Search results for: inversion layer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2656

Search results for: inversion layer

916 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 92
915 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 84
914 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.

Keywords: data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP

Procedia PDF Downloads 317
913 The Effect of Micro-Arc Oxidation Coated Piston Crown on Engine Characteristics in a Spark Ignited Engine

Authors: A.Velavan, C. G. Saravanan, M. Vikneswaran, E. James Gunasekaran

Abstract:

In present investigation, experiments were carried out to compare the effect of the ceramic coated piston crown and uncoated piston on combustion, performance and emission characteristics of a port injected Spark Ignited engine. The piston crown was coated with aluminium alloy in the form ceramic oxide layer of thickness 500 µm using micro-arc oxidation technique. This ceramic coating will act as a thermal barrier which reduces in-cylinder heat rejection and increases the durability of the piston by withstanding high temperature and pressure produced during combustion. Flame visualization inside the combustion chamber was carried out using AVL Visioscope combustion analyzer to predict the type of combustion occurs at different load condition. Based on the experimental results, it was found that the coated piston shows an improved thermal efficiency when compared to uncoated piston. This is because more heat presents in the combustion chamber which helps efficient combustion of the fuel. The CO and HC emissions were found to be reduced due to better combustion of the fuel whereas NOx emission was increased due to increase in combustion temperature for ceramic coated piston.

Keywords: coated piston, micro-arc oxidation, thermal barrier, thermal efficiency, visioscope

Procedia PDF Downloads 148
912 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures

Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro

Abstract:

Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.

Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo

Procedia PDF Downloads 385
911 Computational Analysis of Variation in Thrust of Oblique Detonation Ramjet Engine With Adaptive Inlet

Authors: Aditya, Ganapati Joshi, Vinod Kumar

Abstract:

IN THE MODERN-WARFARE ERA, THE PRIME REQUIREMENT IS A HIGH SPEED AND MACH NUMBER. WHEN THE MISSILES STRIKE IN THE HYPERSONIC REGIME THE OPPONENT CAN DETECT IT WITH THE ANTI-DEFENSE SYSTEM BUT CAN NOT STOP IT FROM CAUSING DAMAGE. SO, TO ACHIEVE THE SPEEDS OF THIS LEVEL THERE ARE TWO ENGINES THAT ARE AVAILABLE WHICH CAN WORK IN THIS REGION ARE RAMJET AND SCRAMJET. THE PROBLEM WITH RAMJET STARTS TO OCCUR WHEN MACH NUMBER EXCEEDS 4 AS THE STATIC PRESSURE AT THE INLET BECOMES EQUAL TO THE EXIT PRESSURE. SO, SCRAMJET ENGINE DEALS WITH THIS PROBLEM AS IT NEARLY HAS THE SAME WORKING BUT HERE THE FLOW IS NOT MUCH SLOWED DOWN AS COMPARED TO RAMJET IN THE DIFFUSER BUT IT SUFFERS FROM THE PROBLEMS SUCH AS INLET BUZZ, THERMAL CHOCKING, MIXING OF FUEL AND OXIDIZER, THERMAL HEATING, AND MANY MORE. HERE THE NEW ENGINE IS DEVELOPED ON THE SAME PRINCIPLE AS THE SCRAMJET ENGINE BUT BURNING HAPPENS DUE TO DETONATION INSTEAD OF DEFLAGRATION. THE PROBLEM WITH THE ENGINE STARTS WHEN THE MACH NUMBER BECOMES VARIABLE AND THE INLET GEOMETRY IS FIXED AND THIS LEADS TO INLET SPILLAGE WHICH WILL AFFECT THE THRUST ADVERSELY. SO, HERE ADAPTIVE INLET IS MADE OF SHAPE MEMORY ALLOYS WHICH WILL ENHANCE THE INLET MASS FLOW RATE AS WELL AS THRUST.

Keywords: detonation, ramjet engine, shape memory alloy, ignition delay, shock-boundary layer interaction, eddy dissipation, asymmetric nozzle

Procedia PDF Downloads 102
910 Measuring Delay Using Software Defined Networks: Limitations, Challenges, and Suggestions for Openflow

Authors: Ahmed Alutaibi, Ganti Sudhakar

Abstract:

Providing better Quality-of-Service (QoS) to end users has been a challenging problem for researchers and service providers. Building applications relying on best effort network protocols hindered the adoption of guaranteed service parameters and, ultimately, Quality of Service. The introduction of Software Defined Networking (SDN) opened the door for a new paradigm shift towards a more controlled programmable configurable behavior. Openflow has been and still is the main implementation of the SDN vision. To facilitate better QoS for applications, the network must calculate and measure certain parameters. One of those parameters is the delay between the two ends of the connection. Using the power of SDN and the knowledge of application and network behavior, SDN networks can adjust to different conditions and specifications. In this paper, we use the capabilities of SDN to implement multiple algorithms to measure delay end-to-end not only inside the SDN network. The results of applying the algorithms on an emulated environment show that we can get measurements close to the emulated delay. The results also show that depending on the algorithm, load on the network and controller can differ. In addition, the transport layer handshake algorithm performs best among the tested algorithms. Out of the results and implementation, we show the limitations of Openflow and develop suggestions to solve them.

Keywords: software defined networking, quality of service, delay measurement, openflow, mininet

Procedia PDF Downloads 166
909 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 103
908 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 160
907 Microstructural Characterization of Bitumen/Montmorillonite/Isocyanate Composites by Atomic Force Microscopy

Authors: Francisco J. Ortega, Claudia Roman, Moisés García-Morales, Francisco J. Navarro

Abstract:

Asphaltic bitumen has been largely used in both industrial and civil engineering, mostly in pavement construction and roofing membrane manufacture. However, bitumen as such is greatly susceptible to temperature variations, and dramatically changes its in-service behavior from a viscoelastic liquid, at medium-high temperatures, to a brittle solid at low temperatures. Bitumen modification prevents these problems and imparts improved performance. Isocyanates like polymeric MDI (mixture of 4,4′-diphenylmethane di-isocyanate, 2,4’ and 2,2’ isomers, and higher homologues) have shown to remarkably enhance bitumen properties at the highest in-service temperatures expected. This comes from the reaction between the –NCO pendant groups of the oligomer and the most polar groups of asphaltenes and resins in bitumen. In addition, oxygen diffusion and/or UV radiation may provoke bitumen hardening and ageing. With the purpose of minimizing these effects, nano-layered-silicates (nanoclays) are increasingly being added to bitumen formulations. Montmorillonites, a type of naturally occurring mineral, may produce a nanometer scale dispersion which improves bitumen thermal, mechanical and barrier properties. In order to increase their lipophilicity, these nanoclays are normally treated so that organic cations substitute the inorganic cations located in their intergallery spacing. In the present work, the combined effect of polymeric MDI and the commercial montmorillonite Cloisite® 20A was evaluated. A selected bitumen with penetration within the range 160/220 was modified with 10 wt.% Cloisite® 20A and 2 wt.% polymeric MDI, and the resulting ternary composites were characterized by linear rheology, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The rheological tests evidenced a notable solid-like behavior at the highest temperatures studied when bitumen was just loaded with 10 wt.% Cloisite® 20A and high-shear blended for 20 minutes. However, if polymeric MDI was involved, the sequence of addition exerted a decisive control on the linear rheology of the final ternary composites. Hence, in bitumen/Cloisite® 20A/polymeric MDI formulations, the previous solid-like behavior disappeared. By contrast, an inversion in the order of addition (bitumen/polymeric MDI/ Cloisite® 20A) enhanced further the solid-like behavior imparted by the nanoclay. In order to gain a better understanding of the factors that govern the linear rheology of these ternary composites, a morphological and microstructural characterization based on XRD and AFM was conducted. XRD demonstrated the existence of clay stacks intercalated by bitumen molecules to some degree. However, the XRD technique cannot provide detailed information on the extent of nanoclay delamination, unless the entire fraction has effectively been fully delaminated (situation in which no peak is observed). Furthermore, XRD was unable to provide precise knowledge neither about the spatial distribution of the intercalated/exfoliated platelets nor about the presence of other structures at larger length scales. In contrast, AFM proved its power at providing conclusive information on the morphology of the composites at the nanometer scale and at revealing the structural modification that yielded the rheological properties observed. It was concluded that high-shear blending brought about a nanoclay-reinforced network. As for the bitumen/Cloisite® 20A/polymeric MDI formulations, the solid-like behavior was destroyed as a result of the agglomeration of the nanoclay platelets promoted by chemical reactions.

Keywords: Atomic Force Microscopy, bitumen, composite, isocyanate, montmorillonite.

Procedia PDF Downloads 261
906 Analysis of Geotechnical Parameters from Geophysical Information

Authors: Adewoyin O. Olusegun, Akinwumi I. Isaac

Abstract:

In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out.

Keywords: characterize, environment, geophysical, geotechnical, regression

Procedia PDF Downloads 372
905 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 69
904 Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading

Authors: Osama Amer, Yaser Abdel-Aty, Mohamed Abd El Hady

Abstract:

The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models.

Keywords: masonry, three-leaf walls, mechanical behavior, testing, architectural heritage

Procedia PDF Downloads 293
903 Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking

Authors: Masaru Sumida

Abstract:

This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration.

Keywords: fiber dispersion, headbox, pulp liquid, wake flow

Procedia PDF Downloads 387
902 Surface Active Phthalic Acid Ester Produced by a Rhizobacterial Strain

Authors: M. L. Ibrahim, A. Abdulhamid

Abstract:

A surface active molecule synthesized by a rhizobacterial strain Bacillus lentus isolated from Cajanus cajan was investigated. The bioemulsifier was extracted, purified and partially characterized using standard methods. Surface properties of the bioemulsifier were determined by studying the emulsification index, solubility test and stability studies. Partial purification of the bioemulsifier was carried out using FT-IR analysis, Silica-gel column chromatography and thin layer chromatography. GC-MS analysis was carried out to detect the composition and mass of the lipids and esters. The isolate showed an emulsifying activity of 57% and surface activity of 36mm. The stability studies revealed that the bioemulsifier had better stability at temperature of 70oC, 8% pH and 8% NaCl concentration. FT-IR indicated the bioemulsifier to contain peptide and aliphatic chain, TLC revealed the compound to be ninhydrin positive and Column chromatography showed the presence of three amino acids namely; glutamine, valine and cysteine. GC-MS indicated the lipid moiety to contain aliphatic chain ranging from C9-C16 and two major peaks of 1,2-benzenedicarboxylic acid diethyl octyl ester. Therefore, surface active agent from Bacillus lentus can be used effectively in a wide range of applications such as in MEOR and in the biosynthesis of plasticizers for industrial uses.

Keywords: Bacillus lentus, bioemulsifiers, phthalic acid ester, Rhizosphere

Procedia PDF Downloads 414
901 Artificial Neurons Based on Memristors for Spiking Neural Networks

Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi

Abstract:

Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to its high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO₂-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO₂-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.

Keywords: leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity

Procedia PDF Downloads 135
900 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route

Authors: Sudhir Kumar Sharma, Ramesh Jagannathan

Abstract:

The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.

Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route

Procedia PDF Downloads 139
899 Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening

Authors: Khrizelle Angelique Sablan, Rizalinda De Leon, Jaeyoung Lee, Joey Ocon

Abstract:

The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode.

Keywords: capacitive deionization, carbon nanotubes, desalination, acid functionalization, silver

Procedia PDF Downloads 231
898 Investigation of Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection: The Modified Voltammetry Technique

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behaviour of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP, which was only applied on two of the three coupons at the protection potential -0.8 V vs Cu/CuSO₄ for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP, while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from the ohmic drop. Voltammetry was finally performed on the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduced the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect from the decreased potential and an induced effect associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy

Procedia PDF Downloads 63
897 Randomly Casted Single-Wall Carbon Nanotubes Films for High Performance Hybrid Photovoltaic Devices

Authors: My Ali El Khakani

Abstract:

Single-wall Carbon nanotubes (SWCNTs) possess an unprecedented combination of unique properties that make them highly promising for suitable for a new generation of photovoltaic (PV) devices. Prior to discussing the integration of SWCNTs films into effective PV devices, we will briefly highlight our work on the synthesis of SWCNTs by means of the KrF pulsed laser deposition technique, their purification and transfer onto n-silicon substrates to form p-n junctions. Some of the structural and optoelectronic properties of SWCNTs relevant to PV applications will be emphasized. By varying the SWCNTs film density (µg/cm2), we were able to point out the existence of an optimum value that yields the highest photoconversion efficiency (PCE) of ~10%. Further control of the doping of the p-SWCNTs films, through their exposure to nitric acid vapors, along with the insertion of an optimized hole-extraction-layer in the p-SWCNTs/n-Si hybrid devices permitted to achieve a PCE value as high as 14.2%. Such a high PCE value demonstrates the full potential of these p-SWCNTs/n-Si devices for sunlight photoconversion. On the other hand, by examining both the optical transmission and electrical conductance of the SWCNTs’ films, we established a figure of merit (FOM) that was shown to correlate well with the PCE performance. Such a direct relationship between the FOM and the PCE can be used as a guide for further PCE enhancement of these novel p-SWCNTs/n-Si PV devices.

Keywords: carbon nanotubes (CNTs), CNTs-silicon hybrid devices, photoconversion, photovoltaic devices, pulsed laser deposition

Procedia PDF Downloads 119
896 Experimental Study on Use of Crumb Rubber to Mitigate Expansive Soil Pressures on Basement Walls

Authors: Kwestan Salimi, Jenna Jacoby, Michelle Basham, Amy Cerato

Abstract:

The extreme annual weather patterns of the central United States have increased the need for underground shelters for protection from destructive tornadic activity. However, very few residential homes have basements due to the added construction expense and the prevalence of expansive soils covering the central portion of the United States. These expansive soils shrink and swell, increasing earth pressure on basement walls. To mitigate the effect of expansive soils on basement walls, this study performed bench-scale tests using a common natural expansive soil mitigated with a backfill layer of crumb rubber. The results revealed that at 80% soil compaction, a 1:6 backfill height to total height ratio produced a 66% reduction in swell pressure. However, this percent reduction decreased to 27% for 90% soil compaction. It was also found that there is a strong linear correlation between compaction percentage and reduction in swell pressure when using the same backfill height to total height ratio. Using this correlation and extrapolating to 95% compaction, the percent reduction in swell pressure was approximately 12%.

Keywords: expansive soils, swell/shrink, swell pressure, stabilization, crumb rubber

Procedia PDF Downloads 161
895 Anatase TiO₂ Nanostructures with Enhanced Surface Activity for High-Performance Lithium-Ion Batteries

Authors: Basharat Hussain, Wasim Abbas, Sayed Sajid Hussain

Abstract:

Amorphous colloidal TiO₂ spheres were annealed at high temperatures to yield anatase-phase TiO₂ nanoparticles. With a specific discharge capacity of around 296 mAh g⁻¹ (0.1C), the annealed TiO₂ outperformed its amorphous counterpart, which produced about 182 mAh g⁻¹ at the same rate. The annealed material's larger surface area and more active sites are responsible for this improvement. The amorphous TiO₂ nanoparticles, on the other hand, produced a solid electrolyte interface (SEI) layer that contained organic phosphates, lithium carbonate, and lithium alkyl carbonates. This led to a decrease in performance and increased intrinsic resistance. By successfully removing surface hydroxyl groups and chemisorbed water, high-temperature annealing reduced capacity loss and improved structural and electrochemical stability. After prolonged cycling, the annealed TiO₂ demonstrated enhanced rate capability and cycling performance, retaining 93.5% of its capacity as opposed to 42.1% for the amorphous material. By shedding light on the function of surface chemistry and material processing in maximizing battery performance, our results show the potential of annealed anatase TiO₂ as a high-performance electrode material for Li-ion batteries.

Keywords: TiO₂ li-ion battery, electrode, capacity, stability

Procedia PDF Downloads 10
894 A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate

Authors: Zone-Ching Lin, Hao-Yuan Jheng, Zih-Wun Jhang

Abstract:

The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible.

Keywords: atomic force microscopy (AFM), cross-shape nanochannel, silicon substrate, specific down force energy (SDFE)

Procedia PDF Downloads 375
893 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation

Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril

Abstract:

This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.

Keywords: cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper

Procedia PDF Downloads 209
892 Evaluation of Greenhouse Covering Materials

Authors: Mouustafa A. Fadel, Ahmed Bani Hammad, Faisal Al Hosany, Osama Iwaimer

Abstract:

Covering materials of greenhouses is the most governing component of the construction which controls two major parameters the amount of light and heat diffused from the surrounding environment into the internal space. In hot areas, balancing between inside and outside the greenhouse consumes most of the energy spent in production systems. In this research, a special testing apparatus was fabricated to simulate the structure of the greenhouse provided with a 400W full spectrum light. Tests were carried out to investigate the effectiveness of different commercial covering material in light and heat diffusion. Twenty one combinations of Fiberglass, Polyethylene, Polycarbonate, Plexiglass and Agril (PP nonwoven fabric) were tested. It was concluded that Plexiglass was the highest in light transparency of 87.4% where the lowest was 33% and 86.8% for Polycarbonate sheets. The enthalpy of the air moving through the testing rig was calculated according to air temperature differences between inlet and outlet openings. The highest enthalpy value was for one layer of Fiberglass and it was 0.81 kj/kg air while it was for both Plexiglass and blocked Fiberglass with a value of 0.5 kj/kg air. It is concluded that, although Plexiglass has high level of transparency which is indeed very helpful under low levels of solar flux, it is not recommended under hot arid conditions where solar flux is available most of the year. On the other hand, it might be a disadvantage to use Plixeglass specially in summer where it helps to accumulate more heat inside the greenhouse.

Keywords: greenhouse, covering materials, aridlands, environmental control

Procedia PDF Downloads 477
891 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 113
890 Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide

Authors: Eun Young Choi, So Hui Choe, Jin Yi Hyeon, Ji Young Jin, Bo Ram Keum, Jong Min Lim, Hyung Rae Cho, Kwang Keun Cho, In Soon Choi

Abstract:

This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method.

Keywords: β-glucan, lipopolysaccharide (LPS), nitric oxide (NO), RAW264.7 cells, STAT1

Procedia PDF Downloads 409
889 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving

Authors: Dimassi Wissem

Abstract:

In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.

Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation

Procedia PDF Downloads 396
888 Application of Large Eddy Simulation-Immersed Boundary Volume Penalization Method for Heat and Mass Transfer in Granular Layers

Authors: Artur Tyliszczak, Ewa Szymanek, Maciej Marek

Abstract:

Flow through granular materials is important to a vast array of industries, for instance in construction industry where granular layers are used for bulkheads and isolators, in chemical engineering and catalytic reactors where large surfaces of packed granular beds intensify chemical reactions, or in energy production systems, where granulates are promising materials for heat storage and heat transfer media. Despite the common usage of granulates and extensive research performed in this field, phenomena occurring between granular solid elements or between solids and fluid are still not fully understood. In the present work we analyze the heat exchange process between the flowing medium (gas, liquid) and solid material inside the granular layers. We consider them as a composite of isolated solid elements and inter-granular spaces in which a gas or liquid can flow. The structure of the layer is controlled by shapes of particular granular elements (e.g., spheres, cylinders, cubes, Raschig rings), its spatial distribution or effective characteristic dimension (total volume or surface area). We will analyze to what extent alteration of these parameters influences on flow characteristics (turbulent intensity, mixing efficiency, heat transfer) inside the layer and behind it. Analysis of flow inside granular layers is very complicated because the use of classical experimental techniques (LDA, PIV, fibber probes) inside the layers is practically impossible, whereas the use of probes (e.g. thermocouples, Pitot tubes) requires drilling of holes inside the solid material. Hence, measurements of the flow inside granular layers are usually performed using for instance advanced X-ray tomography. In this respect, theoretical or numerical analyses of flow inside granulates seem crucial. Application of discrete element methods in combination with the classical finite volume/finite difference approaches is problematic as a mesh generation process for complex granular material can be very arduous. A good alternative for simulation of flow in complex domains is an immersed boundary-volume penalization (IB-VP) in which the computational meshes have simple Cartesian structure and impact of solid objects on the fluid is mimicked by source terms added to the Navier-Stokes and energy equations. The present paper focuses on application of the IB-VP method combined with large eddy simulation (LES). The flow solver used in this work is a high-order code (SAILOR), which was used previously in various studies, including laminar/turbulent transition in free flows and also for flows in wavy channels, wavy pipes and over various shape obstacles. In these cases a formal order of approximation turned out to be in between 1 and 2, depending on the test case. The current research concentrates on analyses of the flows in dense granular layers with elements distributed in a deterministic regular manner and validation of the results obtained using LES-IB method and body-fitted approach. The comparisons are very promising and show very good agreement. It is found that the size, number of elements and their distribution have huge impact on the obtained results. Ordering of the granular elements (or lack of it) affects both the pressure drop and efficiency of the heat transfer as it significantly changes mixing process.

Keywords: granular layers, heat transfer, immersed boundary method, numerical simulations

Procedia PDF Downloads 138
887 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 504