Search results for: supervised learning algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10370

Search results for: supervised learning algorithm

8630 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 154
8629 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 109
8628 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand

Authors: Salinee Thumronglaohapun

Abstract:

The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.

Keywords: location-allocation problem, stochastic demand, local search, genetic algorithm

Procedia PDF Downloads 125
8627 A Methodological Concept towards a Framework Development for Social Software Adoption in Higher Education System

Authors: Kenneth N. Ohei, Roelien Brink

Abstract:

For decades, teaching and learning processes have centered on the traditional approach (Web 1.0) that promoted teacher-directed pedagogical practices. Currently, there is a realization that the traditional approach is not adequate to effectively address and improve all student-learning outcomes. The subsequent incorporation of social software, Information, and Communication Technology (ICT) tools in universities may serve as complementary to support educational goals, offering students the affordability and opportunity to educational choices and learning platforms. Consequently, educators’ inability to incorporate these instructional ICT tools in their teaching and learning practices remains a challenge. This will signify that educators still lack the ICT skills required to administer lectures and bridging learning gaps. This study probes a methodological concept with the aim of developing a framework towards the adoption of social software in HES to help facilitate business processes and can build social presence among students. A mixed method will be appropriate to develop a comprehensive framework needed in Higher Educational System (HES). After research have been conducted, the adoption of social software will be based on the developed comprehensive framework which is supposed to impact positively on education and approach of delivery, improves learning experience, engagement and finally, increases educational opportunities and easy access to educational contents.

Keywords: blended and integrated learning, learning experience and engagement, higher educational system, HES, information and communication technology, ICT, social presence, Web 1.0, Web 2.0, Web 3.0

Procedia PDF Downloads 159
8626 The Practice of Teaching Chemistry by the Application of Online Tests

Authors: Nikolina Ribarić

Abstract:

E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms, and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content and achieved better educational results in chemistry when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" -i.e., solving assignments in a workbook or writing assignments in worksheets.

Keywords: chemistry class, e-learning, motivation, Testmoz

Procedia PDF Downloads 160
8625 The Holistic Nursing WebQuest: An Interactive Teaching/Learning Strategy

Authors: Laura M. Schwarz

Abstract:

WebQuests are an internet-based interactive teaching/learning tool and utilize a scaffolded methodology. WebQuests employ critical thinking, afford inquiry-based constructivist learning, and readily employ Bloom’s Taxonomy. WebQuests have generally been used as instructional technology tools in primary and secondary education and have more recently grown in popularity in higher education. The study of the efficacy of WebQuests as an instructional approach to learning, however, has been limited, particularly in the nursing education arena. The purpose of this mixed-methods study was to determine nursing students’ perceptions of the effectiveness of the Nursing WebQuest as a teaching/learning strategy for holistic nursing-related content. Quantitative findings (N=42) suggested that learners were active participants, used reflection, thought of new ideas, used analysis skills, discovered something new, and assessed the worth of something while taking part in the WebQuests. Qualitative findings indicated that participants found WebQuest positives as easy to understand and navigate; clear and organized; interactive; good alternative learning format, and used a variety of quality resources. Participants saw drawbacks as requiring additional time and work; and occasional failed link or link causing them to lose their location in the WebQuest. Recommendations include using larger sample size and more diverse populations from various programs and universities. In conclusion, WebQuests were found to be an effective teaching/learning tool as positively assessed by study participants.

Keywords: holistic nursing, nursing education, teaching/learning strategy, WebQuests

Procedia PDF Downloads 126
8624 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 35
8623 Multimedia Firearms Training System

Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel

Abstract:

The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.

Keywords: firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics

Procedia PDF Downloads 224
8622 Model-Based Software Regression Test Suite Reduction

Authors: Shiwei Deng, Yang Bao

Abstract:

In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.

Keywords: dependence analysis, EFSM model, greedy algorithm, regression test

Procedia PDF Downloads 429
8621 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid

Procedia PDF Downloads 447
8620 Principal Creative Leadership for Teacher Learning and School Culture

Authors: Yashi Ye

Abstract:

Principles play vital roles in shaping the school culture and promoting teachers' professional learning by exerting their leadership. In the changing time of the 21st century, the creative leadership of school leaders is increasingly important in cultivating the professional learning communities of teachers for eventually improving student performance in every continent. This study examines under what conditions and how principal creative leadership contributes to teachers’ professional learning and school culture. Data collected from 632 teachers in 30 primary and middle schools in the cities of Chengdu and Chongqing in mainland China are analyzed using structural equation modeling and bootstrapping tests. A moderated mediation model of principle creative leadership effects is used to analyze professional teacher learning and school culture in which the mediator will be school culture and the moderator will be power distance orientation. The results indicate that principal creative leadership has significant direct and indirect effects on teachers' professional learning. A positive correlation between principal creative leadership, professional teacher learning, and school culture is observed. Further model testing found that teacher power distance orientation moderated the significant effect of principal creative leadership on school culture. When teachers perceived higher power distance in teacher-principal relations, the effects of principal creative leadership were stronger than for those who perceived low power distance. The results indicate the “culture change” in the young generation of teachers in China, and further implications to understanding the cultural context in the field of educational leadership are discussed.

Keywords: power distance orientation, principal creative leadership, school culture, teacher professional learning

Procedia PDF Downloads 142
8619 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models

Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu

Abstract:

This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.

Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making

Procedia PDF Downloads 50
8618 Abdominal Organ Segmentation in CT Images Based On Watershed Transform and Mosaic Image

Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid

Abstract:

Accurate Liver, spleen and kidneys segmentation in abdominal CT images is one of the most important steps for computer aided abdominal organs pathology diagnosis. In this paper, we have proposed a new semi-automatic algorithm for Liver, spleen and kidneys area extraction in abdominal CT images. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. The algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.

Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, multi-abdominal organ segmentation, mosaic image, the watershed algorithm

Procedia PDF Downloads 499
8617 The Implementation of Social Responsibility with the Approach of Indonesian Realistic Mathematics Education in Teaching and Learning Mathematics on Students' Engagement and Learning

Authors: Nurwati Djaman, Suradi Tahmir, Nurdin Arsyad

Abstract:

The major objective of this study was to implement and evaluate the use of the implementation of social responsibility with the approach of Indonesian Realistic Mathematics Education (PMRI) in teaching and learning mathematics on students’ engagement and learning. The research problems investigated in this research: 1) What were the effects of the implementation of social responsibility with PMRI approach to learning mathematics? 2) What were the effects of the approach to students’ engagement? An action research and grounded theory methodology were adopted for the study. This study used mixed methods to collect, describe, and interpret the data. The data were collected through focus group discussion, classroom observations, questionnaire, interview, and students’ work. The participants in this study consisted of 45 students. The study revealed that the approach has given students the opportunity to develop their understanding of concepts and procedures, problem-solving ability, and communication ability. Also, students’ involvement in the approach improved their engagement in learning mathematics in the three domains of cognitive engagement, effective engagement, and behavioral engagement. In particular, the data collection from the focus group, classroom observations, and interviews suggest that, during this study, the students became more active participants in the mathematics lessons.

Keywords: Indonesian Realistic Mathematics Education, PMRI, learning mathematics, social responsibility, students' engagement

Procedia PDF Downloads 146
8616 Encryption and Decryption of Nucleic Acid Using Deoxyribonucleic Acid Algorithm

Authors: Iftikhar A. Tayubi, Aabdulrahman Alsubhi, Abdullah Althrwi

Abstract:

The deoxyribonucleic acid text provides a single source of high-quality Cryptography about Deoxyribonucleic acid sequence for structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to encrypt and decrypt Deoxy Ribonucleic Acid sequence text. It includes complex, securing by using Algorithm to encrypt and decrypt Deoxy Ribonucleic Acid sequence. The utility of this Deoxy Ribonucleic Acid Sequence Text is that, it can provide a user-friendly interface for users to Encrypt and Decrypt store the information about Deoxy Ribonucleic Acid sequence. These interfaces created in this project will satisfy the demands of the scientific community by providing fully encrypt of Deoxy Ribonucleic Acid sequence during this website. We have adopted a methodology by using C# and Active Server Page.NET for programming which is smart and secure. Deoxy Ribonucleic Acid sequence text is a wonderful piece of equipment for encrypting large quantities of data, efficiently. The users can thus navigate from one encoding and store orange text, depending on the field for user’s interest. Algorithm classification allows a user to Protect the deoxy ribonucleic acid sequence from change, whether an alteration or error occurred during the Deoxy Ribonucleic Acid sequence data transfer. It will check the integrity of the Deoxy Ribonucleic Acid sequence data during the access.

Keywords: algorithm, ASP.NET, DNA, encrypt, decrypt

Procedia PDF Downloads 235
8615 The Impact of Virtual Learning Strategy on Youth Learning Motivation in Malaysian Higher Learning Instituitions

Authors: Hafizah Harun, Habibah Harun, Azlina Kamaruddin

Abstract:

Virtual reality has become a powerful and promising tool in education because of their unique technological characteristics that differentiate them from the other ICT applications. Despite the numerous interpretations of its definition, virtual reality can be concisely and precisely described as the integration of computer graphics and various input and display technologies to create the illusion of immersion in a computer generated reality. Generally, there are two major types based on the level of interaction and immersive environment that are immersive and non-immersive virtual reality. In the study of the role of virtual reality in built environment education, Horne and Thompson were reported as saying that the benefits of using visualization technologies were seen as having the potential to improve and extend the learning process, increase student motivation and awareness, and add to the diversity of teaching methods. Youngblut reported that students enjoy working with virtual worlds and this experience can be highly motivating. The impact of virtual reality on youth learning in Malaysia is currently not well explored because the technology is still not widely used here. Only a handful of the universities, such as University Malaya, MMU, and Unimas are applying virtual reality strategy in some of their undergraduate programs. From the literature, it has been identified that there are several virtual reality learning strategies currently available. Therefore, this study aims to investigate the impact of Virtual Reality strategy on Youth Learning Motivation in Malaysian higher learning institutions. We will explore the relationship between virtual reality (gaming, laboratory, simulation) and youth leaning motivation. Another aspect that we will explore is the framework for virtual reality implementation at higher learning institution in Malaysia. This study will be carried out quantitatively by distributing questionnaires to respondents from sample universities. Data analysis are descriptive and multiple regression. Researcher will carry out a pilot test prior to distributing the questionnaires to 300 undergraduate students who are undergoing their courses in virtual reality environment. The respondents come from two universities, MMU CyberJaya and University Malaya. The expected outcomes from this study are the identification of which virtual reality strategy has most impact on students’ motivation in learning and a proposed framework of virtual reality implementation at higher learning.

Keywords: virtual reality, learning strategy, youth learning, motivation

Procedia PDF Downloads 390
8614 Load Balancing and Resource Utilization in Cloud Computing

Authors: Gagandeep Kaur

Abstract:

Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.

Keywords: resource utilization, response time, load balancing, performance cost

Procedia PDF Downloads 183
8613 Distance Learning and Modern Challenges of Education Management in Georgia

Authors: Giorgi Gaganidze, Eter Kharaishvili

Abstract:

The atypical crisis has created new challenges in the education system. Globally, including in Georgia, traditional methods of managing the education system have appeared particularly vulnerable. In addition, new opportunities for the introduction of innovative management of learning processes have emerged. The aim of the research is to identify the main challenges in the field of education management in the distance learning process in Georgia and to develop recommendations on the opportunities for the introduction of innovative management. The paper substantiates the relevance of the research, in particular, it notes that in Georgia, as in many countries, distance learning in higher education institutions became particularly crucial during the Covid-19 pandemic. What is more, theoretical and practical aspects of distance learning are less proven, and a number of problems have been identified in the field of education management in Georgia. The article justifies the need to study the challenges of distance learning for the formation of a sustainable education management system. Within the bibliographic research, there are grouped the opinions of researchers on the modern problems of distance learning and education management in the article. Based on scientific papers, the expectations formed about distance learning are studied, and the main focus is on the existing problems of education management during the atypical crisis. The article discusses the forms and opportunities of distance learning in different countries, evaluates different approaches and challenges to distance learning, and justifies the role of education management in effective distance learning. The paper uses various theoretical-methodological tools of research, including desk research on the research topic; Data selection-grouping, problem identification is carried out by analysis, synthesis, sampling, induction, and other methods;SWOT analysis is used to assess the strengths, weaknesses, opportunities, and threats of distance education and management; The level of student satisfaction with distance learning is determined through the Population-based / Census-based approach; The results of the research are processed by SPSS program. Quantitative research and semi-structured interviews with relevant focus groups were conducted to identify working directions for innovative management of distance learning and education. Research has shown that the demand for distance education is growing in Georgia, but the need to introduce innovative education management remains a particular challenge. Conclusions have been made on the introduction of innovative education management, and the relevant recommendations have been developed.

Keywords: distance learning, management challenges, education management, innovative management

Procedia PDF Downloads 125
8612 Undergraduates' Development of Interpersonal and Cooperative Competence in Service-Learning

Authors: Huixuan Xu

Abstract:

The present study was set out to investigate the extent to which and how service-learning fostered a sample of 138 Hong Kong undergraduates’ interpersonal competence and cooperative orientation development. Interpersonal competence is presented when an individual shows empathy with others, provides intelligent advice to others and has practical judgment. Cooperative orientation reflects individuals’ willingness to work with others to achieve common goals. A quality service-learning programme may exhibit the features of provision of meaningful service, close link to curriculum, continuous reflection, youth voice, and diversity. Mixed methods were employed in the present study. Pre-posttest survey was administered to capture individual undergraduates’ development of interpersonal competence and cooperative orientation over a period of four months. The respondents’ evaluation of service-learning elements was administered in the post-test survey. Focus groups were conducted after the end of the service-learning to further explore how the certain service-learning elements promoted individual undergraduates’ development of interpersonal competence and cooperative orientation. Three main findings were reported from the study. (1) The scores of interpersonal competence increased significantly from the pretest to the posttest, while the change of cooperative orientation was not significant. (2) Cooperative orientation and interpersonal competence were correlated positively with the overall course quality respectively, which suggested that the more a service-learning course complied with quality practice, the students became more competent in interpersonal competence and cooperative orientation. (3) The following service-learning elements showed higher impacts: (a) direct contact with service recipients, which engaged students in practicing interpersonal skills; (b) individual participants’ being exposed to a situation that required communication and dialogue with people from diverse backgrounds with different views; (c) experiencing interpersonal conflicts among team members and having the conflicts solved; (d) students’ taking a leading role in a project-based service. The present study provides compelling evidence about what elements in a service-learning program may foster undergraduates’ development of cooperative orientation and interpersonal competence. Implications for the design of service-learning programmes are provided.

Keywords: undergraduates, interpersonal competence, cooperation orientation, service-learning

Procedia PDF Downloads 256
8611 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program

Authors: Bobby Hoffman

Abstract:

One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.

Keywords: assessment, distance learning, educational psychology, knowledge transfer

Procedia PDF Downloads 178
8610 Design Off-Campus Interactive Cloud-Based Learning Model

Authors: Osamah Al Qadoori

Abstract:

Using cloud computing in educational sectors grow rapidly in UAE. Initially, within Cloud-Learning Environment Students whenever and wherever can remotely join the online-classroom, on the other hand, Cloud-Based Learning is greatly decreasing the infrastructure and the maintenance cost. Nowadays in many schools (K-12), institutes, colleges as well as universities in UAE Cloud-Based Teaching and Learning environments gain a higher demand and concern. Many students don’t use the available online-educational resources effectively. The challenging question is to which extend these educational resources which are installed in the cloud environment are valuable and constructive? In this paper the researcher is seeking to design an expert agent prototype where the huge information being accommodated inside the cloud environment will go through expert filtration before going to be utilized by other clients (students). To achieve this goal, the focus of the present research would be on two different directions the educational human expertise and the automated-educational expert systems.

Keywords: cloud computing, cloud-learning environment, online-classroom, the educational human expertise, the automated-educational expert systems

Procedia PDF Downloads 541
8609 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 229
8608 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation

Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi

Abstract:

This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.

Keywords: fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control

Procedia PDF Downloads 122
8607 Digital Watermarking Based on Visual Cryptography and Histogram

Authors: R. Rama Kishore, Sunesh

Abstract:

Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.

Keywords: digital watermarking, visual cryptography, histogram, butter worth filter

Procedia PDF Downloads 359
8606 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences

Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal

Abstract:

Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.

Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles

Procedia PDF Downloads 511
8605 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 272
8604 The Effect of Problem-Based Mobile-Assisted Tasks on Spoken Intelligibility of English as a Foreign Language Learners

Authors: Loghman Ansarian, Teoh Mei Lin

Abstract:

In an attempt to increase oral proficiency of Iranian EFL learners, the researchers compared the effect of problem-based mobile-assisted language learning with the conventional language learning approach (Communicative Language Teaching) in Iran. The experimental group (n=37) went through PBL instruction and the control group (n=33) went through conventional instruction. The results of quantitative data analysis after 26 sessions of treatment revealed that PBL could positively affect participants' knowledge of grammar, vocabulary, spoken fluency, and pronunciation; however, in terms of task achievement, no significant effect was found. This study can have pedagogical implications for language teachers, and material developers.

Keywords: problem-based learning, spoken intelligibility, Iranian EFL context, cognitive learning

Procedia PDF Downloads 175
8603 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks

Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi

Abstract:

In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.

Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks

Procedia PDF Downloads 380
8602 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 213
8601 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 125