Search results for: mobile ad hoc network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6172

Search results for: mobile ad hoc network

4432 Wireless Sensor Network Energy Efficient and QoS-Aware MAC Protocols: A Survey

Authors: Bashir Abdu Muzakkari, Mohamad Afendee Mohamad, Mohd Fadzil Abdul Kadir

Abstract:

Wireless Sensor Networks (WSNs) is an aggregation of several tiny, low-cost sensor nodes, spatially distributed to monitor physical or environmental status. WSN is constantly changing because of the rapid technological advancements in sensor elements such as radio, battery and operating systems. The Medium Access Control (MAC) protocols remain very vital in the WSN because of its role in coordinating communication amongst the sensors. Other than battery consumption, packet collision, network lifetime and latency are factors that largely depend on WSN MAC protocol and these factors have been widely treated in recent days. In this paper, we survey some latest proposed WSN Contention-based, Scheduling-based and Hybrid MAC protocols while presenting an examination, correlation of advantages and limitations of each protocol. Concentration is directed towards investigating the treatment of Quality of Service (QoS) performance metrics within these particular protocols. The result shows that majority of the protocols leaned towards energy conservation. We, therefore, believe that other performance metrics of guaranteed QoS such as latency, throughput, packet loss, network and bandwidth availability may play a critical role in the design of future MAC protocols for WSNs.

Keywords: WSN, QoS, energy consumption, MAC protocol

Procedia PDF Downloads 404
4431 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography

Authors: Sudhanshu Sharma

Abstract:

Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.

Keywords: lisnopril, surfactant, chromatography, micellar solutions

Procedia PDF Downloads 370
4430 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)

Procedia PDF Downloads 118
4429 The Relation Between Protein-Protein and Polysaccharide-Protein Interaction on Aroma Release from Brined Cheese Model

Authors: Mehrnaz Aminifar

Abstract:

The relation between textural parameters and casein network on release of aromatic compounds was investigated over 90-days of ripening. Low DE maltodextrin and WPI were used to modify the textural properties of low fat brined cheese. Hardness, brittleness and compaction of casein network were affected by addition of maltodextrin and WPI. Textural properties and aroma release from cheese texture were affected by interaction of WPI protein-cheese protein and maltodexterin-cheese protein.

Keywords: aroma release, brined cheese, maltodexterin, WPI

Procedia PDF Downloads 358
4428 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 87
4427 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture

Authors: Sajjad Akbar, Rabia Bashir

Abstract:

With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.

Keywords: agent based web content mining, content centric networking, information centric networking

Procedia PDF Downloads 478
4426 A Propose of Personnel Assessment Method Including a Two-Way Assessment for Evaluating Evaluators and Employees

Authors: Shunsuke Saito, Kazuho Yoshimoto, Shunichi Ohmori, Sirawadee Arunyanart

Abstract:

In this paper, we suggest a mechanism of assessment that rater and Ratee (or employees) to convince. There are many problems exist in the personnel assessment. In particular, we were focusing on the three. (1) Raters are not sufficiently recognized assessment point. (2) Ratee are not convinced by the mechanism of assessment. (3) Raters (or Evaluators) and ratees have empathy. We suggest 1: Setting of "understanding of the assessment points." 2: Setting of "relative assessment ability." 3: Proposal of two-way assessment mechanism to solve these problems. As a prerequisite, it is assumed that there are multiple raters. This is because has been a growing importance of multi-faceted assessment. In this model, it determines the weight of each assessment point evaluators by the degree of understanding and assessment ability of raters and ratee. We used the ANP (Analytic Network Process) is a theory that an extension of the decision-making technique AHP (Analytic Hierarchy Process). ANP can be to address the problem of forming a network and assessment of Two-Way is possible. We apply this technique personnel assessment, the weights of rater of each point can be reasonably determined. We suggest absolute assessment for Two-Way assessment by ANP. We have verified that the consent of the two approaches is higher than conventional mechanism. Also, human resources consultant we got a comment about the application of the practice.

Keywords: personnel evaluation, pairwise comparison, analytic network process (ANP), two-ways

Procedia PDF Downloads 386
4425 Peruvian Diagnostic Reference Levels for Patients Undergoing Different X-Rays Procedures

Authors: Andres Portocarrero Bonifaz, Caterina Sandra Camarena Rodriguez, Ricardo Palma Esparza, Nicolas Antonio Romero Carlos

Abstract:

Reference levels for common X-rays procedures have been set in many protocols. In Peru, during quality control tests, the dose tolerance is set by these international recommendations. Nevertheless, further studies can be made to assess the national reality and relate dose levels with different parameters such as kV, mA/mAs, exposure time, type of processing (digital, digitalized or conventional), etc. In this paper three radiologic procedures were taken into account for study, general X-rays (fixed and mobile), intraoral X-rays (fixed, mobile and portable) and mammography. For this purpose, an Unfors Xi detector was used; the dose was measured at a focus - detector distance which varied depending on the procedure, and was corrected afterward to find the surface entry dose. The data used in this paper was gathered over a period of over 3 years (2015-2018). In addition, each X-ray machine was taken into consideration only once. The results hope to achieve a new standard which reflects the local practice, and address the issues of the ‘Bonn Call for Action’ in Peru. For this purpose, the 75% percentile of the dose of each radiologic procedure was calculated. In future quality control services, those machines with dose values higher than the selected threshold should be informed that they surpass the reference dose levels established in comparison other radiological centers in the country.

Keywords: general X-rays, intraoral X-rays, mammography, reference dose levels

Procedia PDF Downloads 161
4424 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 378
4423 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading

Authors: Danladi Ali, Onah Festus Iloabuchi

Abstract:

In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using one-dimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment

Procedia PDF Downloads 343
4422 Design of Low Latency Multiport Network Router on Chip

Authors: P. G. Kaviya, B. Muthupandian, R. Ganesan

Abstract:

On-chip routers typically have buffers are used input or output ports for temporarily storing packets. The buffers are consuming some router area and power. The multiple queues in parallel as in VC router. While running a traffic trace, not all input ports have incoming packets needed to be transferred. Therefore large numbers of queues are empty and others are busy in the network. So the time consumption should be high for the high traffic. Therefore using a RoShaQ, minimize the buffer area and time The RoShaQ architecture was send the input packets are travel through the shared queues at low traffic. At high load traffic the input packets are bypasses the shared queues. So the power and area consumption was reduced. A parallel cross bar architecture is proposed in this project in order to reduce the power consumption. Also a new adaptive weighted routing algorithm for 8-port router architecture is proposed in order to decrease the delay of the network on chip router. The proposed system is simulated using Modelsim and synthesized using Xilinx Project Navigator.

Keywords: buffer, RoShaQ architecture, shared queue, VC router, weighted routing algorithm

Procedia PDF Downloads 546
4421 Social Network Based Decision Support System for Smart U-Parking Planning

Authors: Jun-Ho Park, Kwang-Woo Nam, Seung-Mo Hong, Tae-Heon Moon, Sang-Ho Lee, Youn-Taik Leem

Abstract:

The aim of this study was to build ‘Ubi-Net’, a decision-making support system for systematic establishment in U-City planning. We have experienced various urban problems caused by high-density development and population concentrations in established urban areas. To address these problems, a U-Service contributes to the alleviation of urban problems by providing real-time information to citizens through network connections and related information. However, technology, devices, and information for consumers are required for systematic U-Service planning in towns and cities where there are many difficulties in this regard, and a lack of reference systems. Thus, this study suggests methods to support the establishment of sustainable planning by providing comprehensive information including IT technology, devices, news, and social networking services(SNS) to U-City planners through intelligent searches. In this study, we targeted Smart U-Parking Planning to solve parking problems in an ‘old’ city. Through this study, we sought to contribute to supporting advances in U-Space and the alleviation of urban problems.

Keywords: desigin and decision support system, smart u-parking planning, social network analysis, urban engineering

Procedia PDF Downloads 430
4420 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving

Authors: Yasin Tadayonrad

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming

Procedia PDF Downloads 98
4419 Neural Adaptive Controller for a Class of Nonlinear Pendulum Dynamical System

Authors: Mohammad Reza Rahimi Khoygani, Reza Ghasemi

Abstract:

In this paper, designing direct adaptive neural controller is applied for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) is used for the Neural network (NN). The adaptive neural controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are the merits of this paper. The promising performance of the proposed controllers investigates in simulation results.

Keywords: adaptive control, pendulum dynamical system, nonlinear control, adaptive neural controller, nonlinear dynamical, neural network, RBF, driven pendulum, position control

Procedia PDF Downloads 674
4418 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 180
4417 Development of Ecofriendly Ionic Liquid Modified Reverse Phase Liquid Chromatography Method for Simultaneous Determination of Anti-Hyperlipidemic Drugs

Authors: Hassan M. Albishri, Fatimah Al-Shehri, Deia Abd El-Hady

Abstract:

Among the analytical techniques, reverse phase liquid chromatography (RPLC) is currently used in pharmaceutical industry. Ecofriendly analytical chemistry offers the advantages of decreasing the environmental impact with the advantage of increasing operator safety which constituted a topic of industrial interest. Recently, ionic liquids have been successfully used to reduce or eliminate the conventional organic toxic solvents. In the current work, a simple and ecofriendly ionic liquid modified RPLC (IL-RPLC) method has been firstly developed and compared with RPLC under acidic and neutral mobile phase conditions for simultaneous determination of atorvastatin-calcium, rosuvastatin and simvastatin. Several chromatographic effective parameters have been changed in a systematic way. Adequate results have been achieved by mixing ILs with ethanol as a mobile phase under neutral conditions at 1 mL/min flow rate on C18 column. The developed IL-RPLC method has been validated for the quantitative determination of drugs in pharmaceutical formulations. The method showed excellent linearity for analytes in a wide range of concentrations with acceptable precise and accurate data. The current IL-RPLC technique could have vast applications particularly under neutral conditions for simple and greener (bio)analytical applications of pharmaceuticals.

Keywords: ionic liquid, RPLC, anti-hyperlipidemic drugs, ecofriendly

Procedia PDF Downloads 262
4416 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage

Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos

Abstract:

Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.

Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage

Procedia PDF Downloads 171
4415 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant

Procedia PDF Downloads 361
4414 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems

Authors: Hala Zaghloul, Taymoor Nazmy

Abstract:

One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.

Keywords: cognitive system, image processing, segmentation, PCNN kernels

Procedia PDF Downloads 283
4413 Performance Analysis of 5G for Low Latency Transmission Based on Universal Filtered Multi-Carrier Technique and Interleave Division Multiple Access

Authors: A. Asgharzadeh, M. Maroufi

Abstract:

5G mobile communication system has drawn more and more attention. The 5G system needs to provide three different types of services, including enhanced Mobile BroadBand (eMBB), massive machine-type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Universal Filtered Multi-Carrier (UFMC), Filter Bank Multicarrier (FBMC), and Filtered Orthogonal Frequency Division Multiplexing (f-OFDM) are suggested as a well-known candidate waveform for the coming 5G system. Themachine-to-machine (M2M) communications are one of the essential applications in 5G, and it involves exchanging of concise messages with a very short latency. However, in UFMC systems, the subcarriers are grouped into subbands but f-OFDM only one subband covers the entire band. Furthermore, in FBMC, a subband includes only one subcarrier, and the number of subbands is the same as the number of subcarriers. This paper mainly discusses the performance of UFMC with different parameters for the UFMC system. Also, paper shows that UFMC is the best choice outperforming OFDM in any case and FBMC in case of very short packets while performing similarly for long sequences with channel estimation techniques for Interleave Division Multiple Access (IDMA) systems.

Keywords: universal filtered multi-carrier technique, UFMC, interleave division multiple access, IDMA, fifth-generation, subband

Procedia PDF Downloads 140
4412 Energy Efficient Clustering with Adaptive Particle Swarm Optimization

Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha

Abstract:

Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.

Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering

Procedia PDF Downloads 253
4411 Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible

Authors: Achim Kampker, Kai Kreiskoether, Johannes Wagner, Sarah Fluchs

Abstract:

The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general.

Keywords: automotive assembly, e-mobility, production technology, release capability, small series assembly

Procedia PDF Downloads 206
4410 Support of Syrian Refugees: The Roles of Descriptive and Injunctive Norms, Perception of Threat, and Negative Emotions

Authors: Senay Yitmen

Abstract:

This research investigated individual’s support and helping intentions towards Syrian refugees in Turkey. This is examined in relation to perceived threat and negative emotions, and also to the perceptions of whether one’s intimate social network (family and friends) considers Syrians a threat (descriptive network norm) and whether this network morally supports Syrian refugees (injunctive norms). A questionnaire study was conducted among Turkish participants (n= 565) and the results showed that perception of threat was associated with negative emotions which, in turn, were related to less support of Syrian refugees. Additionally, descriptive norms moderated the relationship between perceived threat and negative emotions towards Syrian refugees. Furthermore, injunctive norms moderated the relationship between negative emotions and support to Syrian refugees. Specifically, the findings indicate that perceived threat is associated with less support of Syrian refugees through negative emotions when descriptive norms are weak and injunctive norms are strong. Injunctive norms appear to trigger a dilemma over the decision to conform or not to conform: when one has negative emotions as a result of perceived threat, it becomes more difficult to conform to the moral obligation of injunctive norms which is associated with less support of Syrian refugees. Hence, these findings demonstrate that both descriptive and injunctive norms are important and play different roles in individual’s support of Syrian refugees.

Keywords: descriptive norms, emotions, injunctive norms, the perception of threat

Procedia PDF Downloads 194
4409 Efficiency of Background Chlorine Residuals against Accidental Microbial Episode in Proto-Type Distribution Network (Rig) Using Central Composite Design (CCD)

Authors: Sajida Rasheed, Imran Hashmi, Luiza Campos, Qizhi Zhou, Kim Keu

Abstract:

A quadratic model (p ˂ 0.0001) was developed by using central composite design of 50 experimental runs (42 non-center + 8 center points) to assess efficiency of background chlorine residuals in combating accidental microbial episode in a prototype distribution network (DN) (rig). A known amount of background chlorine residuals were maintained in DN and a required number of bacteria, Escherichia coli K-12 strain were introduced by an injection port in the pipe loop system. Samples were taken at various time intervals at different pipe lengths. Spread plate count was performed to count bacterial number. The model developed was significant. With microbial concentration and time (p ˂ 0.0001), pipe length (p ˂ 0.022), background chlorine residuals (p ˂ 0.07) and time^2 (p ˂ 0.09) as significant factors. The ramp function of variables shows that at the microbial count of 10^6, at 0.76 L/min, and pipe length of 133 meters, a background residual chlorine 0.16 mg/L was enough for complete inactivation of microbial episode in approximately 18 minutes.

Keywords: central composite design (CCD), distribution network, Escherichia coli, residual chlorine

Procedia PDF Downloads 467
4408 An Energy-Balanced Clustering Method on Wireless Sensor Networks

Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu

Abstract:

In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.

Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network

Procedia PDF Downloads 280
4407 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows

Authors: Daniel Fulus Fom, Gau Patrick Damulak

Abstract:

In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.

Keywords: auto regressive, mean absolute error, neural network, root square mean error

Procedia PDF Downloads 270
4406 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks

Authors: Kais Manai

Abstract:

The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.

Keywords: nuclear emulsion, particle identification, tracking, neural network

Procedia PDF Downloads 514
4405 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics

Authors: Mikheil Kalmakhelidze

Abstract:

Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.

Keywords: description logic, fuzzy logic, neural networks, record linkage

Procedia PDF Downloads 275
4404 HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers

Authors: P. S. Seboletswe, Z. Mkhize, L. M. Katata-Seru

Abstract:

Protorhus longifolia is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of Protorhus longifolia methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 × 10) were used as the stationary phase. Gallic acid was detected at the Rf = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in Protorhus longifolia leaves and also identify other biomarkers.

Keywords: biomarkers, fingerprint profiling, gallic acid, HPTLC, Protorhus longifolia

Procedia PDF Downloads 150
4403 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 89