Search results for: multimodal database
132 A Sustainability Benchmarking Framework Based on the Life Cycle Sustainability Assessment: The Case of the Italian Ceramic District
Authors: A. M. Ferrari, L. Volpi, M. Pini, C. Siligardi, F. E. Garcia Muina, D. Settembre Blundo
Abstract:
A long tradition in the ceramic manufacturing since the 18th century, primarily due to the availability of raw materials and an efficient transport system, let to the birth and development of the Italian ceramic tiles district that nowadays represents a reference point for this sector even at global level. This economic growth has been coupled to attention towards environmental sustainability issues throughout various initiatives undertaken over the years at the level of the production sector, such as certification activities and sustainability policies. In this way, starting from an evaluation of the sustainability in all its aspects, the present work aims to develop a benchmarking helping both producers and consumers. In the present study, throughout the Life Cycle Sustainability Assessment (LCSA) framework, the sustainability has been assessed in all its dimensions: environmental with the Life Cycle Assessment (LCA), economic with the Life Cycle Costing (LCC) and social with the Social Life Cycle Assessment (S-LCA). The annual district production of stoneware tiles during the 2016 reference year has been taken as reference flow for all the three assessments, and the system boundaries cover the entire life cycle of the tiles, except for the LCC for which only the production costs have been considered at the moment. In addition, a preliminary method for the evaluation of local and indoor emissions has been introduced in order to assess the impact due to atmospheric emissions on both people living in the area surrounding the factories and workers. The Life Cycle Assessment results, obtained from IMPACT 2002+ modified assessment method, highlight that the manufacturing process is responsible for the main impact, especially because of atmospheric emissions at a local scale, followed by the distribution to end users, the installation and the ordinary maintenance of the tiles. With regard to the economic evaluation, both the internal and external costs have been considered. For the LCC, primary data from the analysis of the financial statements of Italian ceramic companies show that the higher cost items refer to expenses for goods and services and costs of human resources. The analysis of externalities with the EPS 2015dx method attributes the main damages to the distribution and installation of the tiles. The social dimension has been investigated with a preliminary approach by using the Social Hotspots Database, and the results indicate that the most affected damage categories are health and safety and labor rights and decent work. This study shows the potential of the LCSA framework applied to an industrial sector; in particular, it can be a useful tool for building a comprehensive benchmark for the sustainability of the ceramic industry, and it can help companies to actively integrate sustainability principles into their business models.Keywords: benchmarking, Italian ceramic industry, life cycle sustainability assessment, porcelain stoneware tiles
Procedia PDF Downloads 126131 Validating Chronic Kidney Disease-Specific Risk Factors for Cardiovascular Events Using National Data: A Retrospective Cohort Study of the Nationwide Inpatient Sample
Authors: Fidelis E. Uwumiro, Chimaobi O. Nwevo, Favour O. Osemwota, Victory O. Okpujie, Emeka S. Obi, Omamuyovbi F. Nwoagbe, Ejiroghene Tejere, Joycelyn Adjei-Mensah, Christopher N. Ekeh, Charles T. Ogbodo
Abstract:
Several risk factors associated with cardiovascular events have been identified as specific to Chronic Kidney Disease (CKD). This study endeavors to validate these CKD-specific risk factors using up-to-date national-level data, thereby highlighting the crucial significance of confirming the validity and generalizability of findings obtained from previous studies conducted on smaller patient populations. The study utilized the nationwide inpatient sample database to identify adult hospitalizations for CKD from 2016 to 2020, employing validated ICD-10-CM/PCS codes. A comprehensive literature review was conducted to identify both traditional and CKD-specific risk factors associated with cardiovascular events. Risk factors and cardiovascular events were defined using a combination of ICD-10-CM/PCS codes and statistical commands. Only risk factors with specific ICD-10 codes and hospitalizations with complete data were included in the study. Cardiovascular events of interest included cardiac arrhythmias, sudden cardiac death, acute heart failure, and acute coronary syndromes. Univariate and multivariate regression models were employed to evaluate the association between chronic kidney disease-specific risk factors and cardiovascular events while adjusting for the impact of traditional CV risk factors such as old age, hypertension, diabetes, hypercholesterolemia, inactivity, and smoking. A total of 690,375 hospitalizations for CKD were included in the analysis. The study population was predominantly male (375,564, 54.4%) and primarily received care at urban teaching hospitals (512,258, 74.2%). The mean age of the study population was 61 years (SD 0.1), and 86.7% (598,555) had a CCI of 3 or more. At least one traditional risk factor for CV events was present in 84.1% of all hospitalizations (580,605), while 65.4% (451,505) included at least one CKD-specific risk factor for CV events. The incidence of CV events in the study was as follows: acute coronary syndromes (41,422; 6%), sudden cardiac death (13,807; 2%), heart failure (404,560; 58.6%), and cardiac arrhythmias (124,267; 18%). 91.7% (113,912) of all cardiac arrhythmias were atrial fibrillations. Significant odds of cardiovascular events on multivariate analyses included: malnutrition (aOR: 1.09; 95% CI: 1.06–1.13; p<0.001), post-dialytic hypotension (aOR: 1.34; 95% CI: 1.26–1.42; p<0.001), thrombophilia (aOR: 1.46; 95% CI: 1.29–1.65; p<0.001), sleep disorder (aOR: 1.17; 95% CI: 1.09–1.25; p<0.001), and post-renal transplant immunosuppressive therapy (aOR: 1.39; 95% CI: 1.26–1.53; p<0.001). The study validated malnutrition, post-dialytic hypotension, thrombophilia, sleep disorders, and post-renal transplant immunosuppressive therapy, highlighting their association with increased risk for cardiovascular events in CKD patients. No significant association was observed between uremic syndrome, hyperhomocysteinemia, hyperuricemia, hypertriglyceridemia, leptin levels, carnitine deficiency, anemia, and the odds of experiencing cardiovascular events.Keywords: cardiovascular events, cardiovascular risk factors in CKD, chronic kidney disease, nationwide inpatient sample
Procedia PDF Downloads 78130 Dys-Regulation of Immune and Inflammatory Response in in vitro Fertilization Implantation Failure Patients under Ovarian Stimulation
Authors: Amruta D. S. Pathare, Indira Hinduja, Kusum Zaveri
Abstract:
Implantation failure (IF) even after the good-quality embryo transfer (ET) in the physiologically normal endometrium is the main obstacle in in vitro fertilization (IVF). Various microarray studies have been performed worldwide to elucidate the genes requisite for endometrial receptivity. These studies have included the population based on different phases of menstrual cycle during natural cycle and stimulated cycle in normal fertile women. Additionally, the literature is also available in recurrent implantation failure patients versus oocyte donors in natural cycle. However, for the first time, we aim to study the genomics of endometrial receptivity in IF patients under controlled ovarian stimulation (COS) during which ET is generally practised in IVF. Endometrial gene expression profiling in IF patients (n=10) and oocyte donors (n=8) were compared during window of implantation under COS by whole genome microarray (using Illumina platform). Enrichment analysis of microarray data was performed to determine dys-regulated biological functions and pathways using Database for Annotation, Visualization and Integrated Discovery, v6.8 (DAVID). The enrichment mapping was performed with the help of Cytoscape software. Microarray results were validated by real-time PCR. Localization of genes related to immune response (Progestagen-Associated Endometrial Protein (PAEP), Leukaemia Inhibitory Factor (LIF), Interleukin-6 Signal Transducer (IL6ST) was detected by immunohistochemistry. The study revealed 418 genes downregulated and 519 genes upregulated in IF patients compared to healthy fertile controls. The gene ontology, pathway analysis and enrichment mapping revealed significant downregulation in activation and regulation of immune and inflammation response in IF patients under COS. The lower expression of Progestagen Associated Endometrial Protein (PAEP), Leukemia Inhibitory Factor (LIF) and Interleukin 6 Signal Transducer (IL6ST) in cases compared to controls by real time and immunohistochemistry suggests the functional importance of these genes. The study was proved useful to uncover the probable reason of implantation failure being imbalance of immune and inflammatory regulation in our group of subjects. Based on the present study findings, a panel of significant dysregulated genes related to immune and inflammatory pathways needs to be further substantiated in larger cohort in natural as well as stimulated cycle. Upon which these genes could be screened in IF patients during window of implantation (WOI) before going for embryo transfer or any other immunological treatment. This would help to estimate the regulation of specific immune response during WOI in a patient. The appropriate treatment of either activation of immune response or suppression of immune response can be then attempted in IF patients to enhance the receptivity of endometrium.Keywords: endometrial receptivity, immune and inflammatory response, gene expression microarray, window of implantation
Procedia PDF Downloads 153129 Ventilator Associated Pneumonia in a Medical Intensive Care Unit, Incidence and Risk Factors: A Case Control Study
Authors: Ammar Asma, Bouafia Nabiha, Ben Cheikh Asma, Ezzi Olfa, Mahjoub Mohamed, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour
Abstract:
Background: Ventilator-associated pneumonia (VAP) is currently recognized as one of the most relevant causes of morbidity and mortality among intensive care unit (ICU) patients worldwide. Identifying modifiable risk factors for VAP could be helpful for future controlled interventional studies aiming at improving prevention of VAP. The purposes of this study were to determine the incidence and risk factors for VAP in in a Tunisian medical ICU. Materials / Methods: A retrospective case-control study design based on the prospective database collected over a 14-month period from September 15th, 2015 through November 15th, 2016 in an 8-bed medical ICU. Patients under ventilation for over 48 h were included. The number of cases was estimated by Epi-info Software with the power of statistical test equal to 90 %. Each case patient was successfully matched to two controls according to the length of mechanical ventilation (MV) before VAP for cases and the total length of MV in controls. VAP in the ICU was defined according to American Thoracic Society; Infectious Diseases Society of America guidelines. Early onset or late-onset VAP were defined whether the infectious process occurred within or after 96 h of ICU admission. Patients’ risk factors, causes of admission, comorbidities and respiratory specimens collected were reviewed. Univariate and multivariate analyses were performed to determine variables associated with VAP with a p-value < 0.05. Results: During the period study, a total of 169 patients under mechanical ventilation were considered, 34 patients (20.11%) developed at least one episode of VAP in the ICU. The incidence rate for VAP was 14.88/1000 ventilation days. Among these cases, 9 (26.5 %) were early-onset VAP and 25 (73.5 %) were late-onset VAP. It was a certain diagnosis in 66.7% of cases. Tracheal aspiration was positive in 80% of cases. Multi-drug resistant Acinerobacter baumanii was the most common species detected in cases; 67.64% (n=23). The rate of mortality out of cases was 88.23% (n= 30). In univariate analysis, the patients with VAP were statistically more likely to suffer from cardiovascular diseases (p=0.035) and prolonged duration of sedation (p=0.009) and tracheostomy (p=0.001), they also had a higher number of re-intubation (p=0.017) and a longer total time of intubation (p=0.012). Multivariate analysis showed that cardiovascular diseases (OR= 4.44; 95% IC= [1.3 - 14]; p=0.016), tracheostomy (OR= 4.2; 95% IC= [1.16 -15.12]; p= 0.028) and prolonged duration of sedation (OR=1.21; 95% IC= [1.07, 1.36]; p=0.002) were independent risk factors for the development of VAP. Conclusion: VAP constitutes a therapeutic challenge in an ICU setting, therefore; strategies that effectively prevent VAP are needed. An infection control-training program intended to all professional heath care in this unit insisting on bundles and elaboration of procedures are planned to reduce effectively incidence rate of VAP.Keywords: case control study, intensive care unit, risk factors, ventilator associated pneumonia
Procedia PDF Downloads 394128 Analysis of Mutation Associated with Male Infertility in Patients and Healthy Males in the Russian Population
Authors: Svetlana Zhikrivetskaya, Nataliya Shirokova, Roman Bikanov, Elizaveta Musatova, Yana Kovaleva, Nataliya Vetrova, Ekaterina Pomerantseva
Abstract:
Nowadays there is a growing number of couples with conceiving problems due to male or female infertility. Genetic abnormalities are responsible for about 31% of all cases of male infertility. These abnormalities include both chromosomal aberrations or aneuploidies and mutations in certain genes. Chromosomal abnormalities can be easily identified, thus the development of screening panels able to reveal genetic reasons of male infertility on gene level is of current interest. There are approximately 2,000 genes involved in male fertility that is the reason why it is very important to determine the most clinically relevant in certain population and ethnic conditions. An infertility screening panel containing 48 mutations in genes AMHR2, CFTR, DNAI1, HFE, KAL1, TSSK2 and AZF locus which are the most clinically relevant for the European population according to databases NCBI and ClinVar was designed. The aim of this research was to confirm clinic relevance of these mutations in the Russian population. Genotyping was performed in 220 patients with different types of male infertility and in 57 healthy males with normozoospermia. Mutations were identified by end-point PCR with TaqMan probes in microfluidic plates. The frequency of 5 mutations in healthy males and 13 mutations in patients with infertility was revealed and estimated. The frequency of mutation c.187C>G in HFE gene was significantly lower for healthy males (8.8%) compared with patients (17.7%) and the values for the European population according to ExAc database (13.7%) and dbSNP (17.2%). Analysis of c.3454G>C, and c.1545_1546delTA mutations in the CFTR gene revealed increased frequency (0.9 and 0.2%, respectively) in patients with infertility compared with data for the European population (0.04%, respectively (ExAc, European (Non-Finnish) and for the Aggregated Populations (0.002% (ExAc), because there is no data for European population for c.1545_1546delTA mutation. The frequency of del508 mutation (CFTR) in patients (1.59%) were lower comparing with male infertility Europeans (3.34-6.25% depending on nationality) and at the same level with healthy Europeans (1.06%, ExAc, European (Non-Finnish). Analysis of c.845G>A (HFE) mutation resulted in decreased frequency in patients (1.8%) in contrast with the European population data (5.1%, respectively, ExAc, European (Non-Finnish). Moreover, obtained data revealed no statistically significant frequency difference for c.845G>A mutation (HFE) between healthy males in the Russian and the European populations. Allele frequencies of mutations c.350G>A (CFTR), c.193A>T (HFE), c.774C>T, and c.80A>G (gene TSSK2) showed no significantly difference among patients with infertility, healthy males and Europeans. Analysis of AZF locus revealed increased frequency for AZFc microdeletion in patients with male infertility. Thereby, the new data of the allele frequencies in infertility patients in the Russian population was obtained. As well as the frequency differences of mutations associated with male infertility among patients, healthy males in the Russian population and the European one were estimated. The revealed differences showed that for high effectiveness of screening panel detecting genetically caused male infertility it is very important to consider ethnic and population characteristics of patients which will be screened.Keywords: allele frequency, azoospermia, male infertility, mutation, population
Procedia PDF Downloads 390127 Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System
Authors: Corinne Zurmuehle, Andreas Christoph Weber
Abstract:
In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision.Keywords: data visualization, business intelligence, Swiss elite sports system, strategic decision-making
Procedia PDF Downloads 88126 Verification of the Supercavitation Phenomena: Investigation of the Cavity Parameters and Drag Coefficients for Different Types of Cavitator
Authors: Sezer Kefeli, Sertaç Arslan
Abstract:
Supercavitation is a pressure dependent process which gives opportunity to eliminate the wetted surface effects on the underwater vehicle due to the differences of viscosity and velocity effects between liquid (freestream) and gas phase. Cavitation process occurs depending on rapid pressure drop or temperature rising in liquid phase. In this paper, pressure based cavitation is investigated due to the fact that is encountered in the underwater world, generally. Basically, this vapor-filled pressure based cavities are unstable and harmful for any underwater vehicle because these cavities (bubbles or voids) lead to intense shock waves while collapsing. On the other hand, supercavitation is a desired and stabilized phenomena than general pressure based cavitation. Supercavitation phenomena offers the idea of minimizing form drag, and thus supercavitating vehicles are revived. When proper circumstances are set up, which are either increasing the operating speed of the underwater vehicle or decreasing the pressure difference between free stream and artificial pressure, the continuity of the supercavitation is obtainable. There are 2 types of supercavitation to obtain stable and continuous supercavitation, and these are called as natural and artificial supercavitation. In order to generate natural supercavitation, various mechanical structures are discovered, which are called as cavitators. In literature, a lot of cavitator types are studied either experimentally or numerically on a CFD platforms with intent to observe natural supercavitation since the 1900s. In this paper, firstly, experimental results are obtained, and trend lines are generated based on supercavitation parameters in terms of cavitation number (), form drag coefficientC_D, dimensionless cavity diameter (d_m/d_c), and length (L_c/d_c). After that, natural cavitation verification studies are carried out for disk and cone shape cavitators. In addition, supercavitation parameters are numerically analyzed at different operating conditions, and CFD results are fitted into trend lines of experimental results. The aims of this paper are to generate one generally accepted drag coefficient equation for disk and cone cavitators at different cavitator half angle and investigation of the supercavitation parameters with respect to cavitation number. Moreover, 165 CFD analysis are performed at different cavitation numbers on FLUENT version 21R2. Five different cavitator types are modeled on SCDM with respect tocavitator’s half angles. After that, CFD database is generated depending on numerical results, and new trend lines are generated based on supercavitation parameters. These trend lines are compared with experimental results. Finally, the generally accepted drag coefficient equation and equations of supercavitation parameters are generated.Keywords: cavity envelope, CFD, high speed underwater vehicles, supercavitation, supercavitating flows, supercavitation parameters, drag reduction, viscous force elimination, natural cavitation verification
Procedia PDF Downloads 130125 Exploring Valproic Acid (VPA) Analogues Interactions with HDAC8 Involved in VPA Mediated Teratogenicity: A Toxicoinformatics Analysis
Authors: Sakshi Piplani, Ajit Kumar
Abstract:
Valproic acid (VPA) is the first synthetic therapeutic agent used to treat epileptic disorders, which account for affecting nearly 1% world population. Teratogenicity caused by VPA has prompted the search for next generation drug with better efficacy and lower side effects. Recent studies have posed HDAC8 as direct target of VPA that causes the teratogenic effect in foetus. We have employed molecular dynamics (MD) and docking simulations to understand the binding mode of VPA and their analogues onto HDAC8. A total of twenty 3D-structures of human HDAC8 isoforms were selected using BLAST-P search against PDB. Multiple sequence alignment was carried out using ClustalW and PDB-3F07 having least missing and mutated regions was selected for study. The missing residues of loop region were constructed using MODELLER and energy was minimized. A set of 216 structural analogues (>90% identity) of VPA were obtained from Pubchem and ZINC database and their energy was optimized with Chemsketch software using 3-D CHARMM-type force field. Four major neurotransmitters (GABAt, SSADH, α-KGDH, GAD) involved in anticonvulsant activity were docked with VPA and its analogues. Out of 216 analogues, 75 were selected on the basis of lower binding energy and inhibition constant as compared to VPA, thus predicted to have anti-convulsant activity. Selected hHDAC8 structure was then subjected to MD Simulation using licenced version YASARA with AMBER99SB force field. The structure was solvated in rectangular box of TIP3P. The simulation was carried out with periodic boundary conditions and electrostatic interactions and treated with Particle mesh Ewald algorithm. pH of system was set to 7.4, temperature 323K and pressure 1atm respectively. Simulation snapshots were stored every 25ps. The MD simulation was carried out for 20ns and pdb file of HDAC8 structure was saved every 2ns. The structures were analysed using castP and UCSF Chimera and most stabilized structure (20ns) was used for docking study. Molecular docking of 75 selected VPA-analogues with PDB-3F07 was performed using AUTODOCK4.2.6. Lamarckian Genetic Algorithm was used to generate conformations of docked ligand and structure. The docking study revealed that VPA and its analogues have more affinity towards ‘hydrophobic active site channel’, due to its hydrophobic properties and allows VPA and their analogues to take part in van der Waal interactions with TYR24, HIS42, VAL41, TYR20, SER138, TRP137 while TRP137 and SER138 showed hydrogen bonding interaction with VPA-analogues. 14 analogues showed better binding affinity than VPA. ADMET SAR server was used to predict the ADMET properties of selected VPA analogues for predicting their druggability. On the basis of ADMET screening, 09 molecules were selected and are being used for in-vivo evaluation using Danio rerio model.Keywords: HDAC8, docking, molecular dynamics simulation, valproic acid
Procedia PDF Downloads 248124 From Scalpel to Leadership: The Landscape for Female Neurosurgeons in the UK
Authors: Anda-veronica Gherman, Dimitrios Varthalitis
Abstract:
Neurosurgery, like many surgical specialties, undoubtedly exhibits a significant gender gap, particularly in leadership positions. While increasing women representation in neurosurgery is important, it is crucial to increase their presence in leadership positions. Across the globe and Europe there are concerning trends of only 4% of all neurosurgical departments being chaired by women. This study aims to explore the situation regarding gender disparities in leadership in the United Kingdom and to identify possible contributing factors as well as discussing future strategies to bridge this gap. Methods: A literature review was conducted utilising PubMed as main database with search keywords including ‘female neurosurgeon’, ‘women neurosurgeon’, ‘gender disparity’, ‘leadership’ and ‘UK’. Additionally, a manual search of all neurosurgical departments in the UK was performed to identify the current female department leads and training director leads. Results: The literature search identified a paucity of literature addressing specifically leadership in female neurosurgeons within the UK, with very few published papers specifically on this topic. Despite more than half of medical students in the UK being female, only a small proportion pursue a surgical career, with neurosurgery being one of the least represented specialties. Only 27% of trainee neurosurgeons are female, and numbers are even lower at a consultant level, where women represent just 8%.Findings from published studies indicated that only 6.6% of leadership positions in neurosurgery are occupied by women in the UK. Furthermore, our manual searches across UK neurosurgical departments revealed that around 5% of department lead positions are currently held by women. While this figure is slightly higher than the European average of 4%, it remains lower compared to figures of 10% in other North-West European countries. The situation is slightly more positive looking at the training directors, with 15% being female. Discussion: The findings of this study highlight a significant gender disparity in leadership positions within neurosurgery in the UK, which may have important implications, perpetuating the lack of diversity on the decision-making process, limiting the career advancement opportunities of women and depriving the neurosurgical field from the voices, opinions and talents of women. With women representing half of the population, there is an undeniable need for more female leaders at the policy-making level. There are many barriers that can contribute to these numbers, including bias, stereotypes, lack of mentorship and work-like balance. A few solutions to overcome these barriers can be training programs addressing bias and impostor syndrome, leadership workshops tailored for female needs, better workplace policies, increased in formal mentorship and increasing the visibility of women in neurosurgery leadership positions through media, speaking opportunities, conferences, awards etc. And lastly, more research efforts should focus on the leadership and mentorship of women in neurosurgery, with an increased number of published papers discussing these issues.Keywords: female neurosurgeons, female leadership, female mentorship, gender disparities
Procedia PDF Downloads 30123 Music Genre Classification Based on Non-Negative Matrix Factorization Features
Authors: Soyon Kim, Edward Kim
Abstract:
In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)
Procedia PDF Downloads 301122 Bariatric Surgery Referral as an Alternative to Fundoplication in Obese Patients Presenting with GORD: A Retrospective Hospital-Based Cohort Study
Authors: T. Arkle, D. Pournaras, S. Lam, B. Kumar
Abstract:
Introduction: Fundoplication is widely recognised as the best surgical option for gastro-oesophageal reflux disease (GORD) in the general population. However, there is controversy surrounding the use of conventional fundoplication in obese patients. Whilst the intra-operative failure of fundoplication, including wrap disruption, is reportedly higher in obese individuals, the more significant issue surrounds symptom recurrence post-surgery. Could a bariatric procedure be considered in obese patients for weight management, to treat the GORD, and to also reduce the risk of recurrence? Roux-en-Y gastric bypass, a widely performed bariatric procedure, has been shown to be highly successful both in controlling GORD symptoms and in weight management in obese patients. Furthermore, NICE has published clear guidelines on eligibility for bariatric surgery, with the main criteria being type 3 obesity or type 2 obesity with the presence of significant co-morbidities that would improve with weight loss. This study aims to identify the proportion of patients who undergo conventional fundoplication for GORD and/or hiatus hernia, which would have been eligible for bariatric surgery referral according to NICE guidelines. Methods: All patients who underwent fundoplication procedures for GORD and/or hiatus hernia repair at a single NHS foundation trust over a 10-year period will be identified using the Trust’s health records database. Pre-operative patient records will be used to find BMI and the presence of significant co-morbidities at the time of consideration for surgery. This information will be compared to NICE guidelines to determine potential eligibility for the bariatric surgical referral at the time of initial surgical intervention. Results: A total of 321 patients underwent fundoplication procedures between January 2011 and December 2020; 133 (41.4%) had available data for BMI or to allow BMI to be estimated. Of those 133, 40 patients (30%) had a BMI greater than 30kg/m², and 7 (5.3%) had BMI >35kg/m². One patient (0.75%) had a BMI >40 and would therefore be automatically eligible according to NICE guidelines. 4 further patients had significant co-morbidities, such as hypertension and osteoarthritis, which likely be improved by weight management surgery and therefore also indicated eligibility for referral. Overall, 3.75% (5/133) of patients undergoing conventional fundoplication procedures would have been eligible for bariatric surgical referral, these patients were all female, and the average age was 60.4 years. Conclusions: Based on this Trust’s experience, around 4% of obese patients undergoing fundoplication would have been eligible for bariatric surgical intervention. Based on current evidence, in class 2/3 obese patients, there is likely to have been a notable proportion with recurrent disease, potentially requiring further intervention. These patient’s may have benefitted more through undergoing bariatric surgery, for example a Roux-en-Y gastric bypass, addressing both their obesity and GORD. Use of patient written notes to obtain BMI data for the 188 patients with missing BMI data and further analysis to determine outcomes following fundoplication in all patients, assessing for incidence of recurrent disease, will be undertaken to strengthen conclusions.Keywords: bariatric surgery, GORD, Nissen fundoplication, nice guidelines
Procedia PDF Downloads 59121 The Incidence of Inferior Alveolar Nerve Dysfunction Following Bilateral Sagittal Split Osteotomies: A Single Centre Retrospective Audit in the United Kingdom
Authors: Krupali Mukeshkumar, Jinesh Shah
Abstract:
Background: Bilateral Sagittal Split Osteotomy (BSSO), used for the correction of mandibular deformities, is a common oral and maxillofacial surgical procedure. Inferior alveolar nerve dysfunction is commonly reported post-operatively by patients as paresthesia or anesthesia. The current literature lacks a consensus on the incidence of inferior alveolar nerve dysfunction as patients are not routinely assessed pre and post-operatively with an objective assessment. The range of incidence varies from 9% to 85% of patients, with some authors arguing that 100% of patients experience nerve dysfunction immediately post-surgery. Systematic reviews have shown a difference between incidence rates at different follow-up periods using objective and subjective methods. Aim: To identify the incidence of inferior alveolar nerve dysfunction following BSSO. Gold standard: Nerve dysfunction incidence rates similar or lower than current literature of 83% day one post-operatively and 18.4% at one year follow up. Setting: A retrospective cross-sectional audit of patients treated between 2017-2019 at the Royal Stoke University Hospital, Maxillofacial and Orthodontic departments. Sample: All patients who underwent a BSSO (with or without le fort one osteotomy) between 2017–2019 were identified from the database. Patients with pre-existing neurosensory disturbance, those who had a genioplasty at the same time and those with no follow-up were excluded. The sample consisted of 121 patients, 37 males and 84 females between the ages of 17-50 years at the time of surgery. Methods: Clinical records of 121 cases were reviewed to assess the age, sex, type of mandibular osteotomy, status of the nerve during the surgical procedure, type of bony split and incidence of nerve dysfunction at follow-up appointments. The surgical procedure was carried out by three Maxillo-facial surgeons and follow-up appointments were carried out in the Orthodontic and Oral and Maxillo-facial departments. Results: 120 patients were treated to correct the mandibular facial deformity and 1 patient was treated for sleep apnoea. Seventeen patients had a mandibular setback and 104 patients had mandibular advancement. 68 patients reported inferior alveolar nerve dysfunction at one week following their surgery. Seventy-six patients had temporary paresthesia present between 2 weeks and 12 months post-surgery. 13 patients had persistent nerve dysfunction at 12 months, of which 1 had a bad bony split during the BSSO. The incidence of nerve dysfunction postoperatively was 6.6% after 1 day, 56.1% at 1 week, 62.8% at 2 weeks, 59.5% between 3-6 weeks, 43.0% between 8-16 weeks and 10.7% at 1 year. Conclusions: The results of this audit show a similar incidence rate to the research gold standard at the one-year follow-up. Future Recommendations: No changes to surgical procedure or technique are indicated, but a need for improved documentation and a standardized approach for assessment of post-operative nerve dysfunction would be beneficial.Keywords: bilateral sagittal split osteotomy, inferior alveolar nerve, mandible, nerve dysfunction
Procedia PDF Downloads 235120 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging
Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi
Abstract:
Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA
Procedia PDF Downloads 277119 Threats to the Business Value: The Case of Mechanical Engineering Companies in the Czech Republic
Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak
Abstract:
Successful achievement of strategic goals requires an effective performance management system, i.e. determining the appropriate indicators measuring the rate of goal achievement. Assuming that the goal of the owners is to grow the assets they invested in, it is vital to identify the key performance indicators, which contribute to value creation. These indicators are known as value drivers. Based on the undertaken literature search, a value driver is defined as any factor that affects the value of an enterprise. The important factors are then monitored by both financial and non-financial indicators. Financial performance indicators are most useful in strategic management, since they indicate whether a company's strategy implementation and execution are contributing to bottom line improvement. Non-financial indicators are mainly used for short-term decisions. The identification of value drivers, however, is problematic for companies which are not publicly traded. Therefore financial ratios continue to be used to measure the performance of companies, despite their considerable criticism. The main drawback of such indicators is the fact that they are calculated based on accounting data, while accounting rules may differ considerably across different environments. For successful enterprise performance management it is vital to avoid factors that may reduce (or even destroy) its value. Among the known factors reducing the enterprise value are the lack of capital, lack of strategic management system and poor quality of production. In order to gain further insight into the topic, the paper presents results of the research identifying factors that adversely affect the performance of mechanical engineering enterprises in the Czech Republic. The research methodology focuses on both the qualitative and the quantitative aspect of the topic. The qualitative data were obtained from a questionnaire survey of the enterprises senior management, while the quantitative financial data were obtained from the Analysis Major Database for European Sources (AMADEUS). The questionnaire prompted managers to list factors which negatively affect business performance of their enterprises. The range of potential factors was based on a secondary research – analysis of previously undertaken questionnaire surveys and research of studies published in the scientific literature. The results of the survey were evaluated both in general, by average scores, and by detailed sub-analyses of additional criteria. These include the company specific characteristics, such as its size and ownership structure. The evaluation also included a comparison of the managers’ opinions and the performance of their enterprises – measured by return on equity and return on assets ratios. The comparisons were tested by a series of non-parametric tests of statistical significance. The results of the analyses show that the factors most detrimental to the enterprise performance include the incompetence of responsible employees and the disregard to the customers‘ requirements.Keywords: business value, financial ratios, performance measurement, value drivers
Procedia PDF Downloads 222118 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 70117 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 22116 Concussion: Clinical and Vocational Outcomes from Sport Related Mild Traumatic Brain Injury
Authors: Jack Nash, Chris Simpson, Holly Hurn, Ronel Terblanche, Alan Mistlin
Abstract:
There is an increasing incidence of mild traumatic brain injury (mTBI) cases throughout sport and with this, a growing interest from governing bodies to ensure these are managed appropriately and player welfare is prioritised. The Berlin consensus statement on concussion in sport recommends a multidisciplinary approach when managing those patients who do not have full resolution of mTBI symptoms. There are as of yet no standardised guideline to follow in the treatment of complex cases mTBI in athletes. The aim of this project was to analyse the outcomes, both clinical and vocational, of all patients admitted to the mild Traumatic Brain Injury (mTBI) service at the UK’s Defence Military Rehabilitation Centre Headley Court between 1st June 2008 and 1st February 2017, as a result of a sport induced injury, and evaluate potential predictive indicators of outcome. Patients were identified from a database maintained by the mTBI service. Clinical and occupational outcomes were ascertained from medical and occupational employment records, recorded prospectively, at time of discharge from the mTBI service. Outcomes were graded based on the vocational independence scale (VIS) and clinical documentation at discharge. Predictive indicators including referral time, age at time of injury, previous mental health diagnosis and a financial claim in place at time of entry to service were assessed using logistic regression. 45 Patients were treated for sport-related mTBI during this time frame. Clinically 96% of patients had full resolution of their mTBI symptoms after input from the mTBI service. 51% of patients returned to work at their previous vocational level, 4% had ongoing mTBI symptoms, 22% had ongoing physical rehabilitation needs, 11% required mental health input and 11% required further vestibular rehabilitation. Neither age, time to referral, pre-existing mental health condition nor compensation seeking had a significant impact on either vocational or clinical outcome in this population. The vast majority of patients reviewed in the mTBI clinic had persistent symptoms which could not be managed in primary care. A consultant-led, multidisciplinary approach to the diagnosis and management of mTBI has resulted in excellent clinical outcomes in these complex cases. High levels of symptom resolution suggest that this referral and treatment pathway is successful and is a model which could be replicated in other organisations with consultant led input. Further understanding of both predictive and individual factors would allow clinicians to focus treatments on those who are most likely to develop long-term complications following mTBI. A consultant-led, multidisciplinary service ensures a large number of patients will have complete resolution of mTBI symptoms after sport-related mTBI. Further research is now required to ascertain the key predictive indicators of outcome following sport-related mTBI.Keywords: brain injury, concussion, neurology, rehabilitation, sports injury
Procedia PDF Downloads 156115 Relationship between Thumb Length and Pointing Performance on Portable Terminal with Touch-Sensitive Screen
Authors: Takahiro Nishimura, Kouki Doi, Hiroshi Fujimoto
Abstract:
Touch-sensitive screens that serve as displays and input devices have been adopted in many portable terminals such as smartphones and personal media players, and the market of touch-sensitive screens has expanded greatly. One of the advantages of touch-sensitive screen is the flexibility in the graphical user interface (GUI) design, and it is imperative to design an appropriate GUI to realize an easy-to-use interface. Moreover, it is important to evaluate the relationship between pointing performance and GUI design. There is much knowledge regarding easy-to-use GUI designs for portable terminals with touch-sensitive screens, and most have focused on GUI design approaches for women or children with small hands. In contrast, GUI design approaches for users with large hands have not received sufficient attention. In this study, to obtain knowledge that contributes to the establishment of individualized easy-to-use GUI design guidelines, we conducted experiments to investigate the relationship between thumb length and pointing performance on portable terminals with touch-sensitive screens. In this study, fourteen college students who participated in the experiment were divided into two groups based on the length of their thumbs. Specifically, we categorized the participants into two groups, thumbs longer than 64.2 mm into L (Long) group, and thumbs longer than 57.4 mm but shorter than 64.2 mm into A (Average) group, based on Japanese anthropometric database. They took part in this study under the authorization of Waseda University’s ‘Ethics Review Committee on Research with Human Subjects’. We created an application for the experimental task and implemented it on the projected capacitive touch-sensitive screen portable terminal (iPod touch (4th generation)). The display size was 3.5 inch and 960 × 640 - pixel resolution at 326 ppi (pixels per inch). This terminal was selected as the experimental device, because of its wide use and market share. The operational procedure of the application is as follows. First, the participants placed their thumb on the start position. Then, one cross-shaped target in a 10 × 7 array of 70 positions appeared at random. The participants pointed the target with their thumb as accurately and as fast as possible. Then, they returned their thumb to the start position and waited. The operation ended when this procedure had been repeated until all 70 targets had each been pointed at once by the participants. We adopted the evaluation indices for absolute error, variable error, and pointing time to investigate pointing performance when using the portable terminal. The results showed that pointing performance varied with thumb length. In particular, on the lower right side of the screen, the performance of L group with long thumb was low. Further, we presented an approach for designing easy-to- use button GUI for users with long thumbs. The contributions of this study include revelation of the relationship between pointing performance and user’s thumb length when using a portable terminal in terms of accuracy, precision, and speed of pointing. We hope that these findings contribute to an easy-to-use GUI design for users with large hands.Keywords: pointing performance, portable terminal, thumb length, touch-sensitive screen
Procedia PDF Downloads 163114 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland
Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski
Abstract:
Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics
Procedia PDF Downloads 400113 Analysis of Lesotho Wool Production and Quality Trends 2008-2018
Authors: Papali Maqalika
Abstract:
Lesotho farmers produce significant quantities of Merino wool of a quality competitive on the global market and make a substantial impact on the economy of Lesotho. However, even with the economic contribution, the production and quality information and trends of this fibre has been recognised nor documented. This is a sombre shortcoming as Lesotho wool is unknown on international markets. The situation is worsened by the fact that Lesotho wool is auction together with South African wool, trading and benchmarking Lesotho wool are difficult not to mention attempts to advance its production and quality. Based on the information above, available data on Lesotho wool for 10 years were collected and analysed for trends to used in benchmarking where applicable. The fibre properties analysed include fibre diameter (fineness), vegetable matter and yield, application and price. These were selected because they are fundamental in determining fibre quality and price. Production of wool in Lesotho has increased slightly over the ten years covered by this study. It also became apparent that production and quality trends of Lesotho wool are greatly influenced by the farming practices, breed of sheep and climatic conditions. Greater adoption of the merino sheep breed, sheds/barns and sheep coats are suggested as ways to reduce mortality rate (due to extremely cold temperatures), to reduce the vegetable matter on the fibre thus improving the quality and increase yield per sheep and production as a whole. Some farming practices such as the lack of barns, supplementary feeding and veterinary care present constraints in wool production. The districts in the Highlands region were found to have the highest production of mostly wool, this being ascribed to better pastures, climatic, social and other conditions conducive to wool production. The production of Lesotho wool and its quality can be improved further, possibly because of the interventions the Ministry of Agriculture introduced through the Small Agricultural and Development Project (SADP) and other appropriate initiatives by the National Wool and Mohair Growers Association (NWMGA). The challenge however, remains the lack of direct involvement of the wool growers (farmers) in decisions making and policy development, this potentially influences and may lead to the reluctance to adopt the strategies. In some cases, the wool growers do not receive the benefits associated with the interventions immediately. Based on these discoveries; it is recommended that the relevant educators and researchers in wool and textile science, as well as the local wool farmers in Lesotho, be represented in policy and other decision making forums relating to these interventions. In this way, educational campaigns and training workshops will be demand driven with a better chance of adoption and success. This is because the direct beneficiaries will have been involved at inception and they will have a sense of ownership as well as intent to see them through successfully.Keywords: lesotho wool, wool quality, wool production, lesotho economy, global market, apparel wool, database, textile science, exports, animal farming practices, intimate apparel, interventions
Procedia PDF Downloads 88112 Bioinformatic Prediction of Hub Genes by Analysis of Signaling Pathways, Transcriptional Regulatory Networks and DNA Methylation Pattern in Colon Cancer
Authors: Ankan Roy, Niharika, Samir Kumar Patra
Abstract:
Anomalous nexus of complex topological assemblies and spatiotemporal epigenetic choreography at chromosomal territory may forms the most sophisticated regulatory layer of gene expression in cancer. Colon cancer is one of the leading malignant neoplasms of the lower gastrointestinal tract worldwide. There is still a paucity of information about the complex molecular mechanisms of colonic cancerogenesis. Bioinformatics prediction and analysis helps to identify essential genes and significant pathways for monitoring and conquering this deadly disease. The present study investigates and explores potential hub genes as biomarkers and effective therapeutic targets for colon cancer treatment. Colon cancer patient sample containing gene expression profile datasets, such as GSE44076, GSE20916, and GSE37364 were downloaded from Gene Expression Omnibus (GEO) database and thoroughly screened using the GEO2R tool and Funrich software to find out common 2 differentially expressed genes (DEGs). Other approaches, including Gene Ontology (GO) and KEGG pathway analysis, Protein-Protein Interaction (PPI) network construction and hub gene investigation, Overall Survival (OS) analysis, gene correlation analysis, methylation pattern analysis, and hub gene-Transcription factors regulatory network construction, were performed and validated using various bioinformatics tool. Initially, we identified 166 DEGs, including 68 up-regulated and 98 down-regulated genes. Up-regulated genes are mainly associated with the Cytokine-cytokine receptor interaction, IL17 signaling pathway, ECM-receptor interaction, Focal adhesion and PI3K-Akt pathway. Downregulated genes are enriched in metabolic pathways, retinol metabolism, Steroid hormone biosynthesis, and bile secretion. From the protein-protein interaction network, thirty hub genes with high connectivity are selected using the MCODE and cytoHubba plugin. Survival analysis, expression validation, correlation analysis, and methylation pattern analysis were further verified using TCGA data. Finally, we predicted COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as potential master regulators in colonic cancerogenesis. Moreover, our experimental data highlights that disruption of lipid raft and RAS/MAPK signaling cascade affects this gene hub at mRNA level. We identified COL1A1, COL1A2, COL4A1, SPP1, SPARC, and THBS2 as determinant hub genes in colon cancer progression. They can be considered as biomarkers for diagnosis and promising therapeutic targets in colon cancer treatment. Additionally, our experimental data advertise that signaling pathway act as connecting link between membrane hub and gene hub.Keywords: hub genes, colon cancer, DNA methylation, epigenetic engineering, bioinformatic predictions
Procedia PDF Downloads 128111 Tip60’s Novel RNA-Binding Function Modulates Alternative Splicing of Pre-mRNA Targets Implicated in Alzheimer’s Disease
Authors: Felice Elefant, Akanksha Bhatnaghar, Keegan Krick, Elizabeth Heller
Abstract:
Context: The severity of Alzheimer’s Disease (AD) progression involves an interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT) mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Altered RNA splicing has recently been highlighted as a widespread hallmark in the AD transcriptome that is implicated in the disease. Research Aim: The aim of this study was to identify a novel RNA binding/splicing function for Tip60 in human hippocampus and impaired in brains from AD fly models and AD patients. Methodology/Analysis: The authors used RNA immunoprecipitation using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. To identify Tip60’s RNA targets, they performed genome sequencing (DNB-SequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Findings: The authors' transcriptomic analysis of RNA bound to Tip60 by Tip60-RNA immunoprecipitation (RIP) revealed Tip60 RNA targets enriched for critical neuronal processes implicated in AD. Remarkably, 79% of Tip60’s RNA targets overlap with its chromatin gene targets, supporting a model by which Tip60 orchestrates bi-level transcriptional regulation at both the chromatin and RNA level, a function unprecedented for any HAT to date. Since RNA splicing occurs co-transcriptionally and splicing defects are implicated in AD, the authors investigated whether Tip60-RNA targeting modulates splicing decisions and if this function is altered in AD. Replicate multivariate analysis of transcript splicing (rMATS) analysis of RNA-Seq data sets from wild-type and AD fly brains revealed a multitude of mammalian-like AS defects. Strikingly, over half of these altered RNAs were bonafide Tip60-RNA targets enriched for in the AD-gene curated database, with some AS alterations prevented against by increasing Tip60 in fly brain. Importantly, human orthologs of several Tip60-modulated spliced genes in Drosophila are well characterized aberrantly spliced genes in human AD brains, implicating disruption of Tip60’s splicing function in AD pathogenesis. Theoretical Importance: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology. Data Collection: The authors collected data from RNA immunoprecipitation experiments using RNA isolated from 200 pooled wild type Drosophila brains for each of the 3 biological replicates. They also performed genome sequencing (DNBSequencingTM technology, BGI genomics) on 3 replicates for Input RNA and RNA IPs by Tip60. Questions: The question addressed by this study was whether Tip60 has a novel RNA binding/splicing function in human hippocampus and whether this function is impaired in brains from AD fly models and AD patients. Conclusions: The authors' findings support a novel RNA interaction and splicing regulatory function for Tip60 that may underlie AS impairments that hallmark AD etiology.Keywords: Alzheimer's disease, cognition, aging, neuroepigenetics
Procedia PDF Downloads 74110 The Effect of Political Characteristics on the Budget Balance of Local Governments: A Dynamic System Generalized Method of Moments Data Approach
Authors: Stefanie M. Vanneste, Stijn Goeminne
Abstract:
This paper studies the effect of political characteristics of 308 Flemish municipalities on their budget balance in the period 1995-2011. All local governments experience the same economic and financial setting, however some governments have high budget balances, while others have low budget balances. The aim of this paper is to explain the differences in municipal budget balances by a number of economic, socio-demographic and political variables. The economic and socio-demographic variables will be used as control variables, while the focus of this paper will be on the political variables. We test four hypotheses resulting from the literature, namely (i) the partisan hypothesis tests if left wing governments have lower budget balances, (ii) the fragmentation hypothesis stating that more fragmented governments have lower budget balances, (iii) the hypothesis regarding the power of the government, higher powered governments would resolve in higher budget balances, and (iv) the opportunistic budget cycle to test whether politicians manipulate the economic situation before elections in order to maximize their reelection possibilities and therefore have lower budget balances before elections. The contributions of our paper to the existing literature are multiple. First, we use the whole array of political variables and not just a selection of them. Second, we are dealing with a homogeneous database with the same budget and election rules, making it easier to focus on the political factors without having to control for the impact of differences in the political systems. Third, our research extends the existing literature on Flemish municipalities as this is the first dynamic research on local budget balances. We use a dynamic panel data model. Because of the two lagged dependent variables as explanatory variables, we employ the system GMM (Generalized Method of Moments) estimator. This is the best possible estimator as we are dealing with political panel data that is rather persistent. Our empirical results show that the effect of the ideological position and the power of the coalition are of less importance to explain the budget balance. The political fragmentation of the government on the other hand has a negative and significant effect on the budget balance. The more parties in a coalition the worse the budget balance is ceteris paribus. Our results also provide evidence of an opportunistic budget cycle, the budget balances are lower in pre-election years relative to the other years to try and increase the incumbents reelection possibilities. An additional finding is that the incremental effect of the budget balance is very important and should not be ignored like is being done in a lot of empirical research. The coefficients of the lagged dependent variables are always positive and very significant. This proves that the budget balance is subject to incrementalism. It is not possible to change the entire policy from one year to another so the actions taken in recent past years still have an impact on the current budget balance. Only a relatively small amount of research concerning the budget balance takes this considerable incremental effect into account. Our findings survive several robustness checks.Keywords: budget balance, fragmentation, ideology, incrementalism, municipalities, opportunistic budget cycle, panel data, political characteristics, power, system GMM
Procedia PDF Downloads 298109 Safety Profile of Human Papillomavirus Vaccines: A Post-Licensure Analysis of the Vaccine Adverse Events Reporting System, 2007-2017
Authors: Giulia Bonaldo, Alberto Vaccheri, Ottavio D'Annibali, Domenico Motola
Abstract:
The Human Papilloma Virus (HPV) was shown to be the cause of different types of carcinomas, first of all of the cervical intraepithelial neoplasia. Since the early 80s to today, thanks first to the preventive screening campaigns (pap-test) and following to the introduction of HPV vaccines on the market; the number of new cases of cervical cancer has decreased significantly. The HPV vaccines currently approved are three: Cervarix® (HPV2 - virus type: 16 and 18), Gardasil® (HPV4 - 6, 11, 16, 18) and Gardasil 9® (HPV9 - 6, 11, 16, 18, 31, 33, 45, 52, 58), which all protect against the two high-risk HPVs (6, 11) that are mainly involved in cervical cancers. Despite the remarkable effectiveness of these vaccines has been demonstrated, in the recent years, there have been many complaints about their risk-benefit profile due to Adverse Events Following Immunization (AEFI). The purpose of this study is to provide a support about the ongoing discussion on the safety profile of HPV vaccines based on real life data deriving from spontaneous reports of suspected AEFIs collected in the Vaccine Adverse Events Reporting System (VAERS). VAERS is a freely-available national vaccine safety surveillance database of AEFI, co-administered by the Centers for Disease Control and Prevention (CDC) and Food and Drug Administration (FDA). We collected all the reports between January 2007 to December 2017 related to the HPV vaccines with a brand name (HPV2, HPV4, HPV9) or without (HPVX). A disproportionality analysis using Reporting Odds Ratio (ROR) with 95% confidence interval and p value ≤ 0.05 was performed. Over the 10-year period, 54889 reports of AEFI related to HPV vaccines reported in VAERS, corresponding to 224863 vaccine-event pairs, were retrieved. The highest number of reports was related to Gardasil (n = 42244), followed by Gardasil 9 (7212) and Cervarix (3904). The brand name of the HPV vaccine was not reported in 1529 cases. The two events more frequently reported and statistically significant for each vaccine were: dizziness (n = 5053) ROR = 1.28 (CI95% 1.24 – 1.31) and syncope (4808) ROR = 1.21 (1.17 – 1.25) for Gardasil. For Gardasil 9, injection site pain (305) ROR = 1.40 (1.25 – 1.57) and injection site erythema (297) ROR = 1.88 (1.67 – 2.10) and for Cervarix, headache (672) ROR = 1.14 (1.06 – 1.23) and loss of consciousness (528) ROR = 1.71 (1.57 – 1.87). In total, we collected 406 reports of death and 2461 cases of permanent disability in the ten-year period. The events consisting of incorrect vaccine storage or incorrect administration were not considered. The AEFI analysis showed that the most frequently reported events are non-serious and listed in the corresponding SmPCs. In addition to these, potential safety signals arose regarding less frequent and severe AEFIs that would deserve further investigation. This already happened with the referral of the European Medicines Agency (EMA) for the adverse events POTS (Postural Orthostatic Tachycardia Syndrome) and CRPS (Complex Regional Pain Syndrome) associated with anti-papillomavirus vaccines.Keywords: adverse drug reactions, pharmacovigilance, safety, vaccines
Procedia PDF Downloads 161108 Multivariate Ecoregion Analysis of Nutrient Runoff From Agricultural Land Uses in North America
Authors: Austin P. Hopkins, R. Daren Harmel, Jim A Ippolito, P. J. A. Kleinman, D. Sahoo
Abstract:
Field-scale runoff and water quality data are critical to understanding the fate and transport of nutrients applied to agricultural lands and minimizing their off-site transport because it is at that scale that agricultural management decisions are typically made based on hydrologic, soil, and land use factors. However, regional influences such as precipitation, temperature, and prevailing cropping systems and land use patterns also impact nutrient runoff. In the present study, the recently-updated MANAGE (Measured Annual Nutrient loads from Agricultural Environments) database was used to conduct an ecoregion-level analysis of nitrogen and phosphorus runoff from agricultural lands in the North America. Specifically, annual N and P runoff loads for cropland and grasslands in North American Level II EPA ecoregions were presented, and the impact of factors such as land use, tillage, and fertilizer timing and placement on N and P runoff were analyzed. Specifically we compiled annual N and P runoff load data (i.e., dissolved, particulate, and total N and P, kg/ha/yr) for each Level 2 EPA ecoregion and for various agricultural management practices (i.e., land use, tillage, fertilizer timing, fertilizer placement) within each ecoregion to showcase the analyses possible with the data in MANAGE. Potential differences in N and P runoff loads were evaluated between and within ecoregions with statistical and graphical approaches. Non-parametric analyses, mainly Mann-Whitney tests were conducted on median values weighted by the site years of data utilizing R because the data were not normally distributed, and we used Dunn tests and box and whisker plots to visually and statistically evaluate significant differences. Out of the 50 total North American Ecoregions, 11 were found that had significant data and site years to be utilized in the analysis. When examining ecoregions alone, it was observed that ER 9.2 temperate prairies had a significantly higher total N at 11.7 kg/ha/yr than ER 9.4 South Central Semi Arid Prairies with a total N of 2.4. When examining total P it was observed that ER 8.5 Mississippi Alluvial and Southeast USA Coastal Plains had a higher load at 3.0 kg/ha/yr than ER 8.2 Southeastern USA Plains with a load of 0.25 kg/ha/yr. Tillage and Land Use had severe impacts on nutrient loads. In ER 9.2 Temperate Prairies, conventional tillage had a total N load of 36.0 kg/ha/yr while conservation tillage had a total N load of 4.8 kg/ha/yr. In all relevant ecoregions, when corn was the predominant land use, total N levels significantly increased compared to grassland or other grains. In ER 8.4 Ozark-Ouachita, Corn had a total N of 22.1 kg/ha/yr while grazed grassland had a total N of 2.9 kg/ha/yr. There are further intricacies of the interactions that agricultural management practices have on one another combined with ecological conditions and their impacts on the continental aquatic nutrient loads that still need to be explored. This research provides a stepping stone to further understanding of land and resource stewardship and best management practices.Keywords: water quality, ecoregions, nitrogen, phosphorus, agriculture, best management practices, land use
Procedia PDF Downloads 77107 Profiling of Bacterial Communities Present in Feces, Milk, and Blood of Lactating Cows Using 16S rRNA Metagenomic Sequencing
Authors: Khethiwe Mtshali, Zamantungwa T. H. Khumalo, Stanford Kwenda, Ismail Arshad, Oriel M. M. Thekisoe
Abstract:
Ecologically, the gut, mammary glands and bloodstream consist of distinct microbial communities of commensals, mutualists and pathogens, forming a complex ecosystem of niches. The by-products derived from these body sites i.e. faeces, milk and blood, respectively, have many uses in rural communities where they aid in the facilitation of day-to-day household activities and occasional rituals. Thus, although livestock rearing plays a vital role in the sustenance of the livelihoods of rural communities, it may serve as a potent reservoir of different pathogenic organisms that could have devastating health and economic implications. This study aimed to simultaneously explore the microbial profiles of corresponding faecal, milk and blood samples from lactating cows using 16S rRNA metagenomic sequencing. Bacterial communities were inferred through the Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline coupled with SILVA database v138. All downstream analyses were performed in R v3.6.1. Alpha-diversity metrics showed significant differences between faeces and blood, faeces and milk, but did not vary significantly between blood and milk (Kruskal-Wallis, P < 0.05). Beta-diversity metrics on Principal Coordinate Analysis (PCoA) and Non-Metric Dimensional Scaling (NMDS) clustered samples by type, suggesting that microbial communities of the studied niches are significantly different (PERMANOVA, P < 0.05). A number of taxa were significantly differentially abundant (DA) between groups based on the Wald test implemented in the DESeq2 package (Padj < 0.01). The majority of the DA taxa were significantly enriched in faeces than in milk and blood, except for the genus Anaplasma, which was significantly enriched in blood and was, in turn, the most abundant taxon overall. A total of 30 phyla, 74 classes, 156 orders, 243 families and 408 genera were obtained from the overall analysis. The most abundant phyla obtained between the three body sites were Firmicutes, Bacteroidota, and Proteobacteria. A total of 58 genus-level taxa were simultaneously detected between the sample groups, while bacterial signatures of at least 8 of these occurred concurrently in corresponding faeces, milk and blood samples from the same group of animals constituting a pool. The important taxa identified in this study could be categorized into four potentially pathogenic clusters: i) arthropod-borne; ii) food-borne and zoonotic; iii) mastitogenic and; iv) metritic and abortigenic. This study provides insight into the microbial composition of bovine faeces, milk, and blood and its extent of overlapping. It further highlights the potential risk of disease occurrence and transmission between the animals and the inhabitants of the sampled rural community, pertaining to their unsanitary practices associated with the use of cattle by-products.Keywords: microbial profiling, 16S rRNA, NGS, feces, milk, blood, lactating cows, small-scale farmers
Procedia PDF Downloads 109106 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 262105 Development of DNDC Modelling Method for Evaluation of Carbon Dioxide Emission from Arable Soils in European Russia
Authors: Olga Sukhoveeva
Abstract:
Carbon dioxide (CO2) is the main component of carbon biogeochemical cycle and one of the most important greenhouse gases (GHG). Agriculture, particularly arable soils, are one the largest sources of GHG emission for the atmosphere including CO2.Models may be used for estimation of GHG emission from agriculture if they can be adapted for different countries conditions. The only model used in officially at national level in United Kingdom and China for this purpose is DNDC (DeNitrification-DeComposition). In our research, the model DNDC is offered for estimation of GHG emission from arable soils in Russia. The aim of our research was to create the method of DNDC using for evaluation of CO2 emission in Russia based on official statistical information. The target territory was European part of Russia where many field experiments are located. At the first step of research the database on climate, soil and cropping characteristics for the target region from governmental, statistical, and literature sources were created. All-Russia Research Institute of Hydrometeorological Information – World Data Centre provides open daily data about average meteorological and climatic conditions. It must be calculated spatial average values of maximum and minimum air temperature and precipitation over the region. Spatial average values of soil characteristics (soil texture, bulk density, pH, soil organic carbon content) can be determined on the base of Union state register of soil recourses of Russia. Cropping technologies are published by agricultural research institutes and departments. We offer to define cropping system parameters (annual information about crop yields, amount and types of fertilizers and manure) on the base of the Federal State Statistics Service data. Content of carbon in plant biomass may be calculated via formulas developed and published by Ministry of Natural Resources and Environment of the Russian Federation. At the second step CO2 emission from soil in this region were calculated by DNDC. Modelling data were compared with empirical and literature data and good results were obtained, modelled values were equivalent to the measured ones. It was revealed that the DNDC model may be used to evaluate and forecast the CO2 emission from arable soils in Russia based on the official statistical information. Also, it can be used for creation of the program for decreasing GHG emission from arable soils to the atmosphere. Financial Support: fundamental scientific researching theme 0148-2014-0005 No 01201352499 ‘Solution of fundamental problems of analysis and forecast of Earth climatic system condition’ for 2014-2020; fundamental research program of Presidium of RAS No 51 ‘Climate change: causes, risks, consequences, problems of adaptation and regulation’ for 2018-2020.Keywords: arable soils, carbon dioxide emission, DNDC model, European Russia
Procedia PDF Downloads 190104 Developing a Product Circularity Index with an Emphasis on Longevity, Repairability, and Material Efficiency
Authors: Lina Psarra, Manogj Sundaresan, Purjeet Sutar
Abstract:
In response to the global imperative for sustainable solutions, this article proposes the development of a comprehensive circularity index applicable to a wide range of products across various industries. The absence of a consensus on using a universal metric to assess circularity performance presents a significant challenge in prioritizing and effectively managing sustainable initiatives. This circularity index serves as a quantitative measure to evaluate the adherence of products, processes, and systems to the principles of a circular economy. Unlike traditional distinct metrics such as recycling rates or material efficiency, this index considers the entire lifecycle of a product in one single metric, also incorporating additional factors such as reusability, scarcity of materials, reparability, and recyclability. Through a systematic approach and by reviewing existing metrics and past methodologies, this work aims to address this gap by formulating a circularity index that can be applied to diverse product portfolio and assist in comparing the circularity of products on a scale of 0%-100%. Project objectives include developing a formula, designing and implementing a pilot tool based on the developed Product Circularity Index (PCI), evaluating the effectiveness of the formula and tool using real product data, and assessing the feasibility of integration into various sustainability initiatives. The research methodology involves an iterative process of comprehensive research, analysis, and refinement where key steps include defining circularity parameters, collecting relevant product data, applying the developed formula, and testing the tool in a pilot phase to gather insights and make necessary adjustments. Major findings of the study indicate that the PCI provides a robust framework for evaluating product circularity across various dimensions. The Excel-based pilot tool demonstrated high accuracy and reliability in measuring circularity, and the database proved instrumental in supporting comprehensive assessments. The PCI facilitated the identification of key areas for improvement, enabling more informed decision-making towards circularity and benchmarking across different products, essentially assisting towards better resource management. In conclusion, the development of the Product Circularity Index represents a significant advancement in global sustainability efforts. By providing a standardized metric, the PCI empowers companies and stakeholders to systematically assess product circularity, track progress, identify improvement areas, and make informed decisions about resource management. This project contributes to the broader discourse on sustainable development by offering a practical approach to enhance circularity within industrial systems, thus paving the way towards a more resilient and sustainable future.Keywords: circular economy, circular metrics, circularity assessment, circularity tool, sustainable product design, product circularity index
Procedia PDF Downloads 27103 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 41