Search results for: artificial air storage reservoir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4583

Search results for: artificial air storage reservoir

2873 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach

Authors: Hassan M. H. Mustafa

Abstract:

This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.

Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology

Procedia PDF Downloads 470
2872 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 176
2871 Digital Memory plus City Cultural Heritage: The Peking Memory Project Experience

Authors: Huiling Feng, Xiaoshuang Jia, Jihong Liang, Li Niu

Abstract:

Beijing, formerly romanized as Peking, is the capital of the People's Republic of China and the world's second most populous city proper and most populous capital city. Beijing is a noted historical and cultural whose city history dates back three millennia which is extremely rich in terms of cultural heritage. In 2012, a digital memory project led by Humanistic Beijing Studies Center in Renmin University of China started with the goal to build a total digital collection of knowledge assets about Beijing and represent Beijing memories in new fresh ways. The title of the entire project is ‘Peking Memory Project(PMP)’. The main goal is for safeguarding the documentary heritage and intellectual memory of Beijing, more specifically speaking, from the perspective of historical humanities and public participation, PMP will comprehensively applied digital technologies like digital capture, digital storage, digital process, digital presentation and digital communication to transform different kinds of cultural heritage of Beijing into digital formats that can be stored, re-organized and shared. These digital memories can be interpreted with a new perspective, be organized with a new theme, be presented in a new way and be utilized with a new need. Taking social memory as theoretical basis and digital technologies as tools, PMP is framed with ‘Two Sites and A Repository’. Two sites mean the special website(s) characterized by ‘professional’ and an interactive website characterized by ‘crowdsourcing’. A Repository means the storage pool used for safety long-time preservation of the digital memories. The work of PMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.

Keywords: digital memory, cultural heritage, digital technologies, peking memory project

Procedia PDF Downloads 176
2870 Heating System for Water Pool by Solar Energy

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors.

Keywords: solar energy, solar swimming pool, water heating, PVC tubes, alternative system

Procedia PDF Downloads 464
2869 Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy

Authors: İsmail Kavdır, M. Burak Büyükcan, Ferhat Kurtulmuş

Abstract:

Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%.

Keywords: artificial neural networks, statistical classifiers, NIR spectroscopy, reflectance, transmittance

Procedia PDF Downloads 246
2868 Graphene-reinforced Metal-organic Framework Derived Cobalt Sulfide/Carbon Nanocomposites as Efficient Multifunctional Electrocatalysts

Authors: Yongde Xia, Laicong Deng, Zhuxian Yang

Abstract:

Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced cobalt sulfide/carbon nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of cobalt sulfide embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis-Mass spectroscopy, Scanning electronic microscopy, Transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It was found that cobalt sulfide nanoparticles were homogenously dispersed in the in-situ formed N, S co-doped porous carbon/Graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% current after continuously running for around 5 hours, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active cobalt sulfide and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.

Keywords: MOF derivative, graphene, electrocatalyst, oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction

Procedia PDF Downloads 50
2867 Awarding Copyright Protection to Artificial Intelligence Technology for its Original Works: The New Way Forward

Authors: Vibhuti Amarnath Madhu Agrawal

Abstract:

Artificial Intelligence (AI) and Intellectual Property are two emerging concepts that are growing at a fast pace and have the potential of having a huge impact on the economy in the coming times. In simple words, AI is nothing but work done by a machine without any human intervention. It is a coded software embedded in a machine, which over a period of time, develops its own intelligence and begins to take its own decisions and judgments by studying various patterns of how people think, react to situations and perform tasks, among others. Intellectual Property, especially Copyright Law, on the other hand, protects the rights of individuals and Companies in content creation that primarily deals with application of intellect, originality and expression of the same in some tangible form. According to some of the reports shared by the media lately, ChatGPT, an AI powered Chatbot, has been involved in the creation of a wide variety of original content, including but not limited to essays, emails, plays and poetry. Besides, there have been instances wherein AI technology has given creative inputs for background, lights and costumes, among others, for films. Copyright Law offers protection to all of these different kinds of content and much more. Considering the two key parameters of Copyright – application of intellect and originality, the question, therefore, arises that will awarding Copyright protection to a person who has not directly invested his / her intellect in the creation of that content go against the basic spirit of Copyright laws? This study aims to analyze the current scenario and provide answers to the following questions: a. If the content generated by AI technology satisfies the basic criteria of originality and expression in a tangible form, why should such content be denied protection in the name of its creator, i.e., the specific AI tool / technology? B. Considering the increasing role and development of AI technology in our lives, should it be given the status of a ‘Legal Person’ in law? C. If yes, what should be the modalities of awarding protection to works of such Legal Person and management of the same? Considering the current trends and the pace at which AI is advancing, it is not very far when AI will start functioning autonomously in the creation of new works. Current data and opinions on this issue globally reflect that they are divided and lack uniformity. In order to fill in the existing gaps, data obtained from Copyright offices from the top economies of the world have been analyzed. The role and functioning of various Copyright Societies in these countries has been studied in detail. This paper provides a roadmap that can be adopted to satisfy various objectives, constraints and dynamic conditions related AI technology and its protection under Copyright Law.

Keywords: artificial intelligence technology, copyright law, copyright societies, intellectual property

Procedia PDF Downloads 71
2866 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 187
2865 The Application of AI in Developing Assistive Technologies for Non-Verbal Individuals with Autism

Authors: Ferah Tesfaye Admasu

Abstract:

Autism Spectrum Disorder (ASD) often presents significant communication challenges, particularly for non-verbal individuals who struggle to express their needs and emotions effectively. Assistive technologies (AT) have emerged as vital tools in enhancing communication abilities for this population. Recent advancements in artificial intelligence (AI) hold the potential to revolutionize the design and functionality of these technologies. This study explores the application of AI in developing intelligent, adaptive, and user-centered assistive technologies for non-verbal individuals with autism. Through a review of current AI-driven tools, including speech-generating devices, predictive text systems, and emotion-recognition software, this research investigates how AI can bridge communication gaps, improve engagement, and support independence. Machine learning algorithms, natural language processing (NLP), and facial recognition technologies are examined as core components in creating more personalized and responsive communication aids. The study also discusses the challenges and ethical considerations involved in deploying AI-based AT, such as data privacy and the risk of over-reliance on technology. Findings suggest that integrating AI into assistive technologies can significantly enhance the quality of life for non-verbal individuals with autism, providing them with greater opportunities for social interaction and participation in daily activities. However, continued research and development are needed to ensure these technologies are accessible, affordable, and culturally sensitive.

Keywords: artificial intelligence, autism spectrum disorder, non-verbal communication, assistive technology, machine learning

Procedia PDF Downloads 19
2864 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine

Procedia PDF Downloads 204
2863 Internet Economy: Enhancing Information Communication Technology Adaptation, Service Delivery, Content and Digital Skills for Small Holder Farmers in Uganda

Authors: Baker Ssekitto, Ambrose Mbogo

Abstract:

The study reveals that indeed agriculture employs over 70% of Uganda’s population, of which majority are youth and women. The study further reveals that over 70% of the farmers are smallholder farmers based in rural areas, whose operations are greatly affected by; climate change, weak digital skills, limited access to productivity knowledge along value chains, limited access to quality farm inputs, weak logistics systems, limited access to quality extension services, weak business intelligence, limited access to quality markets among others. It finds that the emerging 4th industrial revolution powered by artificial intelligence, 5G and data science will provide possibilities of addressing some of these challenges. Furthermore, the study finds that despite rapid development of ICT4Agric Innovation, their uptake is constrained by a number of factors including; limited awareness of these innovations, low internet and smart phone penetration especially in rural areas, lack of appropriate digital skills, inappropriate programmes implementation models which are project and donor driven, limited articulation of value addition to various stakeholders among others. Majority of farmers and other value chain actors lacked knowledge and skills to harness the power of ICTs, especially their application of ICTs in monitoring and evaluation on quality of service in the extension system and farm level processes.

Keywords: artificial intelligence, productivity, ICT4agriculture, value chain, logistics

Procedia PDF Downloads 78
2862 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 366
2861 Handy EKG: Low-Cost ECG For Primary Care Screening In Developing Countries

Authors: Jhiamluka Zservando Solano Velasquez, Raul Palma, Alejandro Calderon, Servio Paguada, Erick Marin, Kellyn Funes, Hana Sandoval, Oscar Hernandez

Abstract:

Background: Screening cardiac conditions in primary care in developing countries can be challenging, and Honduras is not the exception. One of the main limitations is the underfunding of the Healthcare System in general, causing conventional ECG acquisition to become a secondary priority. Objective: Development of a low-cost ECG to improve screening of arrhythmias in primary care and communication with a specialist in secondary and tertiary care. Methods: Design a portable, pocket-size low-cost 3 lead ECG (Handy EKG). The device is autonomous and has Wi-Fi/Bluetooth connectivity options. A mobile app was designed which can access online servers with machine learning, a subset of artificial intelligence to learn from the data and aid clinicians in their interpretation of readings. Additionally, the device would use the online servers to transfer patient’s data and readings to a specialist in secondary and tertiary care. 50 randomized patients volunteer to participate to test the device. The patients had no previous cardiac-related conditions, and readings were taken. One reading was performed with the conventional ECG and 3 readings with the Handy EKG using different lead positions. This project was possible thanks to the funding provided by the National Autonomous University of Honduras. Results: Preliminary results show that the Handy EKG performs readings of the cardiac activity similar to those of a conventional electrocardiograph in lead I, II, and III depending on the position of the leads at a lower cost. The wave and segment duration, amplitude, and morphology of the readings were similar to the conventional ECG, and interpretation was possible to conclude whether there was an arrhythmia or not. Two cases of prolonged PR segment were found in both ECG device readings. Conclusion: Using a Frugal innovation approach can allow lower income countries to develop innovative medical devices such as the Handy EKG to fulfill unmet needs at lower prices without compromising effectiveness, safety, and quality. The Handy EKG provides a solution for primary care screening at a much lower cost and allows for convenient storage of the readings in online servers where clinical data of patients can then be accessed remotely by Cardiology specialists.

Keywords: low-cost hardware, portable electrocardiograph, prototype, remote healthcare

Procedia PDF Downloads 180
2860 Carbon Capture and Storage Using Porous-Based Aerogel Materials

Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar

Abstract:

The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.

Keywords: CCS, porous, carbon capture, oil and gas, sustainability

Procedia PDF Downloads 42
2859 Hydrogeological Study of the Different Aquifers in the Area of Biskra

Authors: A. Sengouga, Y. Imessaoudene, A. Semar, B. Mouhouche, M. Kadir

Abstract:

Biskra or Zibans, is located in a structural transition zone between the chain of the Saharan Atlas Mountains and the Sahara. It is an arid region where the superficial water resource is the mild, hence the importance of the lithological description and the evaluation of aquifers rock’s volumes, which are highly dependent on the mobilized water contained in the various reservoirs (Quaternary, Mio-Pliocene, Eocene and Continental intercalary). Through a data synthesis which is particularly based on stratigraphic logs of drilling, the description of aquifers heterogeneity and the determining of the spatial variability of aquifer appearance became possible, by using geostatistical analysis, which allowed the representation of the aquifer thicknesses mapping and their space variation. The different thematic maps realized focus on drilling position, the substratum shape and finally the aquifers thicknesses of the region. It is found that the high density of water points especially these of drilling points are superposed on the hydrologic reservoirs with significant thicknesses.

Keywords: log stratigraphic ArcGIS 10, geometry of aquifers, rocks reservoir volume, Biskra

Procedia PDF Downloads 460
2858 Data Protection, Data Privacy, Research Ethics in Policy Process Towards Effective Urban Planning Practice for Smart Cities

Authors: Eugenio Ferrer Santiago

Abstract:

The growing complexities of the modern world on high-end gadgets, software applications, scams, identity theft, and Artificial Intelligence (AI) make the “uninformed” the weak and vulnerable to be victims of cybercrimes. Artificial Intelligence is not a new thing in our daily lives; the principles of database management, logical programming, and garbage in and garbage out are all connected to AI. The Philippines had in place legal safeguards against the abuse of cyberspace, but self-regulation of key industry players and self-protection by individuals are primordial to attain the success of these initiatives. Data protection, Data Privacy, and Research Ethics must work hand in hand during the policy process in the course of urban planning practice in different environments. This paper focuses on the interconnection of data protection, data privacy, and research ethics in coming up with clear-cut policies against perpetrators in the urban planning professional practice relevant in sustainable communities and smart cities. This paper shall use expository methodology under qualitative research using secondary data from related literature, interviews/blogs, and the World Wide Web resources. The claims and recommendations of this paper will help policymakers and implementers in the policy cycle. This paper shall contribute to the body of knowledge as a simple treatise and communication channel to the reading community and future researchers to validate the claims and start an intellectual discourse for better knowledge generation for the good of all in the near future.

Keywords: data privacy, data protection, urban planning, research ethics

Procedia PDF Downloads 59
2857 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic

Abstract:

The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).

Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences

Procedia PDF Downloads 319
2856 The Dependence of Carbonate Pore Geometry on Fossils: Examples from Zechstein, Poland

Authors: Adam Fheed

Abstract:

Carbonate porosity can be deceptive in the aspect of hydrocarbon exploration due to pore geometry variations, which are to some extent controlled by fossils. Therefore, the main aim of this paper was to assess the dependence of pore geometry and reservoir quality on fossils. The Permian Zechstein Limestone (Ca1) carbonates from the Brońsko Reef, located on the Wolsztyn Ridge in West Poland, were examined. Seventy meters of drill cores were described along with well log examination and transmitted-light microscope research. The archival porosity-permeability data was utilized to calibrate the well logs and look for the potential petrophysical trends. Several organism assemblages were recognized in the reef. Its bottom was colonized by the branched bryozoans which were fragmented and dissolved leaving poorly connected molds. Subsequently, numerous bivalves and gastropods appeared and their shells were heavily dissolved to form huge, albeit poorly communicated caverns. Such pores were also typical for local brachiopod occurrences. Although the caverns were widespread, and probably linked to the meteoric dissolution or freshwater flushing, severe anhydrite cementation has destroyed the majority of pores. Close to the top of Ca1, near the center of the reef, the fossil-rich zone comprising fenestrate bryozoans, extremely abundant encrusting foraminifers, bivalves, brachiopods, gastropods and ostracods, was identified. The zone contained extremely frequent dissolution channels formed within former shells of foraminifers, which had previously encrusted the bryozoans. The deposition of Ca1 strata has ultimately terminated with a poorly porous and generally impermeable stromatolitic layer containing scarce fossils. In general, the permeability of the reef rocks studied turned out to be the highest under the presence of foraminifer-related channels. In such cases, it frequently approached 100 mD. The presence of channels and other pores gave the average effective porosity derived from shallow resistivity and helium porosimetry of around 16 and 18 %, respectively. The highest porosity (over 18 %), often co-occurring with relatively low permeability (chiefly below 20 mD) was noted for the bottommost zone of the reef, represented by branched bryozoans. This is probably owing to a large amount of unconnected bryozoan-related molds. It was concluded that fossils played a major role in porosity formation and controlled the pore geometry significantly. While the dissolution of bivalves and brachiopods resulted in cavernous porosity formation, numerous molds were typically related with the alteration of branched bryozoans, gastropods and ostracods. Importantly, the bendy dissolution channels after the encrusting foraminifers appeared to be decisive in improving reservoir quality – specifically when permeability is considered. Acknowledgment: The research was financed by the Polish National Science Centre’s project No. UMO-2016/23/N/ST10/00350.

Keywords: dissolution channels, fossils, Permian, porosity

Procedia PDF Downloads 85
2855 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications

Authors: Sadegh Sadeghi, Negar Shabani

Abstract:

From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.

Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle

Procedia PDF Downloads 153
2854 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation

Procedia PDF Downloads 331
2853 The Impact of Artificial Intelligence on Digital Construction

Authors: Omil Nady Mahrous Maximous

Abstract:

The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.

Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 58
2852 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage

Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti

Abstract:

Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.

Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage

Procedia PDF Downloads 160
2851 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 298
2850 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 176
2849 Electrocatalysts for Lithium-Sulfur Energy Storage Systems

Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund

Abstract:

Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.

Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials

Procedia PDF Downloads 368
2848 The Applications of Toyota Production System to Reduce Wastes in Agricultural Products Packing Process: A Study of Onion Packing Plant

Authors: P. Larpsomboonchai

Abstract:

Agro-industry is one of major industries that has strong impacts on national economic incomes, growth, stability, and sustainable development. Moreover, this industry also has strong influences on social, cultural and political issues. Furthermore, this industry, as producing primary and secondary products, is facing challenges from such diverse factors such as demand inconsistency, intense international competition, technological advancements and new competitors. In order to maintain and to improve industry’s competitiveness in both domestics and international markets, science and technology are key factors. Besides hard sciences and technologies, modern industrial engineering concepts such as Just in Time (JIT) Total Quality Management (TQM), Quick Response (QR), Supply Chain Management (SCM) and Lean can be very effective to supportant to increase efficiency and effectiveness of these agricultural products on world stage. Onion is one of Thailand’s major export products which brings back national incomes. But, it also facing challenges in many ways. This paper focused its interests in onion packing process and its related activities such as storage and shipment from one of major packing plant and storage in Mae Wang District, Chiang Mai, Thailand, by applying Toyota Production System (TPS) or Lean concepts, to improve process capability throughout the entire packing and distribution process which will be profitable for the whole onion supply chain. And it will be beneficial to other related agricultural products in Thailand and other ASEAN countries.

Keywords: packing process, Toyota Production System (TPS), lean concepts, waste reduction, lean in agro-industries activities

Procedia PDF Downloads 275
2847 Offshore Power Transition Project

Authors: Kashmir Johal

Abstract:

Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology.

Keywords: renewable, energy, power, offshore

Procedia PDF Downloads 65
2846 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 83
2845 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 59
2844 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area

Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo

Abstract:

Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.

Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine

Procedia PDF Downloads 355