Search results for: cluster model approach
25765 Deep Foundations: Analysis of the Lateral Response of Closed Ended Steel Tubular Piles Embedded in Sandy Soil Using P-Y Curves
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Understanding the behaviour of the piles under the action of the independent lateral loads and the precise prediction of the capacity of piles subjected to different lateral loads are vital topics in foundation design and analysis. Moreover, the laterally loaded behaviour of deep foundations penetrated in cohesive and non-cohesive soils is basically analysed by the Winkler Model (beam on elastic foundation), in which the interaction between the pile embedded depth and contacted soil is simulated by nonlinear p–y curves. The presence of many approaches to interpret the behaviour of soil-pile interaction has resulted in numerous outputs and indicates that no general approach has yet been adopted. The current study presents the result of numerical modelling of the behaviour of steel tubular piles (25.4mm) outside diameter with various embedment depth-to-diameter ratios (L/d) embedded in a sand calibrated chamber of known relative density. The study revealed that the shear strength parameters of the sand specimens and the (L/d) ratios are the most significant factor influencing the response of the pile and its capacity while taking into consideration the complex interaction between the pile and soil. Good agreement has been achieved when comparing the application of this modelling approach with experimental physical modelling carried out by another researcher.Keywords: deep foundations, slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), non-cohesive soil
Procedia PDF Downloads 29925764 Prioritizing the TQM Enablers and IT Resources in the ICT Industry: An AHP Approach
Authors: Suby Khanam, Faisal Talib, Jamshed Siddiqui
Abstract:
Total Quality Management (TQM) is a managerial approach that improves the competitiveness of the industry, meanwhile Information technology (IT) was introduced with TQM for handling the technical issues which is supported by quality experts for fulfilling the customers’ requirement. Present paper aims to utilise AHP (Analytic Hierarchy Process) methodology to priorities and rank the hierarchy levels of TQM enablers and IT resource together for its successful implementation in the Information and Communication Technology (ICT) industry. A total of 17 TQM enablers (nine) and IT resources (eight) were identified and partitioned into 3 categories and were prioritised by AHP approach. The finding indicates that the 17 sub-criteria can be grouped into three main categories namely organizing, tools and techniques, and culture and people. Further, out of 17 sub-criteria, three sub-criteria: Top management commitment and support, total employee involvement, and continuous improvement got highest priority whereas three sub-criteria such as structural equation modelling, culture change, and customer satisfaction got lowest priority. The result suggests a hierarchy model for ICT industry to prioritise the enablers and resources as well as to improve the TQM and IT performance in the ICT industry. This paper has some managerial implication which suggests the managers of ICT industry to implement TQM and IT together in their organizations to get maximum benefits and how to utilize available resources. At the end, conclusions, limitation, future scope of the study are presented.Keywords: analytic hierarchy process, information technology, information and communication technology, prioritization, total quality management
Procedia PDF Downloads 34825763 From Plate to Self-Perception: Unravelling the Interplay Between Food Security and Self-Esteem Among Malaysian University Students
Authors: Amiraa Ali Mansor, Haslinda Abdullah, Angela Chan Nguk Fong, Norhaida Hanim Binti Ahmad Tajudin, Asnarulkhadi Abu Samah
Abstract:
Obesity has risen sharply over the past three decades, posing a grave public health concern globally. In Malaysia, it has also emerged as a significant health threat. While the second Sustainable Development Goal, "Zero Hunger", aims to ensure equitable access to nutritious food for all, a key challenge lies in addressing food insecurity. Food insecurity not only pertains to the quantity but also the quality of food, with both dimensions playing a pivotal role in health outcomes. To date, much of the research on food security has focused on household levels. There remains a research gap concerning university students, a population transitioning to independence from parental support and grappling with limited resources. This study seeks to bridge this gap by extending the Food Security Theory to incorporate the psychological dimension of self-esteem. Using a quantitative approach, data was collected from 452 public university students in Malaysia through a cross-sectional research design and a multi-stage cluster sampling technique. The anticipated findings will provide novel insights by linking food security with self-esteem. Such insights have implications for healthcare policy and the framing of preventive strategies against obesity. It is hoped that this research will not only contribute to the academic discourse on Food Security Theory but also serve as a foundation for refining national health policies and programs aimed at fostering a healthier lifestyle.Keywords: obesity, food security, body image, self-esteem
Procedia PDF Downloads 7625762 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers
Authors: L. Achab, F. Iachachene
Abstract:
In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method
Procedia PDF Downloads 5625761 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach
Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib
Abstract:
The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach
Procedia PDF Downloads 14525760 A New Fuzzy Fractional Order Model of Transmission of Covid-19 With Quarantine Class
Authors: Asma Hanif, A. I. K. Butt, Shabir Ahmad, Rahim Ud Din, Mustafa Inc
Abstract:
This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo’s sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17.Keywords: Caputo fractional derivative, existence and uniqueness, gronwall inequality, Lyapunov theory
Procedia PDF Downloads 10525759 Examining E-Government Impact Using Public Value Approach: A Case Study in Pakistan
Authors: Shahid Nishat, Keith Thomas
Abstract:
E-government initiatives attract substantial public investments around the world. These investments are based on the premise of digital transformation of the public services, improved efficiency and transparency, and citizen participation in the social democratic processes. However, many e-Government projects, especially in developing countries, fail to achieve their intended outcomes, and a strong disparity exists between the investments made and outcomes achieved, often referred to as e-Government paradox. Further, there is lack of research on evaluating the impacts of e-Government in terms of public value it creates, which ultimately drives usage. This study aims to address these gaps by identifying key enablers of e-Government success and by proposing a public value based framework to examine impact of e-Government services. The study will extend Delone and McLean Information System (IS) Success model by integrating Technology Readiness (TR) characteristics to develop an integrated success model. Level of analysis will be mobile government applications, and the framework will be empirically tested using quantitative methods. The research will add to the literature on e-Government success and will be beneficial for governments, especially in developing countries aspiring to improve public services through the use of Information Communication Technologies (ICT).Keywords: e-Government, IS success model, public value, technology adoption, technology readiness
Procedia PDF Downloads 13125758 Cover Spalling in Reinforced Concrete Columns
Authors: Bambang Piscesa, Mario M. Attard, Dwi Presetya, Ali K. Samani
Abstract:
A numerical strategy formulated using a plasticity approach is presented to model spalling of the concrete cover in reinforced concrete columns. The stage at which the concrete cover within reinforced concrete column spalls has a direct bearing on the load capacity. The concrete cover can prematurely spall before the full cross-section can be utilized if the concrete is very brittle under compression such as for very high strength concretes. If the confinement to the core is high enough, the column can achieve a higher peak load by utilizing the core. A numerical strategy is presented to model spalling of the concrete cover. Various numerical strategies are employed to model the behavior of reinforced concrete columns which include: (1) adjusting the material properties to incorporate restrained shrinkage; (2) modifying the plastic dilation rate in the presence of the tensile pressure; (3) adding a tension cut-off failure surface and (4) giving the concrete cover region and the column core different material properties. Numerical comparisons against experimental results are carried out that shown excellent agreement with the experimental results and justify the use of the proposed strategies to predict the axial load capacity of reinforce concrete columns.Keywords: spalling, concrete, plastic dilation, reinforced concrete columns
Procedia PDF Downloads 16025757 The Market Structure Simulation of Heterogenous Firms
Authors: Arunas Burinskas, Manuela Tvaronavičienė
Abstract:
Although the new trade theories, unlike the theories of an industrial organisation, see the structure of the market and competition between enterprises through their heterogeneity according to various parameters, they do not pay any particular attention to the analysis of the market structure and its development. In this article, although we relied mainly on models developed by the scholars of new trade theory, we proposed a different approach. In our simulation model, we model market demand according to normal distribution function, while on the supply side (as it is in the new trade theory models), productivity is modeled with the Pareto distribution function. The results of the simulation show that companies with higher productivity (lower marginal costs) do not pass on all the benefits of such economies to buyers. However, even with higher marginal costs, firms can choose to offer higher value-added goods to stay in the market. In general, the structure of the market is formed quickly enough and depends on the skills available to firms.Keywords: market, structure, simulation, heterogenous firms
Procedia PDF Downloads 14825756 Churn Prediction for Savings Bank Customers: A Machine Learning Approach
Authors: Prashant Verma
Abstract:
Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling
Procedia PDF Downloads 14325755 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context
Authors: Nicole Merkle, Stefan Zander
Abstract:
Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.Keywords: ambient intelligence, machine learning, semantic web, software agents
Procedia PDF Downloads 28125754 A New Car-Following Model with Consideration of the Brake Light
Authors: Zhiyuan Tang, Ju Zhang, Wenyuan Wu
Abstract:
In this research, a car-following model with consideration of the status of the brake light is proposed. The numerical results show that the stability of the traffic flow is improved. The ability of the brake light to reduce car accident is also showed.Keywords: brake light, car-following model, traffic flow, regional planning, transportation
Procedia PDF Downloads 57925753 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 37525752 Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model
Authors: Doğan Yıldız, Aydan Müşerref Erkmen
Abstract:
The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances.Keywords: model predictive control, nonlinear octocopter model, collision avoidance, obstacle detection
Procedia PDF Downloads 19125751 Fair Value Accounting and Evolution of the Ohlson Model
Authors: Mohamed Zaher Bouaziz
Abstract:
Our study examines the Ohlson Model, which links a company's market value to its equity and net earnings, in the context of the evolution of the Canadian accounting model, characterized by more extensive use of fair value and a broader measure of performance after IFRS adoption. Our hypothesis is that if equity is reported at its fair value, this valuation is closely linked to market capitalization, so the weight of earnings weakens or even disappears in the Ohlson Model. Drawing on Canada's adoption of the International Financial Reporting Standards (IFRS), our results support our hypothesis that equity appears to include most of the relevant information for investors, while earnings have become less important. However, the predictive power of earnings does not disappear.Keywords: fair value accounting, Ohlson model, IFRS adoption, value-relevance of equity and earnings
Procedia PDF Downloads 18925750 Estimating the Timing Interval for Malarial Indoor Residual Spraying: A Modelling Approach
Authors: Levicatus Mugenyi, Joaniter Nankabirwa, Emmanuel Arinaitwe, John Rek, Niel Hens, Moses Kamya, Grant Dorsey
Abstract:
Background: Indoor residual spraying (IRS) reduces vector densities and malaria transmission, however, the most effective spraying intervals for IRS have not been well established. We aim to estimate the optimal timing interval for IRS using a modeling approach. Methods: We use a generalized additive model to estimate the optimal timing interval for IRS using the predicted malaria incidence. The model is applied to post IRS cohort clinical data from children aged 0.5–10 years in selected households in Tororo, historically a high malaria transmission setting in Uganda. Six rounds of IRS were implemented in Tororo during the study period (3 rounds with bendiocarb: December 2014 to December 2015, and 3 rounds with actellic: June 2016 to July 2018). Results: Monthly incidence of malaria from October 2014 to February 2019 decreased from 3.25 to 0.0 per person-years in the children under 5 years, and 1.57 to 0.0 for 5-10 year-olds. The optimal time interval for IRS differed between bendiocarb and actellic and by IRS round. It was estimated to be 17 and 40 weeks after the first round of bendiocarb and actellic, respectively. After the third round of actellic, 36 weeks was estimated to be optimal. However, we could not estimate from the data the optimal time after the second and third rounds of bendiocarb and after the second round of actellic. Conclusion: We conclude that to sustain the effect of IRS in a high-medium transmission setting, the second rounds of bendiocarb need to be applied roughly 17 weeks and actellic 40 weeks after the first round, and the timing differs for subsequent rounds. The amount of rainfall did not influence the trend in malaria incidence after IRS, as well as the IRS timing intervals. Our results suggest that shorter intervals for the IRS application can be more effective compared to the current practice, which is about 24 weeks for bendiocarb and 48 weeks for actellic. However, when considering our findings, one should account for the cost and drug resistance associated with IRS. We also recommend that the timing and incidence should be monitored in the future to improve these estimates.Keywords: incidence, indoor residual spraying, generalized additive model, malaria
Procedia PDF Downloads 12125749 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis
Authors: Younes Abed
Abstract:
The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure
Procedia PDF Downloads 29225748 Regulation of the Regeneration of Epidermal Langerhans Cells by Stress Hormone
Authors: Junichi Hosoi
Abstract:
Epidermal Langerhans cells reside in upper layer of epidermis and play a role in immune surveillance. The finding of the close association of nerve endings to Langerhans cells triggered the research on systemic regulation of Langerhans cells. They disappear from epidermis after exposure to environmental and internal stimuli and reappear about a week later. Myeloid progenitor cells are assumed to be one of the sources of Langerhans cells. We examined the effects of cortisol on the reappearance of Langerhans cells in vitro. Cord-blood derived CD34-positive cells were cultured in the medium supplemented with stem cell factor/Flt3 ligand/granulocyte macrophage-colony stimulating factor/tumor necrosis factor alpha/bone morphologic protein 7/transforming growth factor beta in the presence or absence of cortisol. Cells were analyzed by flow cytometry for CD1a (cluster differentiation 1a), a marker of Langerhans cells and dermal dendritic cells, and CD39 (cluster differentiation factor 39), extracellular adenosine triphosphatase. Both CD1a-positive cells and CD39-positive cells were decreased by treatment with cortisol (suppression by 35% and 22% compared to no stress hormone, respectively). Differentiated Langerhans cells are attracted to epidermis by chemokines that are secreted from keratinocytes. Epidermal keratinocytes were cultured in the presence or absence of cortisol and analyzed for the expression of CCL2 (C-C motif chemokine ligand 2) and CCL20 (C-C motif chemokine ligand 20), which are typical attractants of Langerhans cells, by quantitative reverse transcriptase polymerase chain reaction. The expression of both chemokines, CCL2 and CCL20, were suppressed by treatment with cortisol (suppression by 38% and 48% compared to no stress hormone, respectively). We examined the possible regulation of the suppression by cortisol with plant extracts. The extracts of Ganoderma lucidum and Iris protected the suppression of the differentiation to CD39-positive cells and also the suppression of the gene expression of LC-chemoattractants. These results suggest that cortisol, which is either systemic or locally produced, blocks the supply of epidermal Langerhans cells at 2 steps, differentiation from the precursor and attraction to epidermis. The suppression is possibly blocked by some plant extracts.Keywords: Langerhans cell, stress, CD39, chemokine
Procedia PDF Downloads 18625747 From Responses of Macroinvertebrate Metrics to the Definition of Reference Thresholds
Authors: Hounyèmè Romuald, Mama Daouda, Argillier Christine
Abstract:
The present study focused on the use of benthic macrofauna to define the reference state of an anthropized lagoon (Nokoué-Benin) from the responses of relevant metrics to proxies. The approach used is a combination of a joint species distribution model and Bayesian networks. The joint species distribution model was used to select the relevant metrics and generate posterior probabilities that were then converted into posterior response probabilities for each of the quality classes (pressure levels), which will constitute the conditional probability tables allowing the establishment of the probabilistic graph representing the different causal relationships between metrics and pressure proxies. For the definition of the reference thresholds, the predicted responses for low-pressure levels were read via probability density diagrams. Observations collected during high and low water periods spanning 03 consecutive years (2004-2006), sampling 33 macroinvertebrate taxa present at all seasons and sampling points, and measurements of 14 environmental parameters were used as application data. The study demonstrated reliable inferences, selection of 07 relevant metrics and definition of quality thresholds for each environmental parameter. The relevance of the metrics as well as the reference thresholds for ecological assessment despite the small sample size, suggests the potential for wider applicability of the approach for aquatic ecosystem monitoring and assessment programs in developing countries generally characterized by a lack of monitoring data.Keywords: pressure proxies, bayesian inference, bioindicators, acadjas, functional traits
Procedia PDF Downloads 8325746 Applications of Analytical Probabilistic Approach in Urban Stormwater Modeling in New Zealand
Authors: Asaad Y. Shamseldin
Abstract:
Analytical probabilistic approach is an innovative approach for urban stormwater modeling. It can provide information about the long-term performance of a stormwater management facility without being computationally very demanding. This paper explores the application of the analytical probabilistic approach in New Zealand. The paper presents the results of a case study aimed at development of an objective way of identifying what constitutes a rainfall storm event and the estimation of the corresponding statistical properties of storms using two selected automatic rainfall stations located in the Auckland region in New Zealand. The storm identification and the estimation of the storm statistical properties are regarded as the first step in the development of the analytical probabilistic models. The paper provides a recommendation about the definition of the storm inter-event time to be used in conjunction with the analytical probabilistic approach.Keywords: hydrology, rainfall storm, storm inter-event time, New Zealand, stormwater management
Procedia PDF Downloads 34425745 Parametric Design as an Approach to Respond to Complexity
Authors: Sepideh Jabbari Behnam, Zahrasadat Saide Zarabadi
Abstract:
A city is an intertwined texture from the relationship of different components in a whole which is united in a one, so designing the whole complex and its planning is not an easy matter. By considering that a city is a complex system with infinite components and communications, providing flexible layouts that can respond to the unpredictable character of the city, which is a result of its complexity, is inevitable. Parametric design approach as a new approach can produce flexible and transformative layouts in any stage of design. This study aimed to introduce parametric design as a modern approach to respond to complex urban issues by using descriptive and analytical methods. This paper firstly introduces complex systems and then giving a brief characteristic of complex systems. The flexible design and layout flexibility is another matter in response and simulation of complex urban systems that should be considered in design, which is discussed in this study. In this regard, after describing the nature of the parametric approach as a flexible approach, as well as a tool and appropriate way to respond to features such as limited predictability, reciprocating nature, complex communications, and being sensitive to initial conditions and hierarchy, this paper introduces parametric design.Keywords: complexity theory, complex system, flexibility, parametric design
Procedia PDF Downloads 36625744 Kalman Filter for Bilinear Systems with Application
Authors: Abdullah E. Al-Mazrooei
Abstract:
In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.Keywords: bilinear systems, state space model, Kalman filter, application, models
Procedia PDF Downloads 44025743 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces
Authors: Monika Rawat, Rahul Kumar
Abstract:
Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation
Procedia PDF Downloads 19625742 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.Keywords: UPFC, decoupled model, load flow, control parameters
Procedia PDF Downloads 55525741 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization
Authors: Y. Alrubyli
Abstract:
Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter
Procedia PDF Downloads 17425740 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 28025739 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce
Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya
Abstract:
Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews
Procedia PDF Downloads 20125738 Rheological Model for Describing Spunlace Nonwoven Behavior
Authors: Sana Ridene, Soumaya Sayeb, Houda Helali, Mohammed Ben Hassen
Abstract:
Nonwoven structures have a range of applications which include Medical, filtration, geotextile and recently this unconventional fabric is finding a niche in fashion apparel. In this paper, a modified form of Vangheluwe rheological model is used to describe the mechanical behavior of nonwovens fabrics in uniaxial tension. This model is an association in parallel of three Maxwell elements characterized by damping coefficients η1, η2 and η3 and E1, E2, E3 elastic modulus and a nonlinear spring C. The model is verified experimentally with two types of nonwovens (50% viscose /50% Polyester) and (40% viscose/60% Polyester) and a range of three square weights values. Comparative analysis of the theoretical model and the experimental results of tensile test proofs a high correlation between them. The proposed model can fairly well replicate the behavior of nonwoven fabrics during relaxation and sample traction. This allowed us to predict the mechanical behavior in tension and relaxation of fabrics starting only from their technical parameters (composition and weight).Keywords: mechanical behavior, tensile strength, relaxation, rheological model
Procedia PDF Downloads 40925737 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting
Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu
Abstract:
large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.Keywords: automatic attendance, face detection, haar-like cascade, manual attendance
Procedia PDF Downloads 7125736 A Students' Ability Analysis Methods, Devices, Electronic Equipment and Storage Media Design
Authors: Dequn Teng, Tianshuo Yang, Mingrui Wang, Qiuyu Chen, Xiao Wang, Katie Atkinson
Abstract:
Currently, many students are kind of at a loss in the university due to the complex environment within the campus, where every information within the campus is isolated with fewer interactions with each other. However, if the on-campus resources are gathered and combined with the artificial intelligence modelling techniques, there will be a bridge for not only students in understanding themselves, and the teachers will understand students in providing a much efficient approach in education. The objective of this paper is to provide a competency level analysis method, apparatus, electronic equipment, and storage medium. It uses a user’s target competency level analysis model from a plurality of predefined candidate competency level analysis models by obtaining a user’s promotion target parameters, promotion target parameters including at least one of the following parameters: target profession, target industry, and the target company, according to the promotion target parameters. According to the parameters, the model analyzes the user’s ability level, determines the user’s ability level, realizes the quantitative and personalized analysis of the user’s ability level, and helps the user to objectively position his ability level.Keywords: artificial intelligence, model, university, education, recommendation system, evaluation, job hunting
Procedia PDF Downloads 143