Search results for: household emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2339

Search results for: household emission

599 Physicochemical and Microbiological Assessment of Source and Stored Domestic Water from Three Local Governments in Ile-Ife, Nigeria

Authors: Mary A. Bisi-Johnson, Kehinde A. Adediran, Saheed A. Akinola, Hamzat A. Oyelade

Abstract:

Some of the main problems man contends with are the quantity (source and amount) and quality of water in Nigeria. Scarcity leads to water being obtained from various sources and microbiological contaminations of the water may thus occur between the collection point and the point of usage. Thus, this study aims to assess the general and microbiological quality of domestic water sources and household stored water used within selected areas in Ile-Ife, South-Western part of Nigeria for microbial contaminants. Physicochemical and microbiological examination were carried out on 45 source and stored water samples collected from well and spring in three different local government areas i.e. Ife east, Ife-south, and Ife-north. Physicochemical analysis included pH value, temperature, total dissolved solid, dissolved oxygen, and biochemical oxygen demand. Microbiology involved most probable number analysis, total coliform, heterotrophic plate, faecal coliform, and streptococcus count. The result of the physicochemical analysis of samples showed anomalies compared to acceptable standards with the pH value of 7.20-8.60 for stored and 6.50-7.80 for source samples as the total dissolved solids (TDS of stored 20-70mg/L, source 352-691mg/L), dissolved oxygen (DO of stored 1.60-9.60mg/L, source 1.60-4.80mg/L), biochemical oxygen demand (BOD stored 0.80-3.60mg/L, source 0.60-5.40mg/L). General microbiological quality indicated that both stored and source samples with the exception of a sample were not within acceptable range as indicated by analysis of the MPN/100ml which ranges (stored 290-1100mg/L, source 9-1100mg/L). Apart from high counts, most samples did not meet the World Health Organization standard for drinking water with the presence of some pathogenic bacteria and fungi such as Salmonella and Aspergillus spp. To annul these constraints, standard treatment methods should be adopted to make water free from contaminants. This will help identify common and likely water related infection origin within the communities and thus help guide in terms of interventions required to prevent the general populace from such infections.

Keywords: domestic, microbiology, physicochemical, quality, water

Procedia PDF Downloads 343
598 Spontaneous Generation of Wrinkled Patterns on pH-Sensitive Smart-Hydrogel Films

Authors: Carmen M. Gonzalez-Henriquez, Mauricio A. Sarabia-Vallejos, Juan Rodriguez-Hernandez

Abstract:

DMAEMA, as a monomer, has been widely studied and used in several application fields due to their pH-sensitive capacity (tertiary amine protonation), being relevant in the biomedical area as a potential carrier for drugs focused on the treatment of genetic or acquired diseases (efficient gene transfection), among others. Additionally, the inhibition of bacterial growth and, therefore, their antimicrobial activity, can be used as dual-functional antifogging/antimicrobial polymer coatings. According to their interesting physicochemical characteristics and biocompatible properties, DMAEMA was used as a monomer to synthesize a smart pH-sensitive hydrogel, namely poly(HEMA-co-PEGDA575-co-DMAEMA). Thus, different mole ratios (ranging from 5:1:0 to 0:1:5, according to the mole ratio between HEMA, PEGDA, and DEAEMA, respectively) were used in this research. The surface patterns formed via a two-step polymerization (redox- and photo-polymerization) were first chemically studied via 1H-NMR and elemental analysis. Secondly, the samples were morphologically analyzed by using Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Then, a particular relation between HEMA, PEGDA, and DEAEMA (0:1:5) was also characterized at three different pH (5.4, 7.4 and 8.3). The hydrodynamic radius and zeta potential of the micro-hydrogel particles (emulsion) were carried out as a possible control for morphology, exploring the effect that produces hydrogel micelle dimensions in the wavelength, height, and roughness of the wrinkled patterns. Finally, contact angle and cross-hatch adhesion test was carried out for the hydrogels supported on glass using TSM-silanized surfaces in order to measure their mechanical properties.

Keywords: wrinkled patterns, smart pH-sensitive hydrogels, hydrogel micelle diameter, adhesion tests

Procedia PDF Downloads 186
597 Microwave Single Photon Source Using Landau-Zener Transitions

Authors: Siddhi Khaire, Samarth Hawaldar, Baladitya Suri

Abstract:

As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication.

Keywords: quantum computing, quantum communication, quantum optics, superconducting qubits, flux qubit, charge qubit, microwave single photon source, quantum information processing

Procedia PDF Downloads 69
596 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane

Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.

Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced

Procedia PDF Downloads 273
595 The Influence of Microcapsulated Phase Change Materials on Thermal Performance of Geopolymer Concrete

Authors: Vinh Duy Cao, Shima Pilehvar, Anna M. Szczotok, Anna-Lena Kjøniksen

Abstract:

The total energy consumption is dramatically increasing on over the world, especially for building energy consumption where a significant proportion of energy is used for heating and cooling purposes. One of the solutions to reduce the energy consumption for the building is to improve construction techniques and enhance material technology. Recently, microcapsulated phase change materials (MPCM) with high energy storage capacity within the phase transition temperature of the materials is a potential method to conserve and save energy. A new composite materials with high energy storage capacity by mixing MPCM into concrete for passive building technology is the promising candidate to reduce the energy consumption. One of the most untilized building materials for mixing with MPCM is Portland cement concrete. However, the emission of carbon dioxide (CO2) due to producing cement which plays the important role in the global warming is the main drawback of PCC. Accordingly, an environmentally friendly building material, geopolymer, which is synthesized by the reaction between the industrial waste material (aluminosilicate) and a strong alkali activator, is a potential materials to mixing with MPCM. Especially, the effect of MPCM on the thermal and mechanical properties of geopolymer concrete (GPC) is very limited. In this study, high thermal energy storage capacity materials were fabricated by mixing MPCM into geopolymer concrete. This article would investigate the effect of MPCM concentration on thermal and mechanical properties of GPC. The target is to balance the effect of MPCM on improving the thermal performance and maintaining the compressive strength of the geopolymer concrete at an acceptable level for building application.

Keywords: microencapsulated phase change materials, geopolymer concrete, energy storage capacity, thermal performance

Procedia PDF Downloads 287
594 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.

Keywords: borescope, engine, low-wave-infrared, sensor

Procedia PDF Downloads 104
593 Utilization of Antenatal Care Services by Domestic Workers in Delhi

Authors: Meenakshi

Abstract:

Background: The complications during pregnancy are the major cause of morbidity and deaths among women in the reproductive age group. Childbearing is the most important phase in women’s lives that occur mainly in the adolescent and adult years. Maternal health, thus is an important issue as this as this is important phase is also productive time for women as they strive fulfill their capabilities as an individual, mothers, family members and also as a citizen. The objective of the study is to document the coverage of ANC and its determinants among domestic workers. Method: A survey of 300 domestic workers were carried in Delhi. Only respondents in the age group (15-49) and whose recent birth was of 5 years preceding the survey were included. Socio-demographic data and information on maternal health was collected from these respondents Information on ANC was collected from total 300 respondents. Standard of living index were composed based on households assists and similarly autonomy index was computed based on women decision making power in the households taking certain key variables. Cross tabulations were performed to obtain frequency and percentages. Potential socio-economic determinants of utilization of ANC among domestic workers were examined using binary logistic regressions. Results: Out of 300 domestic workers survey, only 70.7 per cent per cent received ANC. Domestic workers who married at age 18 years and above are 4 times more likely to utilize antenatal services during their last birth (***p< 0.01). Comparison to domestic workers with number of living children two or less, domestic workers with number of living children more than two are less likely to utilize antenatal care services (**p< 0.05). Domestic workers belonging to Other Backward Castes are more likely to utilize antenatal care services than domestic workers belonging to scheduled tribes ((**p< 0.05). Conclusion: The level of utilization of maternal health services are less among domestic workers is less, as they spend most of their time at the employers household. Though demonstration effect do have impact on their life styles but utilization of maternal health services is poor. Strategies and action are needed to improve the utilization of maternal health services among this section of workers as they are vulnerable because of no proper labour legislations.

Keywords: antenatal care, domestic workers, health services, maternal health, women’s health

Procedia PDF Downloads 184
592 Mechanical Properties and Microstructural Analyzes of Epoxy Resins Reinforced with Satin Tissue

Authors: Băilă Diana Irinel, Păcurar Răzvan, Păcurar Ancuța

Abstract:

Although the volumes of fibre reinforced polymer composites (FRPs) used for aircraft applications is a relatively small percentage of total use, the materials often find their most sophisticated applications in this industry. In aerospace, the performance criteria placed upon materials can be far greater than in other areas – key aspects are light-weight, high-strength, high-stiffness, and good fatigue resistance. Composites were first used by the military before the technology was applied to commercial planes. Nowadays, composites are widely used, and this has been the result of a gradual direct substitution of metal components followed by the development of integrated composite designs as confidence in FRPs has increased. The airplane uses a range of components made from composites, including the fin and tailplane. In the last years, composite materials are increasingly used in automotive applications due to the improvement of material properties. In the aerospace and automotive sector, the fuel consumption is proportional to the weight of the body of the vehicle. A minimum of 20% of the cost can be saved if it used polymer composites in place of the metal structures and the operating and maintenance costs are alco very low. Glass fiber-epoxy composites are widely used in the making of aircraft and automobile body parts and are not only limited to these fields but also used in ship building, structural applications in civil engineering, pipes for the transport of liquids, electrical insulators in reactors. This article was establish the high-performance of composite material, a type glass-epoxy used in automotive and aeronautic domains, concerning the tensile and flexural tests and SEM analyzes.

Keywords: glass-epoxy composite, traction and flexion tests, SEM analysis, acoustic emission (AE) signals

Procedia PDF Downloads 87
591 Exploring the Unintended Consequences of Loyalty programs in the Gambling Sector

Authors: Violet Justine Mtonga, Cecilia Diaz

Abstract:

this paper explores the prevalence of loyalty programs in the UK gambling industry and their association with unintended consequences and harm amongst program members. The use of loyalty programs within the UK gambling industry has risen significantly with over 40 million cards in circulation. Some research suggests that as of 2013-2014, nearly 95% of UK consumers have at least one loyalty card with 78% being members of two or more programs, and the average household possesses ‘22 loyalty programs’, nearly half of which tend to be used actively. The core design of loyalty programs is to create a relational ‘win-win’ approach where value is jointly created between the parties involved through repetitive engagement. However, main concern about the diffusion of gambling organisations’ loyalty programs amongst consumers, might be the use by the organisations within the gambling industry to over influence customer engagement and potentially cause unintended harm. To help understand the complex phenomena of the diffusions and adaptation of the use of loyalty programs in the gambling industry, and the potential unintended outcomes, this study is theoretically underpinned by the social exchange theory of relationships entrenched in the processes of social exchanges of resources, rewards, and costs for long-term interactions and mutual benefits. Qualitative data were collected via in-depth interviews from 14 customers and 12 employees within the UK land-based gambling firms. Data were analysed using a combination of thematic and clustering analysis to help reveal and discover the emerging themes regarding the use of loyalty cards for gambling companies and exploration of subgroups within the sample. The study’s results indicate that there are different unintended consequences and harm of loyalty program engagement and usage such as maladaptive gambling behaviours, risk of compulsiveness, and loyalty programs promoting gambling from home. Furthermore, there is a strong indication of a rite of passage among loyalty program members. There is also strong evidence to support other unfavorable behaviors such as amplified gambling habits and risk-taking practices. Additionally, in pursuit of rewards, loyalty program incentives effectuate overconsumption and heighten expenditure. Overall, the primary findings of this study show that loyalty programs in the gambling industry should be designed with an ethical perspective and practice.

Keywords: gambling, loyalty programs, social exchange theory, unintended harm

Procedia PDF Downloads 74
590 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

Authors: Morteza Elsa, Amirhossein Moghanian

Abstract:

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

Keywords: antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes

Procedia PDF Downloads 128
589 Sustainable Ecological Agricultural Systems in Bangladesh: Environmental, Economic and Social Perspective of Compost

Authors: Protima Chakraborty

Abstract:

The sustainability of conventional agriculture in Bangladesh is under threat from the continuous degradation of land and water resources, and from declining yields due to indiscriminate use of agrochemicals. NASL (Northern Agro Services Limited) is pursuing efforts to promote ecological agriculture with emphasis on better use of organic fertilizer resources and the reduction of external inputs. This paper examines the sustainability of two production systems in terms of their environmental soundness, economic viability and social acceptability based on empirical data collected through making demonstration land cultivation, a household survey, soil sample analysis, observations and discussions with key informants. Twelve indicators were selected to evaluate sustainability. Significant differences were found between the two systems in crop diversification, soil fertility management, pests and diseases management, and use of agrochemicals & Organic Compost. However, significant variations were found in other indicators such as land-use pattern, crop yield and stability, risk and uncertainties, and food security. Although crop yield and financial return were found to be slightly higher in the ecological system, the economic return and value addition per unit of land show the positive difference of using compost rather than chemical fertilizer. The findings suggest that ecological agriculture has a tendency towards becoming ecologically, economically and socially more sound than conventional agriculture, as it requires considerably fewer agro-chemicals, adds more organic matter to the soil, provides balanced food, and requires higher local inputs without markedly compromising output and financial benefits. Broad-policy measures, including the creation of mass awareness of adverse health effects of agrochemical-based products, are outlined for the promotion of ecological agriculture.

Keywords: Bangladesh, compost, conventional agriculture, organic fertilizer, environmental sustainability, economic viability, social acceptability

Procedia PDF Downloads 224
588 Variation in Maternal Mortality in Sidama National Regional State, Southern Ethiopia: A Population Based Cross Sectional Household Survey

Authors: Aschenaki Zerihun Kea, Bernt Lindtjorn, Achamyelesh Gebretsadik, Sven Gudmund Hinderaker

Abstract:

Introduction: Maternal mortality studies conducted at the national level do not provide the information needed for planning and monitoring health programs at lower administrative levels. The aim of this study was to measure maternal mortality, identify risk factors and district-level variations in Sidama National Regional State, southern Ethiopia. Methods: A cross sectional population-based survey was carried out in households where women reported pregnancy and birth outcomes in the past five years. The study was conducted in the Sidama National Regional State, southern Ethiopia, from July 2019 to May 2020. Multi-stage cluster sampling technique was employed. The outcome variable of the study was maternal mortality. Complex sample logistic regression analysis was applied to assess variables independently associated with maternal mortality. Results: We registered 10602 live births (LB) and 48 maternal deaths, yielding an overall maternal mortality ratio (MMR) of 419; 95% CI: 260-577 per 100,000 LB. Aroresa district had the highest MMR with 1142 (95% CI: 693-1591) per 100,000 LB. Leading causes of death were haemorrhage 21 (41%) and eclampsia 10 (27%). Thirty (59%) mothers died during labour, or within 24 hours after delivery, 25 (47%) died at home and 17 (38%) at a health facility. Mothers who did not have formal education had a higher risk of maternal death (AOR: 4.4; 95% CI: 1.7 – 11.0). The risk of maternal death was higher in districts with a low midwife-to-population ratio (AOR: 2.9; 95% CI: 1.0-8.9). Conclusion: The high maternal mortality with district-level variations in Sidama Region highlights the importance of improving obstetric care and employing targeted interventions in areas with high mortality rates. Due attention should be given to improving access to female education. Additional midwives have to be trained and deployed to improve maternal health services and consequently save the lives of mothers.

Keywords: maternal mortality variation, maternal death, Sidama, Ethiopia

Procedia PDF Downloads 51
587 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles

Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma

Abstract:

Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.

Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity

Procedia PDF Downloads 104
586 Inferring Thimlich Ohinga Gender Identity Through Ethnoarchaeological Analysis

Authors: David Maina Muthegethi

Abstract:

The Victoria Basin is associated with gateway for migration to Southern part of Africa. Different communities migrated through the region including the Bantus and Nilotic communities that occupy present day Kenya and Tanzania. A distinct culture of dry-stone technology emerged around 15th century current era, a period associated with peopling of the western Kenya region. One of the biggest dry-stone walls enclosure is Thimlich Ohinga archaeological site. The site was constructed around fourteenth century current era. Architectural design was oval shaped stone structures that were around 4 meters and 2 meters in length and width respectively. The main subsistence strategies of the community that was crop faming, pastoralism, fishing, hunting and gathering. This paper attempts to examine gender dynamics of Thimlich Ohinga society. At that end, attempts are made to infer gender roles as manifested in archaeological record. Therefore, the study entails examination of material evidence excavated from the site. Also, ethnoarchaeological study of contemporary Luo community was undertaken in order to make inferences and analogies concerning gender roles of Thimlich Ohinga society. Overall, the study involved examination of cultural materials excavated from Thimlich Ohinga, extensive survey of the site and ethnography of Luo community. In total, an extensive survey and interviews of 20 households was undertaken in South Kanyamkango ward, Migori County in Western Kenya. The key findings point out that Thimlich Ohinga gender identities were expressed in material forms through architecture, usage of spaces, subsistence strategies, dietary patterns and household organization. Also, gender as social identity was dynamic and responsive to diversification of subsistence strategies and intensification of regional trade as documented in contemporary Luo community. The paper reiterates importance of ethnoarchaeological methods in reconstruction of past social organization as manifested in material record.

Keywords: ethnoarchaeological, gender, subsistence patterns, Thimlich Ohinga

Procedia PDF Downloads 59
585 The Effect of Brand Recovery Communications on Embarrassed Consumers’ Cognitive Appraisal and Post-purchase Behavior

Authors: Kin Yan Ho

Abstract:

Negative brand news (such as Volkswagen’s faulty carbon emission reports, China’s Luckin Coffee scandal, and bribery in reputable US universities) influence how people perceive a company. Germany’s citizens claimed Volkswagen’s scandal as a national embarrassment and cannot recover their psychological damages through monetary and non-monetary compensation. The main research question is to examine how consumers evaluate and respond to embarrassing brand publicity. The cognitive appraisal theory is used as a theoretical foundation. This study describes the use of scenario-based experiment. The findings suggest that consumers with different levels of embarrassment evaluate brand remedial offers from emotion-focused and task-focused restorative justice perspectives (newly derived from the well-established scales of perceived justice). When consumers face both negative and positive brand information (i.e., negative publicity news and a remedial offer), they change their appraisal criterion. The social situation in the cognitive reappraisal process influences the quality of the customer-brand relationship and the customer’s recovery from brand embarrassment. The results also depict that the components of recovery compensation cause differences in emotion recovery, relationship quality, and repurchase intentions. This study extends embarrassment literature in an embarrassing brand publicity context. The emotional components of brand remedial tactics provide insights to brand managers on how to handle different consumers’ emotions, consumer satisfaction, and foster positive future behavior.

Keywords: brand relationship quality, cognitive appraisal, crisis communications, emotion, justice, social presence

Procedia PDF Downloads 112
584 The Cost of Healthcare among Malaysian Community-Dwelling Elderly with Dementia

Authors: Roshanim Koris, Norashidah Mohamed Nor, Sharifah Azizah Haron, Normaz Wana Ismail, Syed Mohamed Aljunid Syed Junid, Amrizal Muhammad Nur, Asrul Akmal Shafie, Suraya Yusuff, Namaitijiang Maimaiti

Abstract:

An ageing population has huge implications for virtually every aspect of Malaysian societies. The elderly consume a greater volume of healthcare facilities not because they are older, but because of they are sick. The chronic comorbidities and deterioration of cognitive ability would lead the elderly’s health to become worst. This study aims to provide a comprehensive estimate of the direct and indirect costs of health care used in a nationally representative sample of community-dwelling elderly with dementia and as well as the determinants of healthcare cost. A survey using multi-stage random sampling techniques recruited a final sample of 2274 elderly people (60 years and above) in the state of Johor, Perak, Selangor and Kelantan. Mini Mental State Examination (MMSE) score was used to measure the cognitive capability among the elderly. Only the elderly with a score less than 19 marks were selected for further analysis and were classified as dementia. By using a two-part model findings also indicate household income and education level are variables that strongly significantly influence the healthcare cost among elderly with dementia. A number of visits and admission are also significantly affect healthcare expenditure. The comorbidity that highly influences healthcare cost is cancer and seeking the treatment in private facilities is also significantly affected the healthcare cost among the demented elderly. The level of dementia severity is not significant in determining the cost. This study is expected to attract the government's attention and act as a wake-up call for them to be more concerned about the elderly who are at high risk of having chronic comorbidities and cognitive problems by providing more appropriate health and social care facilities. The comorbidities are one of the factor that could cause dementia among elderly. It is hoped that this study will promote the issues of dementia as a priority in public health and social care in Malaysia.

Keywords: ageing population, dementia, elderly, healthcare cost, healthcare utiliztion

Procedia PDF Downloads 183
583 Ecological Evaluation and Conservation Strategies of Economically Important Plants in Indian Arid Zone

Authors: Sher Mohammed, Purushottam Lal, Pawan K. Kasera

Abstract:

The Thar Desert of Rajasthan covers a wide geographical area spreading between 23.3° to 30.12°, North latitude and 69.3◦ to 76◦ Eastern latitudes; having a unique spectrum of arid zone vegetation. This desert is spreading over 12 districts having a rich source of economically important/threatened plant diversity interacting and growing with adverse climatic conditions of the area. Due to variable geological, physiographic, climatic, edaphic and biotic factors, the arid zone medicinal flora exhibit a wide collection of angiosperm families. The herbal diversity of this arid region is medicinally important in household remedies among tribal communities as well as in traditional systems. The on-going increasing disturbances in natural ecosystems are due to climatic and biological, including anthropogenic factors. The unique flora and subsequently dependent faunal diversity of the desert ecosystem is losing its biotic potential. A large number of plants have no future unless immediate steps are taken to arrest the causes, leading to their biological improvement. At present the potential loss in ecological amplitude of various genera and species is making several plant species as red listed plants of arid zone vegetation such as Commmiphora wightii, Tribulus rajasthanensis, Calligonum polygonoides, Ephedra foliata, Leptadenia reticulata, Tecomella undulata, Blepharis sindica, Peganum harmala, Sarcostoma vinimale, etc. Mostly arid zone species are under serious pressure against prevailing ecosystem factors to continuation their life cycles. Genetic, molecular, cytological, biochemical, metabolic, reproductive, germination etc. are the several points where the floral diversity of the arid zone area is facing severe ecological influences. So, there is an urgent need to conserve them. There are several opportunities in the field to carry out remarkable work at particular levels to protect the native plants in their natural habitat instead of only their in vitro multiplication.

Keywords: ecology, evaluation, xerophytes, economically, threatened plants, conservation

Procedia PDF Downloads 245
582 Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass

Authors: Alireza Arab, Morteza Elsa, Amirhossein Moghanian

Abstract:

In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 90
581 Optimization and Validation for Determination of VOCs from Lime Fruit Citrus aurantifolia (Christm.) with and without California Red Scale Aonidiella aurantii (Maskell) Infested by Using HS-SPME-GC-FID/MS

Authors: K. Mohammed, M. Agarwal, J. Mewman, Y. Ren

Abstract:

An optimum technic has been developed for extracting volatile organic compounds which contribute to the aroma of lime fruit (Citrus aurantifolia). The volatile organic compounds of healthy and infested lime fruit with California red scale Aonidiella aurantii were characterized using headspace solid phase microextraction (HS-SPME) combined with gas chromatography (GC) coupled flame ionization detection (FID) and gas chromatography with mass spectrometry (GC-MS) as a very simple, efficient and nondestructive extraction method. A three-phase 50/30 μm PDV/DVB/CAR fibre was used for the extraction process. The optimal sealing and fibre exposure time for volatiles reaching equilibrium from whole lime fruit in the headspace of the chamber was 16 and 4 hours respectively. 5 min was selected as desorption time of the three-phase fibre. Herbivorous activity induces indirect plant defenses, as the emission of herbivorous-induced plant volatiles (HIPVs), which could be used by natural enemies for host location. GC-MS analysis showed qualitative differences among volatiles emitted by infested and healthy lime fruit. The GC-MS analysis allowed the initial identification of 18 compounds, with similarities higher than 85%, in accordance with the NIST mass spectral library. One of these were increased by A. aurantii infestation, D-limonene, and three were decreased, Undecane, α-Farnesene and 7-epi-α-selinene. From an applied point of view, the application of the above-mentioned VOCs may help boost the efficiency of biocontrol programs and natural enemies’ production techniques.

Keywords: lime fruit, Citrus aurantifolia, California red scale, Aonidiella aurantii, VOCs, HS-SPME/GC-FID-MS

Procedia PDF Downloads 193
580 Choosing the Green Energy Option: A Willingness to Pay Study of Metro Manila Residents for Solar Renewable Energy

Authors: Paolo Magnata

Abstract:

The energy market in the Philippines remains to have one of the highest electricity rates in the region averaging at US$0.16/kWh (PHP6.89/kWh), excluding VAT, as opposed to the overall energy market average of US$0.13/kWh. The movement towards renewable energy, specifically solar energy, will pose as an expensive one with the country’s energy sector providing Feed-in-Tariff rates as high as US$0.17/kWh (PHP8.69/kWh) for solar energy power plants. Increasing the share of renewables at the current state of the energy regulatory background would yield a three-fold increase in residential electricity bills. The issue lies in the uniform charge that consumers bear regardless of where the electricity is sourced resulting in rates that only consider costs and not the consumers. But if they are given the option to choose where their electricity comes from, a number of consumers may potentially choose economically costlier sources of electricity due to higher levels of utility coupled with the willingness to pay of consuming environmentally-friendly sourced electricity. A contingent valuation survey was conducted to determine their willingness-to-pay for solar energy on a sample that was representative of Metro Manila to elicit their willingness-to-pay and a Single Bounded Dichotomous Choice and Double Bounded Dichotomous Choice analysis was used to estimate the amount they were willing to pay. The results showed that Metro Manila residents are willing to pay a premium on top of their current electricity bill amounting to US$5.71 (PHP268.42) – US$9.26 (PHP435.37) per month which is approximately 0.97% - 1.29% of their monthly household income. It was also discovered that besides higher income of households, a higher level of self-perceived knowledge on environmental awareness significantly affected the likelihood of a consumer to pay the premium. Shifting towards renewable energy is an expensive move not only for the government because of high capital investment but also to consumers; however, the Green Energy Option (a policy mechanism which gives consumers the option to decide where their electricity comes from) can potentially balance the shift of the economic burden by transitioning from a uniformly charged electricity rate to equitably charging consumers based on their willingness to pay for renewably sourced energy.

Keywords: contingent valuation, dichotomous choice, Philippines, solar energy

Procedia PDF Downloads 314
579 Evaluation of Life Cycle Assessment in Furniture Manufacturing by Analytical Hierarchy Process

Authors: Majid Azizi, Payam Ghorbannezhad, Mostafa Amiri, Mohammad Ghofrani

Abstract:

Environmental issues in the furniture industry are of great importance due to the use of natural materials such as wood and chemical substances like adhesives and paints. These issues encompass environmental conservation and managing pollution and waste generated. Improper use of wood resources, along with the use of chemicals and their release, leads to the depletion of natural resources, damage to forests, and the emission of greenhouse gases. Therefore, identifying influential indicators in the life cycle assessment of classic furniture and proposing solutions to reduce environmental impacts becomes crucial. In this study, the life cycle of classic furniture was evaluated using a hierarchical analytical process from cradle to grave. The life cycle assessment was employed to assess the environmental impacts of the furniture industry, ranging from raw material extraction to waste disposal and recycling. The most significant indicators in the furniture industry's production chain were also identified. The results indicated that the wood quality indicator is the most essential factor in the life cycle of classic furniture. Furthermore, the relative contribution of each type of traditional furniture was proposed concerning impact categories in the life cycle assessment. The results showed that among the three proposed types, the design and production of furniture with prefabricated parts had the most negligible impact in categories such as global warming potential and ozone layer depletion compared to furniture design with solid wood and furniture design with recycled components. Among the three suggested types of furniture to reduce environmental impacts, producing furniture with solid wood or other woods was chosen as the most crucial solution.

Keywords: life cycle assessment, analytic hierarchy process, environmental issues, furniture

Procedia PDF Downloads 46
578 Food Waste and Sustainable Management

Authors: Farhana Nosheen, Moeez Ahmad

Abstract:

Throughout the food chain, the food waste from initial agricultural production to final household consumption has become a serious concern for global sustainability because of its adverse impacts on food security, natural resources, the environment, and human health. About a third of tomatoes (Lycopersicon esculentum L.) delivered to processing plants end as processing waste. The amount of such waste material is estimated to have increased with the emergence of mechanical harvesting. Experiments were made to determine the nutritional profile and antioxidant activity of tomato processing waste and to explore the bioactive compound in tomato waste, i.e., Lycopene. Tomato Variety of ‘SAHARA F1’ was used to make tomato waste. The tomatoes were properly cleaned, and then unwanted impurities were removed properly. The tomatoes were blanched at 90 ℃ for 5 minutes. After which, the skin of the tomatoes was removed, and the remaining part passed through the electric pulper. The pulp and seeds were collected separately. The seeds and skin of tomatoes were mixed and saved in a sterilized jar. The samples of tomato waste were found to contain 89.11±0.006 g/100g moisture, 10.13±0.115 g/100g protein, 2.066±0.57 g/100g fat, 4.81±0.10 g/100g crude fiber, and 4.06±0.057 g/100g ash and NFE 78.92±0.066 g/100g. The results confirmed that tomato waste contains a considerable amount of Lycopene 51.0667±0.00577 mg/100g and exhibited good antioxidant properties. Total phenolics showed average contents of 122.9600±0.01000 mg GAE/100g, of which flavonoids accounted for 41.5367±0.00577 mg QE/100g. Antioxidant activity of tomato processing waste was found 0.6833±0.00577 mmol Trolox/100g. Unsaturated fatty acids represent the major portion of total fatty acids, Linoleic acid being the major one. The mineral content of tomato waste showed a good amount of potassium 3030.1767 mg/100g and calcium 131.80 mg/100g, respectively were present in it. These findings suggest that tomato processing waste is rich in nutrients, antioxidants, fatty acids, and minerals. I recommend that this waste should be sun-dried to be used in the combination of feed of the animals. It can also be used in making some other products like lycopene tea or several other health-beneficial products.

Keywords: food waste, tomato, bioactive compound, sustainable management

Procedia PDF Downloads 90
577 Research of Actuators of Common Rail Injection Systems with the Use of LabVIEW on a Specially Designed Test Bench

Authors: G. Baranski, A. Majczak, M. Wendeker

Abstract:

Currently, the most commonly used solution to provide fuel to the diesel engines is the Common Rail system. Compared to previous designs, as a due to relatively simple construction and electronic control systems, these systems allow achieving favourable engine operation parameters with particular emphasis on low emission of toxic compounds into the atmosphere. In this system, the amount of injected fuel dose is strictly dependent on the course of parameters of the electrical impulse sent by the power amplifier power supply system injector from the engine controller. The article presents the construction of a laboratory test bench to examine the course of the injection process and the expense in storage injection systems. The test bench enables testing of injection systems with electromagnetically controlled injectors with the use of scientific engineering tools. The developed system is based on LabView software and CompactRIO family controller using FPGA systems and a real time microcontroller. The results of experimental research on electromagnetic injectors of common rail system, controlled by a dedicated National Instruments card, confirm the effectiveness of the presented approach. The results of the research described in the article present the influence of basic parameters of the electric impulse opening the electromagnetic injector on the value of the injected fuel dose. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: fuel injector, combustion engine, fuel pressure, compression ignition engine, power supply system, controller, LabVIEW

Procedia PDF Downloads 110
576 The Role of Bone Marrow Stem Cells Transplantation in the Repair of Damaged Inner Ear in Albino Rats

Authors: Ahmed Gaber Abdel Raheem, Nashwa Ahmed Mohamed

Abstract:

Introduction: Sensorineural hearing loss (SNHL) is largely caused by the degeneration of the cochlea. Therapeutic options for SNHL are limited to hearing aids and cochlear implants. The cell transplantation approach to the regeneration of hair cells has gained considerable attention because stem cells are believed to accumulate in the damaged sites and have the potential for the repair of damaged tissues. The aim of the work: was to assess the use of bone marrow transplantation in repair of damaged inner ear hair cells in rats after the damage had been inflicted by Amikacin injection. Material and Methods: Thirty albino rats were used in this study. They were divided into three groups. Each group ten rats. Group I: used as control. Group II: Were given Amikacin- intratympanic injection till complete loss of hearing function. This could be assessed by Distortion product Otoacoustic Emission (DPOAEs) and / or auditory brain stem evoked potential (ABR). GroupIII: were given intra-peritoneal injection of bone marrow stem cell after complete loss of hearing caused by Amikacin. Clinical assessment was done using DPOAEs and / or auditory brain stem evoked potential (ABR), before and after bone marrow injection. Histological assessment of the inner ear was done by light and electron microscope. Also, Detection of stem cells in the inner ear by immunohistochemistry. Results: Histological examination of the specimens showed promising improvement in the structure of cochlea that may be responsible for the improvement of hearing function in rats detected by DPOAEs and / or ABR. Conclusion: Bone marrow stem cells transplantation might be useful for the treatment of SNHL.

Keywords: amikacin, hair cells, sensorineural hearing loss, stem cells

Procedia PDF Downloads 433
575 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 210
574 Access to Financial Services to Rural Poor in Nepal: Challenges and Way Forward

Authors: Krishna Prasad Sharma

Abstract:

Nepal’s financial sector has become deeper and wider, and the number and types of financial intermediaries have grown rapidly over the past two decades. However, access to financial services remains limited for many people in many parts of rural Nepal. While financial institutions have been expanding rapidly in an urban area in recent years, the access to the rural poor is excessively inadequate due to financial illiteracy and limited numbers of financial institutions that confined only to the district headquarters. Based on the focus group discussion, semi-structured interview of key people and literature review, this paper aims to examine the supply of and demand for financial services in Nepal and the constraints to increasing access to them, and offers way forward for making the financial sector work for all of Nepal’s people, especially the rural poor. While Nepal’s government has tried to increase access to formal financial services for small businesses and low-income households through directed lending programs for small businesses and low-income households, created specialized wholesale and retail institutions, and lowered market entry requirements, formal financial services are declining, and financial intermediation is stagnating. Supply and demand indicators show that, despite government efforts, formal financial institutions do not serve the needs of most of the Nepalese population. While access to and use of formal financial services are limited, in general, the problem is acute for small businesses and low-income households. Indeed, both access and use are closely correlated with business loan size and household income. This study concludes that banks and microfinance institutions with the use of mobile phones can connect hundreds of millions of unbanked and low-income people, especially rural poor to financial services at low costs. While there are many challenges ahead in expanding the service to rural areas, the mobile financial services will be beneficial that makes payments faster and cheaper, more convenient and accessible to a greater number of senders and recipients in rural areas. In rural areas, clients will benefit from money transfer and other mobile and online services.

Keywords: financial inclusion, financial enabling environment, microfinance, branchless banking, rural poor

Procedia PDF Downloads 270
573 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change

Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee

Abstract:

In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.

Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems

Procedia PDF Downloads 42
572 Integrating Efficient Anammox with Enhanced Biological Phosphorus Removal Process Through Flocs Management for Sustainable Ultra-deep Nutrients Removal from Municipal Wastewater

Authors: Qiongpeng Dan, Xiyao Li, Qiong Zhang, Yongzhen Peng

Abstract:

The nutrients removal from wastewater is of great significance for global wastewater recycling and sustainable reuse. Traditional nitrogen and phosphorus removal processes are very dependent on the input of aeration and carbon sources, which makes it difficult to meet the low-carbon goal of energy saving and emission reduction. This study reported a proof-of-concept demonstration of integrating anammox and enhanced biological phosphorus removal (EBPR) by flocs management in a single-stage hybrid bioreactor (biofilms and flocs) for simultaneous nitrogen and phosphorus removal (SNPR). Excellent removal efficiencies of nitrogen (97.7±1.3%) and phosphorus (97.4±0.7%) were obtained in low C/N ratio (3.0±0.5) municipal wastewater treatment. Interestingly, with the loss of flocs, anammox bacteria (Ca. Brocadia) was highly enriched in biofilms, with relative and absolute abundances reaching up to 12.5% and 8.3×1010 copies/g dry sludge, respectively. The anammox contribution to nitrogen removal also rose from 32.6±9.8% to 53.4±4.2%. Endogenous denitrification by flocs was proven to be the main contributor to both nitrite and nitrate reduction, and flocs loss significantly promoted nitrite flow towards anammox, facilitating AnAOB enrichment. Moreover, controlling the floc's solid retention time at around 8 days could maintain a low poly-phosphorus level of 0.02±0.001 mg P/mg VSS in the flocs, effectively addressing the additional phosphorus removal burden imposed by the enrichment of phosphorus-accumulating organisms in biofilms. This study provides an update on developing a simple and feasible strategy for integrating anammox and EBPR for SNPR in mainstream municipal wastewater.

Keywords: anammox process, enhanced biological phosphorus removal, municipal wastewater, sustainable nutrients removal

Procedia PDF Downloads 26
571 Synthesis of Fullerene Nanorods for Detection of Ethylparaben an Endocrine Disruptor in Cosmetics

Authors: Jahangir Ahmad Rather, Emad A. Khudaish, Ahsanulhaq Qurashi, Palanisamy Kannan

Abstract:

Chemical modification and assembling of fullerenes are fundamentally important for the application of fullerenes as functional molecules and in molecular devices and organic electronic devices. We have synthesized fullerene nanorods C60NRs conjugate via liquid-liquid interface and the synthesized C60NRs was characterized by FTIR spectroscopy, field emission electron microscopy (FESEM) and X-ray diffraction techniques. The C60NRs were immobilized on glassy carbon electrode via surface bound diazonium salts as an impact strategy. This method involves electrografting of p–nitrophenyl to give GCE–Ph–NO2 and then the terminal nitro-group was chemically reduced to GCE–Ph–NH2 in a presence of sodium borohydride/gold–polyaniline nanocomposite (NaBH4/Au–PANI). The Au–PANI composite was synthesized and characterized by FTIR, UV-vis, SEM and EDX techniques. The C60NRs were immobilized on GCE–Ph–NH2 via amination reaction which involves N-H addition across a π-bond on [60] fullerene. The immobilized C60NRs/GCE was subjected to electrochemical reduction in 1.0 M KOH to yield ERC60NRs/GCE sensor. The developed sensor shows high electrocatalytic activity for the detection of ethylparaben (EP) over a concentration range from 0.01 to 0.52 µM with a detection limit (LOD) 3.8 nM. The amount of EP present in the nourishing repair cream (OlAY®) was determined by standard addition method at the developed ERC60NRs/GCE sensor. The total concentration of EP was found to be 0.011 µM (0.1%) and is within the permissible limit of 0.19 % EP in cosmetics according to the European scientific committee (SCCS) on consumer safety on 22 March 2011 (SCCS/1348/11).

Keywords: diazonium salt reduction, ethylparaben (EP), endocrine disruptor, fullerene nanorods (C60NRs), gold–polyaniline nanocomposite (Au–PANI)

Procedia PDF Downloads 216
570 Combining Transcriptomics, Bioinformatics, Biosynthesis Networks and Chromatographic Analyses for Cotton Gossypium hirsutum L. Defense Volatiles Study

Authors: Ronald Villamar-Torres, Michael Staudt, Christopher Viot

Abstract:

Cotton Gossypium hirsutum L. is one of the most important industrial crops, producing the world leading natural textile fiber, but is very prone to arthropod attacks that reduce crop yield and quality. Cotton cultivation, therefore, makes an outstanding use of chemical pesticides. In reaction to herbivorous arthropods, cotton plants nevertheless show natural defense reactions, in particular through volatile organic compounds (VOCs) emissions. These natural defense mechanisms are nowadays underutilized but have a very high potential for cotton cultivation, and elucidating their genetic bases will help to improve their use. Simulating herbivory attacks by mechanical wounding of cotton plants in greenhouse, we studied by qPCR the changes in gene expression for genes of the terpenoids biosynthesis pathway. Differentially expressed genes corresponded to higher levels of the terpenoids biosynthesis pathway and not to enzymes synthesizing particular terpenoids. The genes were mapped on the G. hirsutum L. reference genome; their global relationships inside the general metabolic pathways and the biosynthesis of secondary metabolites were visualized with iPath2. The chromatographic profiles of VOCs emissions indicated first monoterpenes and sesquiterpenes emissions, dominantly four molecules known to be involved in plant reactions to arthropod attacks. As a result, the study permitted to identify potential key genes for the emission of volatile terpenoids by cotton plants in reaction to an arthropod attack, opening possibilities for molecular-assisted cotton breeding in benefit of smallholder cotton growers.

Keywords: biosynthesis pathways, cotton, mechanisms of plant defense, terpenoids, volatile organic compounds

Procedia PDF Downloads 350