costs. A firm’s first priority is employees’ morale. Being ethical and socially responsible is the priority of the organization. The most loaded question is "Corporate social responsibility can reduce operational costs". Significant effect of this factor is 0.768. — Profit vs social responsibility. Efficiency is much more important to a firm than ethics or social responsibility. Making the profit is the most important concern for a firm. The dominant question is "Efficiency is much more important to a firm than whether or not the firm is seen as ethical or socially responsible". Significant effect of this factor is 0.793. — A balanced combination of social responsibility and profit. Organization with social responsibility policy is more attractive for its stakeholders. The most loaded question is "Social responsibility and profitability can be compatible". Significant effect of this factor is 0.802. — Role of Social Responsibility in the successful organizational performance. Understanding the value of social responsibility and business ethics. Well-being and welfare of the society. The dominant question is "Good ethics is often good business". Significant effect of this factor is 0.727. — Global vision of social responsibility. Issues related to global social responsibility and sustainability. Innovative approaches to poverty reduction. Awareness of climate change problems. Global vision for successful business. The dominant question is "The overall effectiveness of a business can be determined to a great extent by the degree to which it is ethical and socially responsible". Significant effect of this factor is 0.842. The theoretical contribution. The perspective of the study is to develop a tool for measurement social responsibility in organizations and to test questionnaire’s adequacy for social and cultural context. Practical implications. The research results can be applied for designing a training programme for business school students to form their global vision for successful business as well as the ability to solve ethical dilemmas in managerial practice. Researchers interested in social responsibility issues are welcome to join the project.

Keywords: corporate social responsibility, Cronbach’s alpha, ethical behaviour, psychodiagnostic tool

Procedia PDF Downloads 351
2659 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis

Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon

Abstract:

Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.

Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables

Procedia PDF Downloads 334
2658 Coping Heat Stress By Crushed Fennel (Foeniculum Vulgare) Seeds in Broilers: Growth, Redox Balance, and Humoral Immune Response

Authors: Adia Fatima, Naila Chand, Rifat Ullah Khan

Abstract:

The goal of this study was to determine how fennel seed supplementation affected broiler growth, carcass quality, antioxidant status, and antibody titer in heat-stressed broilers. A total of 720 one-day-old broiler chickens were weighed and assigned to 28-floor pens (25 broiler chickens per pen). The broiler chickens were housed in a thermoneutral (TN) environment and were exposed to heat stress (HS). For 23 hours, the broiler chickens were kept under fluorescent lighting. For 35d, HS broiler chickens were fed a control diet and three levels of fennel seeds powder at rates of 15g/kg (Fen-15), 20 g/kg (Fen-20), and 25 g/kg (Fen-25). Overall feed intake, weight gain, and dressing % were considerably greater (P < 0.05) in Fen-25 and TN, but FCR was significantly reduced (P<0.01) in the same groups. When TN, Fen-20, and Fen-25 were compared to the control, malondialdehyde (MDA), paraoxonase (PON1), and antibody titer against New Castle disease (ND) were considerably (P < 0.05) greater. Further, the linear and quadratic response was for feed intake, weight gain, FCR, MDA, PON1, and ND titer. It was concluded that Fen-20 and Fen-25 increased broiler growth, carcass quality, antioxidant status, and immunological response under HS conditions.

Keywords: heat stress, growth, antioxidant, immunity

Procedia PDF Downloads 81
2657 Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends

Authors: Virender Singh Gurau, Akash Deep, Sarbjot S. Sandhu

Abstract:

Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel.

Keywords: biodiesel, transesterification, bitter apricot kernel oil, performance and emission testing

Procedia PDF Downloads 318
2656 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition

Authors: Latha Subbiah, Dhanalakshmi Samiappan

Abstract:

In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.

Keywords: curvelet, decomposition, levelset, ultrasound

Procedia PDF Downloads 325
2655 Change of Internal Friction on Magnesium Alloy with 5.48% Al Dependence on the Temperature

Authors: Milan Uhríčik, Andrea Soviarová, Zuzana Dresslerová, Peter Palček, Alan Vaško

Abstract:

The article is focused on the analysis changes dependence on the temperature on the magnesium alloy with 5,48% Al, 0,813% Zn and 0,398% Mn by internal friction. Internal friction is a property of the material is measured on the ultrasonic resonant aparature at a frequency about f = 20470 Hz. The measured temperature range was from 30 °C up to 420 °C. Precisely measurement of the internal friction can be monitored ongoing structural changes and various mechanisms that prevent these changes.

Keywords: internal friction, magnesium alloy, temperature, resonant frequency

Procedia PDF Downloads 681