Search results for: cost forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6563

Search results for: cost forecasting

4853 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu

Abstract:

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant  of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual  value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

Keywords: food waste reduction, particle filter, point-of-sales, sustainable development goals, Taylor's law, time series analysis

Procedia PDF Downloads 131
4852 Demand Forecasting to Reduce Dead Stock and Loss Sales: A Case Study of the Wholesale Electric Equipment and Part Company

Authors: Korpapa Srisamai, Pawee Siriruk

Abstract:

The purpose of this study is to forecast product demands and develop appropriate and adequate procurement plans to meet customer needs and reduce costs. When the product exceeds customer demands or does not move, it requires the company to support insufficient storage spaces. Moreover, some items, when stored for a long period of time, cause deterioration to dead stock. A case study of the wholesale company of electronic equipment and components, which has uncertain customer demands, is considered. The actual purchasing orders of customers are not equal to the forecast provided by the customers. In some cases, customers have higher product demands, resulting in the product being insufficient to meet the customer's needs. However, some customers have lower demands for products than estimates, causing insufficient storage spaces and dead stock. This study aims to reduce the loss of sales opportunities and the number of remaining goods in the warehouse, citing 30 product samples of the company's most popular products. The data were collected during the duration of the study from January to October 2022. The methods used to forecast are simple moving averages, weighted moving average, and exponential smoothing methods. The economic ordering quantity and reorder point are used to calculate to meet customer needs and track results. The research results are very beneficial to the company. The company can reduce the loss of sales opportunities by 20% so that the company has enough products to meet customer needs and can reduce unused products by up to 10% dead stock. This enables the company to order products more accurately, increasing profits and storage space.

Keywords: demand forecast, reorder point, lost sale, dead stock

Procedia PDF Downloads 121
4851 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach

Authors: Yassir Abdelrazig, Ren Moses

Abstract:

Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.

Keywords: gemoetric design, optimization, planning, roadway planning, roadway design

Procedia PDF Downloads 339
4850 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124
4849 Effects of Spent Dyebath Recycling on Pollution and Cost of Production in a Cotton Textile Industry

Authors: Dinesh Kumar Sharma, Sanjay Sharma

Abstract:

Textile manufacturing industry uses a substantial amount of chemicals not only in the production processes but also in manufacturing the raw materials. Dyes are the most significant raw material which provides colour to the fabric and yarn. Dyes are produced by using a large amount of chemicals both organic and inorganic in nature. Dyes are further classified as Reactive or Vat Dyes which are mostly used in cotton textiles. In the process of application of dyes to the cotton fiber, yarn or fabric, several auxiliary chemicals are also used in the solution called dyebath to improve the absorption of dyes. There is a very little absorption of dyes and auxiliary chemicals and a residual amount of all these substances is released as the spent dye bath effluent. Because of the wide variety of chemicals used in cotton textile dyes, there is always a risk of harmful effects which may not be apparent immediately but may have an irreversible impact in the long term. Colour imparted by the dyes to the water also has an adverse effect on its public acceptability and the potability. This study has been conducted with an objective to assess the feasibility of reuse of the spent dye bath. Studies have been conducted in two independent industries manufacturing dyed cotton yarn and dyed cotton fabric respectively. These have been referred as Unit-I and Unit-II. The studies included assessment of reduction in pollution levels and the economic benefits of such reuse. The study conclusively establishes that the reuse of spent dyebath results in prevention of pollution, reduction in pollution loads and cost of effluent treatment & production. This pollution prevention technique presents a good preposition for pollution prevention in cotton textile industry.

Keywords: dyes, dyebath, reuse, toxic, pollution, costs

Procedia PDF Downloads 393
4848 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling

Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen

Abstract:

Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.

Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress

Procedia PDF Downloads 195
4847 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 114
4846 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst

Authors: D. Mowla, N. Rasti, P. Keshavarz

Abstract:

Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.

Keywords: biodiesel, renewable fuel, transesterification, waste cooking oil

Procedia PDF Downloads 238
4845 Design and Development of Tandem Dynamometer for Testing and Validation of Motor Performance Parameters

Authors: Vedansh More, Lalatendu Bal, Ronak Panchal, Atharva Kulkarni

Abstract:

The project aims at developing a cost-effective test bench capable of testing and validating the complete powertrain package of an electric vehicle. Emrax 228 high voltage synchronous motor was selected as the prime mover for study. A tandem type dynamometer comprising of two loading methods; inertial, using standard inertia rollers and absorptive, using a separately excited DC generator with resistive coils was developed. The absorptive loading of the prime mover was achieved by implementing a converter circuit through which duty of the input field voltage level was controlled. This control was efficacious in changing the magnetic flux and hence the generated voltage which was ultimately dropped across resistive coils assembled in a load bank with all parallel configuration. The prime mover and loading elements were connected via a chain drive with a 2:1 reduction ratio which allows flexibility in placement of components and a relaxed rating of the DC generator. The development will aid in determination of essential characteristics like torque-RPM, power-RPM, torque factor, RPM factor, heat loads of devices and battery pack state of charge efficiency but also provides a significant financial advantage over existing versions of dynamometers with its cost-effective solution.

Keywords: absorptive load, chain drive, chordal action, DC generator, dynamometer, electric vehicle, inertia rollers, load bank, powertrain, pulse width modulation, reduction ratio, road load, testbench

Procedia PDF Downloads 232
4844 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors

Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras

Abstract:

Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).

Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system

Procedia PDF Downloads 122
4843 A Folk Theorem with Public Randomization Device in Repeated Prisoner’s Dilemma under Costly Observation

Authors: Yoshifumi Hino

Abstract:

An infinitely repeated prisoner’s dilemma is a typical model that represents teamwork situation. If both players choose costly actions and contribute to the team, then both players are better off. However, each player has an incentive to choose a selfish action. We analyze the game under costly observation. Each player can observe the action of the opponent only when he pays an observation cost in that period. In reality, teamwork situations are often costly observation. Members of some teams sometimes work in distinct rooms, areas, or countries. In those cases, they have to spend their time and money to see other team members if they want to observe it. The costly observation assumption makes the cooperation difficult substantially because the equilibrium must satisfy the incentives not only on the action but also on the observational decision. Especially, it is the most difficult to cooperate each other when the stage-game is prisoner's dilemma because players have to communicate through only two actions. We examine whether or not players can cooperate each other in prisoner’s dilemma under costly observation. Specifically, we check whether symmetric Pareto efficient payoff vectors in repeated prisoner’s dilemma can be approximated by sequential equilibria or not (efficiency result). We show the efficiency result without any randomization device under certain circumstances. It means that players can cooperate with each other without any randomization device even if the observation is costly. Next, we assume that public randomization device is available, and then we show that any feasible and individual rational payoffs in prisoner’s dilemma can be approximated by sequential equilibria under a specific situation (folk theorem). It implies that players can achieve asymmetric teamwork like leadership situation when public randomization device is available.

Keywords: cost observation, efficiency, folk theorem, prisoner's dilemma, private monitoring, repeated games.

Procedia PDF Downloads 240
4842 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 336
4841 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 160
4840 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production

Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu

Abstract:

Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.

Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X

Procedia PDF Downloads 291
4839 The Heating Prosumer: Optimal Simultaneous Use of Heat-Pumps and Solar Panels

Authors: Youssef El Makhrout, Aude Pommeret, Tunç Durmaz

Abstract:

This paper analyses the consequences of a heat pump on the optimal behavior of a prosumer. A theoretical microeconomic model is developed for household heating and electricity consumption to analyze the profitability of installing a solar PV system with a heat pump, battery storage, and grid use. The aim is to present the optimal scenario of investment in renewable energy equipment to cover domestic and heating needs. Simulation data of a French house of 170m² in Chambery are used in this paper. The house is divided into 5 zones with 3 heated zones of 89.4 m² occupied by two people. The analysis is based on hourly data for one year, from 00:00 01/01/2021 to 23:00 31/12/2021. Results indicate that without taking the cost of materials and no financial aid, the most profitable scenario for a household is when he owns solar panels, a heat pump, and battery storage. However, with the costs and financial aid of the French government for energy renovation, the net economic surplus change and the profitability during 20 years are important when the household decides to add a heat pump to existing solar panels. In this scenario, the household can realize 35.84% as a surplus change improvement, but this cannot cover all installation costs. The household can get benefits and cover all installation costs after exploiting financial support in the case of adopting a heat pump. The investment in a battery is still not profitable because of its high cost and the lack of financial aid. Some public policy recommendations are proposed, especially for solar panels and battery storage.

Keywords: household’s heating, prosumer, electricity consumption, renewable energy, welfare gain, comfort, solar PV, heat pumps, storage

Procedia PDF Downloads 70
4838 A Reflection: Looking the Pattern of Political Party (Gerindra Party) Campaign by Social Media in Indonesia General Election 2014

Authors: Clara Stella Anugerah

Abstract:

This study actually is a reflection of the general election in 2014. The researcher was interested in this case as the assessment of several phenomenons that happened recently. One of them is the use of social media for the campaign. By this modern era, social media becomes closer with society. It gains the communication process, and by the time being communicating others also becomes easier than before. Furthermore, social media can minimize the cost of communication with many people as a far distance that often comes to be an obstacle of communication does not become a big problem anymore. In Indonesia, the advantages of social media were used by a political party, Gerindra, to face the election that was held on 2014. Actually Gerindra is a newly formed political party that was established in 2008. In spite of Gerindra is the new comer in the election, according to the General Election Committee’s data in Indonesia, Gerindra has the biggest budget than others to cost campaign in social media. Because of that, this research wants to look “how is the pattern of Gerindra party’s campaign to face the general election in 2014? To ask that question, the theory used for this research is campaign method based on ICT (Information Communication Technology) by Rummele. According to the rummele, Gerindra was a party that used a product of social media massively, mainly facebook and twitter. According to that observation, this research focus on campaign that had been done by Gerindra in both of those social media by the time window given by KPU (General Election Committee) on Maret 16th until April 5th, 2014. The conclusion was derived by content analysis method that was used in the methodology. In this context, that method was used while interpreting the content uploaded by Gerindra to facebook or twitter, such as picture and writing. Finally, by that method and reflecting the rummele theory, this research inferred that the patern used for Gerindra’s campaign in social media tends to be top-down. It means: Gerindra showed uncommunicative tendency in social media and only want to catch much mass without mentioned a mission and vision clearly.

Keywords: Gerindra party, political party, social media, campaign, general election on 2014

Procedia PDF Downloads 485
4837 The Portuguese Framework of the Professional Internship without Public Funds

Authors: Ana Lambelho

Abstract:

In an economic crisis such as the one that shook (and still shake) Europe, one does not question the importance of the measures that encourage the hiring and integration of young people into the labour market. In the mentioned context, enterprises tend to reduce the cost of labour and to seek flexible contracting instruments. The professional internships allow innovation and creativity at low cost, because, as they are not labour contracts, the enterprises do not have to respect the minimum standards related to wages, working time duration and so on. In Portugal, we observe a widespread existence of training contracts in which the trainee worked several hours without salary or was paid below the legally prescribed for the function and the work period. For this reason, under the tripartite agreement for a new system of regulation of labour relations, employment policies and social protection, between the Government and the social partners, in June 2008, foresaw a prohibition of professional internships unpaid and the legal regulation of the mandatory internships for access to an activity. The first Act about private internship contracts, i.e., internships without public funding was embodied in the Decree-Law N. 66/2011, of 1st June. This work is dedicated to the study of the legal regime of the internship contract in Portugal, by analysing the problems brought by the new set of rules and especially those which remains unresolved. In fact, we can conclude that the number of situations covered by the Act is much lower than what was expected, because of the exclusion of the mandatory internship for access to a profession when the activity is developed autonomously. Since the majority of the activities can be developed both autonomously or subordinated, it is quite easy to out of the Act requirements and, so, out of the protection that it confers to the intern. In order to complete this study, we considered not only the mentioned legal Act, but also the few doctrine and jurisprudence about the theme.

Keywords: intern, internship contact, labour law, Portugal

Procedia PDF Downloads 310
4836 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures

Procedia PDF Downloads 270
4835 Five Years Analysis and Mitigation Plans on Adjustment Orders Impacts on Projects in Kuwait's Oil and Gas Sector

Authors: Rawan K. Al-Duaij, Salem A. Al-Salem

Abstract:

Projects, the unique and temporary process of achieving a set of requirements have always been challenging; Planning the schedule and budget, managing the resources and risks are mostly driven by a similar past experience or the technical consultations of experts in the matter. With that complexity of Projects in Scope, Time, and execution environment, Adjustment Orders are tools to reflect changes to the original project parameters after Contract signature. Adjustment Orders are the official/legal amendments to the terms and conditions of a live Contract. Reasons for issuing Adjustment Orders arise from changes in Contract scope, technical requirement and specification resulting in scope addition, deletion, or alteration. It can be as well a combination of most of these parameters resulting in an increase or decrease in time and/or cost. Most business leaders (handling projects in the interest of the owner) refrain from using Adjustment Orders considering their main objectives of staying within budget and on schedule. Success in managing the changes results in uninterrupted execution and agreed project costs as well as schedule. Nevertheless, this is not always practically achievable. In this paper, a detailed study through utilizing Industrial Engineering & Systems Management tools such as Six Sigma, Data Analysis, and Quality Control were implemented on the organization’s five years records of the issued Adjustment Orders in order to investigate their prevalence, and time and cost impact. The analysis outcome revealed and helped to identify and categorize the predominant causations with the highest impacts, which were considered most in recommending the corrective measures to reach the objective of minimizing the Adjustment Orders impacts. Data analysis demonstrated no specific trend in the AO frequency in past five years; however, time impact is more than the cost impact. Although Adjustment Orders might never be avoidable; this analysis offers’ some insight to the procedural gaps, and where it is highly impacting the organization. Possible solutions are concluded such as improving project handling team’s coordination and communication, utilizing a blanket service contract, and modifying the projects gate system procedures to minimize the possibility of having similar struggles in future. Projects in the Oil and Gas sector are always evolving and demand a certain amount of flexibility to sustain the goals of the field. As it will be demonstrated, the uncertainty of project parameters, in adequate project definition, operational constraints and stringent procedures are main factors resulting in the need for Adjustment Orders and accordingly the recommendation will be to address that challenge.

Keywords: adjustment orders, data analysis, oil and gas sector, systems management

Procedia PDF Downloads 165
4834 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 67
4833 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 491
4832 Virtual Schooling as a Collaboration between Public Schools and the Scientific Community

Authors: Thomas A. Fuller

Abstract:

Over the past fifteen years, virtual schooling has been introduced and implemented in varying degrees throughout the public education system in the United States. It is possible in some states for students to voluntarily take all of their course load online, without ever having to step in a classroom. Experts foresee a dramatic rise in the number of courses taken online by public school students in the United States, with some predicting that by 2019 as many as 50% of public high school courses will be delivered online. This electronic delivery of public education offers tremendous potential to the scientific community because it calls for innovation and is funded by public school revenue. Public accountability provides a ready supply of statistical data for measuring the progress of virtual schools as they are implemented into the public school arena. This allows for a survey of the current use of virtual schooling through examination of past statistical data, as well as forecasting forward for future years based upon this past data. Virtual schooling is on the rise in the United States, but its growth has been tempered by practical problems of implementation. The greatest and best use of virtual schooling thus far has been to supplement the courses offered by public schools (e.g., offering unique language courses, elective courses, and games-based math and science courses). The weaknesses of virtual schooling lay in the problematic accountability in allowing students to take courses online at home and the lack of supportive infrastructure in the public school arena. Virtual schooling holds great promise for the public school education system in the United States, as well as the scientific community. Online courses allow students access to a much greater catalog of courses than is offered through classroom instruction in their local public school. This promising sector needs assistance from the scientific community in implementing new pedagogical methodologies.

Keywords: virtual schools, online classroom, electronic delivery, technological innovation

Procedia PDF Downloads 383
4831 Resolution Method for Unforeseen Ground Condition Problem Case in Coal Fired Steam Power Plant Project Location Adipala, Indonesia

Authors: Andi Fallahi, Bona Ryan Situmeang

Abstract:

The Construction Industry is notoriously risky. Much of the preparatory paperwork that precedes construction project can be viewed as the formulation of risk allocation between the owner and the Contractor. The Owner is taking the risk that his project will not get built on the schedule that it will not get built for what he has budgeted and that it will not be of the quality he expected. The Contractor Face a multitude of risk. One of them is an unforeseen condition at the construction site. The Owner usually has the upper hand here if the unforeseen condition occurred. Site data contained in Ground Investigation report is often of significant contractual importance in disputes related to the unforeseen ground condition. A ground investigation can never fully disclose all the details of the underground condition (Risk of an unknown ground condition can never be 100% eliminated). Adipala Coal Fired Steam Power Plant (CSFPP) 1 x 660 project is one of the large CSFPP project in Indonesia based on Engineering, Procurement, and Construction (EPC) Contract. Unforeseen Ground Condition it’s responsible by the Contractor has stipulated in the clausal of Contract. In the implementation, there’s indicated unforeseen ground condition at Circulating Water Pump House (CWPH) area which caused the Contractor should be changed the Method of Work that give big impact against Time of Completion and Cost Project. This paper tries to analyze the best way for allocating the risk between The Owner and The Contractor. All parties that allocating of sharing risk fairly can ultimately save time and money for all parties, and get the job done on schedule for the least overall cost.

Keywords: unforeseen ground condition, coal fired steam power plant, circulating water pump house, Indonesia

Procedia PDF Downloads 328
4830 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. O. S. Ebrahim, P. K. Jain

Abstract:

Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). It was illustrated that changing the connection of the stator windings from delta to star at no load could achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.

Keywords: ANN, ESM, IM, star/delta switch, supervisory control, FT, reliability, power quality

Procedia PDF Downloads 194
4829 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
4828 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 344
4827 Exploring the Role of Building Information Modeling for Delivering Successful Construction Projects

Authors: Muhammad Abu Bakar Tariq

Abstract:

Construction industry plays a crucial role in the progress of societies and economies. Furthermore, construction projects have social as well as economic implications, thus, their success/failure have wider impacts. However, the industry is lagging behind in terms of efficiency and productivity. Building Information Modeling (BIM) is recognized as a revolutionary development in Architecture, Engineering and Construction (AEC) industry. There are numerous interest groups around the world providing definitions of BIM, proponents describing its advantages and opponents identifying challenges/barriers regarding adoption of BIM. This research is aimed at to determine what actually BIM is, along with its potential role in delivering successful construction projects. The methodology is critical analysis of secondary data sources i.e. information present in public domain, which include peer reviewed journal articles, industry and government reports, conference papers, books, case studies etc. It is discovered that clash detection and visualization are two major advantages of BIM. Clash detection option identifies clashes among structural, architectural and MEP designs before construction actually commences, which subsequently saves time as well as cost and ensures quality during execution phase of a project. Visualization is a powerful tool that facilitates in rapid decision-making in addition to communication and coordination among stakeholders throughout project’s life cycle. By eliminating inconsistencies that consume time besides cost during actual construction, improving collaboration among stakeholders throughout project’s life cycle, BIM can play a positive role to achieve efficiency and productivity that consequently deliver successful construction projects.

Keywords: building information modeling, clash detection, construction project success, visualization

Procedia PDF Downloads 260
4826 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
4825 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model

Authors: Bhenjamin Jordan L. Ona

Abstract:

Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.

Keywords: aerosol, CCN, IN, tropical cylone

Procedia PDF Downloads 296
4824 Electrical Conductivity as Pedotransfer Function in the Determination of Sodium Adsorption Ratio in Soil System in Managing Micro Level Farming Practices in India: An Effective Low Cost Technology

Authors: Usha Loganathan, Haresh Pandya

Abstract:

Analysis and correlation of soil properties represent an important outset for precision agriculture and is currently promoted and implemented in the developed world. Establishing relationships among indices of soil salinity has always been a challenging task in salt affected soils necessitating unique approaches for their reclamation and management to sustain long term productivity of Soil. Soil salinity indices like Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) are normally used to characterize soils as either sodic or saline sodic. Currently, Determination of Soil sodium adsorption ratio is a more accepted and reliable measure of soil salinity. However, it involves arduous and protracted laboratory investigations which demand evolving new and economical methods to determine SAR based on simple soil salinity index. A linear regression model to predict soil SAR from soil electrical conductivity has been developed and presented in this paper as per which, soil SAR could very well be worked out as a pedotransfer function of soil EC. The present study was carried out in Orathupalayam (11.09-11.11 N latitude and 74.54-77.59 E longitude) in the vicinity of Orathupalayam Reservoir of Noyyal River Basin, India, over a period of 3 consecutive years from September 2013 through February 2016 in different locations chosen randomly through different seasons. The research findings are discussed in the light of micro level farming practices in India and recommend determination of SAR as a low cost technology aiding in the effective management of salt affected agricultural land.

Keywords: electrical conductivity, orathupalayam, pedotranfer function, sodium adsorption ratio

Procedia PDF Downloads 254