Search results for: waste heat recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6819

Search results for: waste heat recovery

5139 Variations in Heat and Cold Waves over Southern India

Authors: Amit G. Dhorde

Abstract:

It is now well established that the global surface air temperatures have increased significantly during the period that followed the industrial revolution. One of the main predictions of climate change is that the occurrences of extreme weather events will increase in future. In many regions of the world, high-temperature extremes have already started occurring with rising frequency. The main objective of the present study is to understand spatial and temporal changes in days with heat and cold wave conditions over southern India. The study area includes the region of India that lies to the south of Tropic of Cancer. To fulfill the objective, daily maximum and minimum temperature data for 80 stations were collected for the period 1969-2006 from National Data Center of India Meteorological Department. After assessing the homogeneity of data, 62 stations were finally selected for the study. Heat and cold waves were classified as slight, moderate and severe based on the criteria given by Indias' meteorological department. For every year, numbers of days experiencing heat and cold wave conditions were computed. This data was analyzed with linear regression to find any existing trend. Further, the time period was divided into four decades to investigate the decadal frequency of the occurrence of heat and cold waves. The results revealed that the average annual temperature over southern India shows an increasing trend, which signifies warming over this area. Further, slight cold waves during winter season have been decreasing at the majority of the stations. The moderate cold waves also show a similar pattern at the majority of the stations. This is an indication of warming winters over the region. Besides this analysis, other extreme indices were also analyzed such as extremely hot days, hot days, very cold nights, cold nights, etc. This analysis revealed that nights are becoming warmer and days are getting warmer over some regions too.

Keywords: heat wave, cold wave, southern India, decadal frequency

Procedia PDF Downloads 119
5138 The Use of the Phytase in Aquaculture, Its Zootechnical Interests and the Possibilities of Incorporation in the Aquafeed

Authors: Niang Mamadou Sileye

Abstract:

The study turns on the use of the phytase in aquaculture, its zootechnical interests and the possibilities of incorporation in the feed. The goal is to reduce the waste in phosphorus linked to the feeding of fishes, without any loss of zootechnical performances and with a decrease of feed costs. We have studied the literature in order to evaluate the raw materials (total phosphorus, phytate and available phosphorus) used by a company to manufacture feed for rainbow trout; to determine the phosphorus requirements for aquaculture species; to determine the requirements of phosphorus for aquaculture species, to determine the sings of lack of phosphorus for fishes; to study the antagonism between the phosphorus and the calcium and to study also the different forms of waste for the rainbow trout. The results found in the bibliography enable us test several Hypothesis of feed formulation for rainbow trout with different raw materials. This simulation and the calculation for wastes allowed to validate two formulation of feed: a control feed (0.5% of monocalcique phosphate) and a trial feed (supplementation with 0.002% of phytase Ronozyme PL and without inorganic phosphate). The feeds have been produced and sent to a experimental structure (agricultural college of Brehoulou).The result of the formulation give a decrease of the phosphorus waste of 28% for the trial feed compared to the feed. The supplementation enables a gain of 2.3 euro per ton. The partial results of the current test show no significant difference yet for the zootechnical parameters (growth rate, mortality, weight gain and obvious conversion rate) between control feed and the trial one. The waste measures do not show either significant difference between the control feed and the trial one, but however, the average difference would to decrease the wastes of 35.6% thanks to the use of phytase.

Keywords: phosphorus, phytic acid, phytase, need, digestibility, formulation, food, waste, rainbow trout

Procedia PDF Downloads 79
5137 Numerical Study of Heat Transfer Nanofluid TiO₂ through a Solar Flat Plate Collector

Authors: A. Maouassi, A. Beghidja, S. Daoud, N. Zeraibi

Abstract:

This paper illustrates a practical application of nanoparticles (TiO₂) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary, is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 800. Results from the application of those nonfluids are obtained versus pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that the heat transfer increases with increasing both nanoparticles concentration and Reynolds number.

Keywords: CFD, forced convection, nanofluid, solar flat plate collector efficiency, TiO₂ nanoparticles

Procedia PDF Downloads 150
5136 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: heat transfer coefficient, numerical analysis, oxide layer, spray cooling

Procedia PDF Downloads 392
5135 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants

Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning

Abstract:

Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.

Keywords: preparation, titanate, cs-137, removal, nuclear

Procedia PDF Downloads 254
5134 Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant

Authors: Kyriaki Kalaitzidou, Athanasia Tolkou, Christina Raptopoulou, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source.

Keywords: ferric phosphate, phosphorus recovery, phosphorus removal, wastewater treatment

Procedia PDF Downloads 467
5133 Crab Shell Waste Chitosan-Based Thin Film for Acoustic Sensor Applications

Authors: Maydariana Ayuningtyas, Bambang Riyanto, Akhiruddin Maddu

Abstract:

Industrial waste of crustacean shells, such as shrimp and crab, has been considered as one of the major issues contributing to environmental pollution. The waste processing mechanisms to form new, practical substances with added value have been developed. Chitosan, a derived matter from chitin, which is obtained from crab and shrimp shells, performs prodigiously in broad range applications. A chitosan composite-based diaphragm is a new inspiration in fiber optic acoustic sensor advancement. Elastic modulus, dynamic response, and sensitivity to acoustic wave of chitosan-based composite film contribute great potentials of organic-based sound-detecting material. The objective of this research was to develop chitosan diaphragm application in fiber optic microphone system. The formulation was conducted by blending 5% polyvinyl alcohol (PVA) solution with dissolved chitosan at 0%, 1% and 2% in 1:1 ratio, respectively. Composite diaphragms were characterized for the morphological and mechanical properties to predict the desired acoustic sensor sensitivity. The composite with 2% chitosan indicated optimum performance with 242.55 µm thickness, 67.9% relative humidity, and 29-76% light transmittance. The Young’s modulus of 2%-chitosan composite material was 4.89×104 N/m2, which generated the voltage amplitude of 0.013V and performed sensitivity of 3.28 mV/Pa at 1 kHz. Based on the results above, chitosan from crustacean shell waste can be considered as a viable alternative material for fiber optic acoustic sensor sensing pad development. Further, the research in chitosan utilisation is proposed as novel optical microphone development in anthropogenic noise controlling effort for environmental and biodiversity conservation.

Keywords: acoustic sensor, chitosan, composite, crab shell, diaphragm, waste utilisation

Procedia PDF Downloads 244
5132 Wear Behavior of Intermetallic (Ni3Al) Coating at High Temperature

Authors: K. Mehmood, Muhammad Asif Rafiq, A. Nasir Khan, M. Mudassar Rauf

Abstract:

Air plasma spraying system was utilized to deposit Ni3Al coatings on AISI 321 steel samples. After thermal spraying, the nickel aluminide intermetallic coatings were isothermal heat treated at various temperatures. In this regard, temperatures from 500 °C to 800 °C with 100 °C increments were selected. The coatings were soaked for 10, 30, 60 and 100 hours at the mentioned temperatures. These coatings were then tested by a pin on disk method. It was observed that the coatings exposed at comparatively higher temperature experienced lower wear rate. The decrease in wear rate is due to the formation of NiO phase. Further, the as sprayed and heat treated coatings were characterized by other tools such as Microhardness testing, optical and scanning electron microscopy (SEM) and X-Ray diffraction analysis. After isothermal heat treatment, NiO was observed the main phase by X-Ray diffraction technique. Moreover, the surface hardness was also determined higher than cross sectional hardness.

Keywords: air plasma spraying, Ni -20Al, tribometer, intermetallic coating, nickel aluminide

Procedia PDF Downloads 313
5131 Effects of Aging on Thermal Properties of Some Improved Varieties of Cassava (Manihot Esculenta) Roots

Authors: K. O. Oriola, A. O. Raji, O. E. Akintola, O. T. Ismail

Abstract:

Thermal properties of roots of three improved cassava varieties (TME419, TMS 30572, and TMS 0326) were determined on samples harvested at 12, 15 and 18 Months After Planting (MAP) conditioned to moisture contents of 50, 55, 60, 65, 70% (wb). Thermal conductivity at 12, 15 and 18 MAP ranged 0.4770 W/m.K to 0.6052W/m.K; 0.4804 W/m.K to 0.5530 W/m.K and 0.3764 to 0.6102 W/m.K respectively, thermal diffusivity from 1.588 to 2.426 x 10-7m2/s; 1.290 to 2.010 x 10-7m2/s and 0.1692 to 4.464 x 10-7m2/s and specific heat capacity from 2.3626 to 3.8991 kJ/kg.K; 1.8110 to 3.9703 kJ/kgK and 1.7311 to 3.8830 kJ/kg.K respectively within the range of moisture content studied across the varieties. None of the samples over the ages studied showed similar or definite trend in variation with others across the moisture content. However, second order polynomial models fitted all the data. Age on the other hand had a significant effect on the three thermal properties studied for TME 419 but not on thermal conductivity of TMS30572 and specific heat capacity of TMS 0326. Information obtained will provide better insight into thermal processing of cassava roots into stable products.

Keywords: thermal conductivity, thermal diffusivity, specific heat capacity, moisture content, tuber age

Procedia PDF Downloads 500
5130 Nickel-Titanium Endodontic Instruments: The Evolution

Authors: Fadwa Chtioui

Abstract:

The field of endodontics has witnessed constant advancements in treatment methods and instrument design, particularly for nickel-titanium (NiTi) files. Despite these developments, it remains crucial for clinicians to have a thorough understanding of their characteristics and behavior to choose the appropriate instruments for different clinical and anatomical situations. Research Aim: The aim of this work is to study and discuss the impact of heat treatment developments on the properties of endodontic NiTi files, with the ultimate goal of providing ways to adapt these files to the anatomical features of dental roots. Methodology: This study involves both clinical cases and extensive bibliographic research. Findings: The study highlights the importance of heat treatment in the design and manufacture of NiTi files, as it significantly affects their physical and mechanical properties. It also provides insights into the ways in which NiTi files can be adapted to the complex geometries of dental roots for more effective endodontic treatments. Theoretical Importance: Theoretical implications of this study include a better understanding of the relationship between heat treatment and the properties of NiTi files, leading to improvements in both their manufacturing methods and clinical applications. Data Collection and Analysis Procedures: The data for this study was collected through clinical cases and an extensive review of relevant literature. Analysis was performed through qualitative and quantitative methods, examining the impact of heat treatment on the physical and mechanical properties of NiTi files. Questions Addressed: This study aims to answer questions concerning the properties of NiTi files and the impact of heat treatment on their behavior. It also seeks to examine ways in which these files can be adapted to complex dental root geometries for more effective endodontic treatments. Conclusion: In conclusion, this study emphasizes the importance of heat treatment in the design and manufacture of NiTi files, as it significantly impacts their physical and mechanical properties. Further research is necessary to explore additional methods for adapting NiTi files to the unique anatomies of dental roots to improve endodontic treatments further. Ultimately, this study provides valuable insights into the continued evolution of endodontic treatment and instrument design.

Keywords: endodontic files, nickel-titanium, tooth anatomy, heat treatment

Procedia PDF Downloads 50
5129 Measuring Service Recovery Quality of Electronic Shopping Customers: A Study of Select Cities in India

Authors: Ramanjaneyulu Mogili, G.V.R.K. Acharyulu

Abstract:

Indian organized retail sector is growing at a faster pace and gaining popularity. Indian Brand Equity Foundation (IBEF) reveals that the current market size of Indian retail industry is about US$ 520 billion with for growth rate 14 to 15 percent annually by 2018 the Indian retail sector is likely to grow at a CAGR of 13% to reach a size of US$ 950 billion. Developments in Information Technology have enabled online Retail sector that empowers customers to order products, conduct transactions without the need to interact physically with the retailers. In recent years, the online shopping industry has gained popularity to the point where certain categories of customers would consider buying electronic products online rather than visiting the stores. Conventionally the physical location of a store is seen as a source of competitive advantage. Online Retailing service sites provide virtual shopping space to the customers. Online Retail services are gaining momentum in India, with internet penetration improving in the country and smartphones becoming affordable along with changing lifestyles and preferences of customers. Although online shoppers prefer the convenience and choice available in online shopping, certain issues raised due to the occurrence of service failure. The proposed study attempts to measure the service recovery and failure process of electronic goods in Indian retail channels.

Keywords: service recovery, customer satisfaction, e-shopping, service failure

Procedia PDF Downloads 210
5128 Static Strain Aging in Ferritic and Austenitic Stainless Steels

Authors: Songul Kurucay, Mustafa Acarer, Harun Sepet

Abstract:

Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results.

Keywords: austenitic stainless steel, ferritic stainless steel, static strain aging, tensile strength

Procedia PDF Downloads 427
5127 Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation

Authors: Alexander Blokhin, Ekaterina Kruglova, Boris Semisalov

Abstract:

Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done.

Keywords: dynamics of polymeric liquid, heat dissipation, singularly perturbed problem, pseudospectral method, Chebyshev polynomials, stabilization technique

Procedia PDF Downloads 278
5126 Ultrathin Tin-Silicalite 1 Zeolite Membrane in Ester Solvent Recovery

Authors: Kun Liang Ang, Eng Toon Saw, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Ester solvents are widely used in pharmaceutical, printing and flavor industry due to their good miscibility, low toxicity, and high volatility. Through pervaporation, these ester solvents can be recovered from industrial wastewater. While metal-doped silicalite 1 zeolite membranes are commonly used in organic solvent recovery in the pervaporation process, these ceramic membranes suffer from low membrane permeation flux, mainly due to the high thickness of the metal-doped zeolite membrane. Herein, a simple method of fabricating an ultrathin tin-silicalite 1 membrane supported on alumina tube is reported. This ultrathin membrane is able to achieve high permeation flux and separation factor for an ester in a diluted aqueous solution. Nanosized tin-Silicalite 1 seeds which are smaller than 500nm has been formed through hydrothermal synthesis. The sn-Silicalite 1 seeds were then seeded onto alumina tube through dip coating, and the tin-Silicalite 1 membrane was then formed by hydrothermal synthesis in an autoclave through secondary growth method. Multiple membrane synthesis factors such as seed size, ceramic substrate surface pore size selection, and secondary growth conditions were studied for their effects on zeolite membrane growth. The microstructure, morphology and the membrane thickness of tin-Silicalite 1 zeolite membrane were examined. The membrane separation performance and stability will also be reported.

Keywords: ceramic membrane, pervaporation, solvent recovery, Sn-MFI zeolite

Procedia PDF Downloads 169
5125 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 119
5124 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method

Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh

Abstract:

Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.

Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model

Procedia PDF Downloads 333
5123 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment

Authors: Temitayo Tosin Alawiye

Abstract:

Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.

Keywords: agricultural waste, climate change, green energy, soil borne plant disease

Procedia PDF Downloads 258
5122 Parameter and Lose Effect Analysis of Beta Stirling Cycle Refrigerating Machine

Authors: Muluken Z. Getie, Francois Lanzetta, Sylvie Begot, Bimrew T. Admassu

Abstract:

This study is aimed at the numerical analysis of the effects of phase angle and losses (shuttle heat loss and gas leakage to the crankcase) that could have an impact on the pressure and temperature of working fluid for a β-type Stirling cycle refrigerating machine. First, the developed numerical model incorporates into the ideal adiabatic analysis, the shuttle heat transfer (heat loss from compression space to expansion space), and gas leakage from the working space to the buffer space into the crankcase. The other losses that may not have a direct effect on the temperature and pressure of working fluid are simply incorporated in a simple analysis. The model is then validated by reversing the model to the engine model and compared with other literature results using (GPU-3) engine. After validating the model with other engine model and experiment results, analysis of the effect of phase angle, shuttle heat lose and gas leakage on temperature, pressure, and performance (power requirement, cooling capacity and coefficient of performance) of refrigerating machine considering the FEMTO 60 Stirling engine as a case study have been conducted. Shuttle heat loss has a greater effect on the temperature of working gas; gas leakage to the crankcase has more effect on the pressure of working spaces and hence both have a considerable impact on the performance of the Stirling cycle refrigerating machine. The optimum coefficient of performance exists between phase angles of 900-950, and optimum cooling capacity could be found between phase angles of 950-980.

Keywords: beta configuration, engine model, moderate cooling, stirling refrigerator, and validation

Procedia PDF Downloads 88
5121 The Effects of Mirror Therapy on Clinical Improvement in Hemiplegic Lower Extremity Rehabilitation in Subjects with Chronic Stroke

Authors: Hassan Abo-Salem, Huang Xiaolin

Abstract:

Background and Purpose: The effectiveness of mirror therapy (MT) has been investigated in acute hemiplegia. The present study examines whether MT, given during chronic stroke, was more effective in promoting motor recovery of the lower extremity and walking speed than standard rehabilitation alone. Methods: The study enrolled 30 patients with chronic stroke. Fifteen patients each were assigned to the treatment group and the control group. All patients received a conventional rehabilitation program for a 4-week period. In addition to this rehabilitation program, patients in the treatment group received mirror therapy for 4 weeks, 5 days a week. Main measures: Passive ankle joint dorsiflexion range of motion, gait speed, Brunnstrom stages of motor recovery, plantarflexor muscle tone by Modified Ashworth Scale. Results: Results: No significant difference was found in the outcome measures among groups before treatment. When compared with standard rehabilitation, mirror therapy improved Ankle ROM, Brunnstrom stages and waking speed (p < 0.05). However, there were no significant differences between two groups on MAS (P > 0.05). Conclusions: Mirror therapy combined with a conventional stroke rehabilitation program enhances lower-extremity motor recovery and walking speed in chronic stroke patients.

Keywords: mirror therapy, stroke, MAS, walking speed

Procedia PDF Downloads 489
5120 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement

Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan

Abstract:

In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.

Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength

Procedia PDF Downloads 71
5119 Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time.

Keywords: non-Newtonian fluid, MHD flow, thin film flow, third grade fluid, slip boundary condition, heat transfer, separation of variable, eigenfunction expansion

Procedia PDF Downloads 372
5118 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 366
5117 CO₂ Recovery from Biogas and Successful Upgrading to Food-Grade Quality: A Case Study

Authors: Elisa Esposito, Johannes C. Jansen, Loredana Dellamuzia, Ugo Moretti, Lidietta Giorno

Abstract:

The reduction of CO₂ emission into the atmosphere as a result of human activity is one of the most important environmental challenges to face in the next decennia. Emission of CO₂, related to the use of fossil fuels, is believed to be one of the main causes of global warming and climate change. In this scenario, the production of biomethane from organic waste, as a renewable energy source, is one of the most promising strategies to reduce fossil fuel consumption and greenhouse gas emission. Unfortunately, biogas upgrading still produces the greenhouse gas CO₂ as a waste product. Therefore, this work presents a case study on biogas upgrading, aimed at the simultaneous purification of methane and CO₂ via different steps, including CO₂/methane separation by polymeric membranes. The original objective of the project was the biogas upgrading to distribution grid quality methane, but the innovative aspect of this case study is the further purification of the captured CO₂, transforming it from a useless by-product to a pure gas with food-grade quality, suitable for commercial application in the food and beverage industry. The study was performed on a pilot plant constructed by Tecno Project Industriale Srl (TPI) Italy. This is a model of one of the largest biogas production and purification plants. The full-scale anaerobic digestion plant (Montello Spa, North Italy), has a digestive capacity of 400.000 ton of biomass/year and can treat 6.250 m3/hour of biogas from FORSU (organic fraction of solid urban waste). The entire upgrading process consists of a number of purifications steps: 1. Dehydration of the raw biogas by condensation. 2. Removal of trace impurities such as H₂S via absorption. 3.Separation of CO₂ and methane via a membrane separation process. 4. Removal of trace impurities from CO₂. The gas separation with polymeric membranes guarantees complete simultaneous removal of microorganisms. The chemical purity of the different process streams was analysed by a certified laboratory and was compared with the guidelines of the European Industrial Gases Association and the International Society of Beverage Technologists (EIGA/ISBT) for CO₂ used in the food industry. The microbiological purity was compared with the limit values defined in the European Collaborative Action. With a purity of 96-99 vol%, the purified methane respects the legal requirements for the household network. At the same time, the CO₂ reaches a purity of > 98.1% before, and 99.9% after the final distillation process. According to the EIGA/ISBT guidelines, the CO₂ proves to be chemically and microbiologically sufficiently pure to be suitable for food-grade applications.

Keywords: biogas, CO₂ separation, CO2 utilization, CO₂ food grade

Procedia PDF Downloads 195
5116 Evaluating the Impact of Urban Green Spaces on Urban Microclimate of Lahore: A Rapidly Urbanizing Metropolis of the Punjab-Pakistan

Authors: Muhammad Nasar-U-Minallah, Dagmar Haase, Salman Qureshi, Safdar Ali Shirazi

Abstract:

Urban green spaces (UGS) play a key role in the urban ecology of an area since they provide significant ecological services to compensate for natural environment functions damaged by the rapid growth of urbanization. The transformation of urban green specs to impervious landscapes has been recognized as a key factor prompting the distinctive urban heat and associated microclimatic changes. There is no doubt that urban green spaces offer a range of ecosystem services that can help to mitigate the ill effects of urbanization, heat anomalies, and climate change. The present study attempts to appraise the impact of urban green spaces on the urban thermal environment for the development of the microclimatic conditions in Lahore, Pakistan. The influence of urban heat has been studied through Landsat 8 data. The land surface temperature (LST) of Lahore was computed through the Radiative transfer method (RTM). The spatial variation of land surface temperature is retrieved to describe their local heat effect on urban microclimate. The association between the LST, normalized difference vegetation index, and the normalized difference built-up index are investigated to explore the impact of the urban green spaces and impervious surfaces on urban microclimate. The results of this study show significant changes in (impervious land surface 18% increase) land use within the study area. However, conversion of natural green cover to commercial and residential uses considerably increases the LST. Furthermore, results show that green spaces were the major heat sinks while impervious landscapes were the major heat source in the study area. Urban green spaces reveal 1 to 3℃ lower LST associated with their surrounding urban built-up area. This study shows that urban green spaces will help to mitigate the effect of urban microclimate and it is significant for the sustainable urban environment as well as to improve the quality of life of the urban inhabitants.

Keywords: thermal environmental, urban green space, cooling effect, microclimate, Lahore

Procedia PDF Downloads 91
5115 Effect of Concrete Waste Quality on the Compressive Strength of Recycled Concrete

Authors: Kebaili Bachir

Abstract:

The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. The variable nature of waste concrete, with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. Accordingly, an experimental test programme was developed to evaluate the effect of parent concrete qualities on the performance of recycled concrete. Three grades with different compressive strengths 10MPa, 20MPa, and 30MPa were considered in the study; moreover, an unknown compressive strength was introduced as well. The trial mixes used 40% secondary aggregates (both course and fine) and 60% of natural aggregates. The compressive strength of the test concrete decrease between 15 and 25% compared to normal concrete with no secondary aggregates. This work proves that the strength properties of the parent concrete have a limited effect on the compressive strength of recycled concrete. Low compressive strength parent concrete when crushed generate a high percentage of recycled coarse aggregates with the less attached mortar and give the same compressive strength as an excellent parent concrete. However, the decrease in compressive strength can be mitigated by increasing the cement content 4% by weight of recycled aggregates used.

Keywords: compressive, concrete, quality, recycled, strength

Procedia PDF Downloads 307
5114 Effect of Kinesio Taping on Anaerobic Power and Maximum Oxygen Consumption after Eccentric Exercise

Authors: Disaphon Boobpachat, Nuttaset Manimmanakorn, Apiwan Manimmanakorn, Worrawut Thuwakum, Michael J. Hamlin

Abstract:

Objectives: To evaluate effect of kinesio tape compared to placebo tape and static stretching on recovery of anaerobic power and maximal oxygen uptake (Vo₂max) after intensive exercise. Methods: Thirty nine untrained healthy volunteers were randomized to 3 groups for each intervention: elastic tape, placebo tape and stretching. The participants performed intensive exercise on the dominant quadriceps by using isokinetic dynamometry machine. The recovery process was evaluated by creatine kinase (CK), pressure pain threshold (PPT), muscle soreness scale (MSS), maximum voluntary contraction (MVC), jump height, anaerobic power and Vo₂max at baseline, immediately post-exercise and post-exercise day 1, 2, 3 and 7. Results: The kinesio tape, placebo tape and stretching groups had significant changes of PPT, MVC, jump height at immediately post-exercise compared to baseline (p < 0.05), and changes of MSS, CK, anaerobic power and Vo₂max at day 1 post-exercise compared to baseline (p < 0.05). There was no significant difference of those outcomes among three groups. Additionally, all experimental groups had little effects on anaerobic power and Vo₂max compared to baseline and compared among three groups (p > 0.05). Conclusion: Kinesio tape and stretching did not improve recovery of anaerobic power and Vo₂max after eccentric exercise compared to placebo tape.

Keywords: stretching, eccentric exercise, Wingate test, muscle soreness

Procedia PDF Downloads 119
5113 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

Authors: Yohannes Yirga, Daniel Tesfay

Abstract:

The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, and chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.

Keywords: heat and mass transfer, magnetohydrodynamics, nanofluid, fluid dynamics

Procedia PDF Downloads 274
5112 Biosorption of Ni (II) Using Alkaline-Treated Rice Husk

Authors: Khanom Simarani

Abstract:

Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min.

Keywords: Nickel removal, adsorbent, heavy metal, biomass

Procedia PDF Downloads 277
5111 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.

Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements

Procedia PDF Downloads 406
5110 Effect of the Alloying Elements on Mechanical Properties of TWIP Steel

Authors: Yuksel Akinay, Fatih Hayat

Abstract:

The influence of the alloying element on mechanical properties and micro structures of the Fe-22Mn-0.6C-0,6Si twinning induced plasticity (TWIP) steel were investigated at different temperatures. This composition was fabricated by a vacuum induction melting method. This steel was homogenized at 1200◦C for 8h. After heat treatment it was hot-rolled at 1100◦C to 6 mm thickness. The hot rolled plates were cold rolled to 3 mm and annealed at 700 800 and 900 °C for 60 and 150 minute and then air-cooled. X-ray diffractometry (XRD), optic microscope and field emission scanning electron microscope (FESEM), hardness and tensile tests were used to analyse the relationship between mechanical properties and micro structure after annealing process. The results show that, the excellent mechanical properties were obtained after heat treatment process. The tensile strength of material was decreased and the ductility of material was improved with increasing annealing temperature. Ni element were increased the mechanical resistance of specimens and because of carbide precipitation the hardness of specimen annealed at 700 C is higher than others.

Keywords: high manganese, heat treatment, SEM, XRD, cold-rolling

Procedia PDF Downloads 493