Search results for: quest based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32275

Search results for: quest based learning

30595 Water Repellent Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, water repellent, textiles, cotton

Procedia PDF Downloads 239
30594 Attitudes to Thinking and Learning in Sustainability Education: Case Basics of Natural Stone Industry in Circular Economy

Authors: Anne-Marie Tuomala

Abstract:

Education for sustainable development (ESD) aims to provide students with the attitudes, values, and behaviors necessary for the contribution to sustainability. The research was implemented as a part of the Horizons Europe research project, where each partner organization had at least one pilot project locally. The pilot in question was an online course about the basics of the natural stone industry in Finland and its sustainability and circular economy aspects. The course was open to all students of applied universities in Finland, and it was implemented twice during the research. The Stone from Finland association participated in the course design, and it was also an expert in the local context and real-life provider. The multiple case-study method was chosen, as it enables purposeful sampling of cases that are tailored to the specific study. It was also assumed that it predicts quite comparable results of two different course implementations of the course with the same topic and content. The Curtin University of Technology’s Attitudes Towards Thinking and Learning Survey was adapted. The results show the importance of the trans-disciplinary nature of sustainability education. In addition, the new industry areas with the general - but also industry-specific sustainability issues - must be introduced to students and encourage them to do critically reflective learning. Surveys that guide them to analyze their own attitudes to thinking and learning may expose students to their weaknesses but also result in forms of more active sustainability interaction.

Keywords: education for sustainable development, learning attitudes, learning of circular economy, virtual learning

Procedia PDF Downloads 43
30593 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 90
30592 Analogy to Continental Divisions: An Attention-Grabbing Approach to Teach Taxonomic Hierarchy to Students

Authors: Sagheer Ahmad

Abstract:

Teaching is a sacred profession whereby students are developed in their mental abilities to cope with the challenges of the remote world. Thinkers have developed plenty of interesting ways to make the learning process quick and absorbing for the students. However, third world countries are still lacking these remote facilities in the institutions, and therefore, teaching is totally dependent upon the skills of the teachers. Skillful teachers use self-devised and stimulating ideas to grab the attention of their students. Most of the time their ideas are based on local grounds with which the students are already familiar. This self-explanatory characteristic is the base of several local ideologies to disseminate scientific knowledge to new generations. Biology is such a subject which largely bases upon hypotheses, and teaching it in an interesting way is needful to create a friendly relationship between teacher and student, and to make a fantastic learning environment. Taxonomic classification if presented as it is, may not be attractive for the secondary school students who just start learning about biology at elementary levels. Presenting this hierarchy by exemplifying Kingdom, Phylum, Class, Order, family, genus and Species as comparatives of our division into continents, countries, cities, towns, villages, homes and finally individuals could be an attention-grabbing approach to make this concept get into bones of students. Similarly, many other interesting approaches have also been adopted to teach students in a fascinating way so that learning science subjects may not be boring for them. Discussing these appealing ways of teaching students can be a valuable stimulus to refine teaching methodologies about science, thereby promoting the concept of friendly learning.

Keywords: biology, innovative approaches, taxonomic classification, teaching

Procedia PDF Downloads 250
30591 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education

Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman

Abstract:

Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.

Keywords: usage, software, diagnosis and treatment, medical education

Procedia PDF Downloads 359
30590 Structural Damage Detection Using Modal Data Employing Teaching Learning Based Optimization

Authors: Subhajit Das, Nirjhar Dhang

Abstract:

Structural damage detection is a challenging work in the field of structural health monitoring (SHM). The damage detection methods mainly focused on the determination of the location and severity of the damage. Model updating is a well known method to locate and quantify the damage. In this method, an error function is defined in terms of difference between the signal measured from ‘experiment’ and signal obtained from undamaged finite element model. This error function is minimised with a proper algorithm, and the finite element model is updated accordingly to match the measured response. Thus, the damage location and severity can be identified from the updated model. In this paper, an error function is defined in terms of modal data viz. frequencies and modal assurance criteria (MAC). MAC is derived from Eigen vectors. This error function is minimized by teaching-learning-based optimization (TLBO) algorithm, and the finite element model is updated accordingly to locate and quantify the damage. Damage is introduced in the model by reduction of stiffness of the structural member. The ‘experimental’ data is simulated by the finite element modelling. The error due to experimental measurement is introduced in the synthetic ‘experimental’ data by adding random noise, which follows Gaussian distribution. The efficiency and robustness of this method are explained through three examples e.g., one truss, one beam and one frame problem. The result shows that TLBO algorithm is efficient to detect the damage location as well as the severity of damage using modal data.

Keywords: damage detection, finite element model updating, modal assurance criteria, structural health monitoring, teaching learning based optimization

Procedia PDF Downloads 215
30589 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 150
30588 Educating the Education Student: Technology as the Link between Theory and Praxis

Authors: Rochelle Botha-Marais

Abstract:

When lecturing future educators in South Africa, praxis is an indispensable aspect that is often neglected. Without properly understanding how the theory taught in lecture halls relates to their future position as educators, we can not expect these students to be fully equipped future teachers. To enable education students at the Vaal Campus of the North West University - who have the Afrikaans language as major - to discover the link between theory and practice, the author created an assignment on phonetics in which the use of technology was incorporated. In the past, students had to submit an assignment or worksheet and they did not get the opportunity to apply their newly found knowledge in a practical manner. For potential future teachers, this application is essential. This paper will demonstrate how technology is used in the second year Afrikaans education module to promote student engagement and self-directed learning. Students were introduced to innovative new technologies alongside more familiar applications to shape a 21st century learning environment where students can think, communicate, solve problems, collaborate and take responsibility for their own teaching and learning. The paper will also reflect on student feedback pertaining the use and efficiency of technology in the Afrikaans module and the possible impact thereof on their own teaching and learning landscape. The aim of this paper is to showcase how technology can be used to maximize the students learning experience and equip future education students with the tools and knowledge to introduce technology-enhanced learning in their own teaching practice.

Keywords: education students, theory and practice, self-directed learning, student engagement, technology

Procedia PDF Downloads 287
30587 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
30586 The Influence of Argumentation Strategy on Student’s Web-Based Argumentation in Different Scientific Concepts

Authors: Xinyue Jiao, Yu-Ren Lin

Abstract:

Argumentation is an essential aspect of scientific thinking which has been widely concerned in recent reform of science education. The purpose of the present studies was to explore the influences of two variables termed ‘the argumentation strategy’ and ‘the kind of science concept’ on student’s web-based argumentation. The first variable was divided into either monological (which refers to individual’s internal discourse and inner chain reasoning) or dialectical (which refers to dialogue interaction between/among people). The other one was also divided into either descriptive (i.e., macro-level concept, such as phenomenon can be observed and tested directly) or theoretical (i.e., micro-level concept which is abstract, and cannot be tested directly in nature). The present study applied the quasi-experimental design in which 138 7th grade students were invited and then assigned to either monological group (N=70) or dialectical group (N=68) randomly. An argumentation learning program called ‘the PWAL’ was developed to improve their scientific argumentation abilities, such as arguing from multiple perspectives and based on scientific evidence. There were two versions of PWAL created. For the individual version, students can propose argument only through knowledge recall and self-reflecting process. On the other hand, the students were allowed to construct arguments through peers’ communication in the collaborative version. The PWAL involved three descriptive science concept-based topics (unit 1, 3 and 5) and three theoretical concept-based topics (unit 2, 4 and 6). Three kinds of scaffoldings were embedded into the PWAL: a) argument template, which was used for constructing evidence-based argument; b) the model of the Toulmin’s TAP, which shows the structure and elements of a sound argument; c) the discussion block, which enabled the students to review what had been proposed during the argumentation. Both quantitative and qualitative data were collected and analyzed. An analytical framework for coding students’ arguments proposed in the PWAL was constructed. The results showed that the argumentation approach has a significant effect on argumentation only in theoretical topics (f(1, 136)=48.2, p < .001, η2=2.62). The post-hoc analysis showed the students in the collaborative group perform significantly better than the students in the individual group (mean difference=2.27). However, there is no significant difference between the two groups regarding their argumentation in descriptive topics. Secondly, the students made significant progress in the PWAL from the earlier descriptive or theoretical topic to the later one. The results enabled us to conclude that the PWAL was effective for students’ argumentation. And the students’ peers’ interaction was essential for students to argue scientifically especially for the theoretical topic. The follow-up qualitative analysis showed student tended to generate arguments through critical dialogue interactions in the theoretical topic which promoted them to use more critiques and to evaluate and co-construct each other’s arguments. More explanations regarding the students’ web-based argumentation and the suggestions for the development of web-based science learning were proposed in our discussions.

Keywords: argumentation, collaborative learning, scientific concepts, web-based learning

Procedia PDF Downloads 104
30585 Adaption to Climate Change as a Challenge for the Manufacturing Industry: Finding Business Strategies by Game-Based Learning

Authors: Jan Schmitt, Sophie Fischer

Abstract:

After the Corona pandemic, climate change is a further, long-lasting challenge the society must deal with. An ongoing climate change need to be prevented. Nevertheless, the adoption tothe already changed climate conditionshas to be focused in many sectors. Recently, the decisive role of the economic sector with high value added can be seen in the Corona crisis. Hence, manufacturing industry as such a sector, needs to be prepared for climate change and adaption. Several examples from the manufacturing industry show the importance of a strategic effort in this field: The outsourcing of a major parts of the value chain to suppliers in other countries and optimizing procurement logistics in a time-, storage- and cost-efficient manner within a network of global value creation, can lead vulnerable impacts due to climate-related disruptions. E.g. the total damage costs after the 2011 flood disaster in Thailand, including costs for delivery failures, were estimated at 45 billion US dollars worldwide. German car manufacturers were also affected by supply bottlenecks andhave close its plant in Thailand for a short time. Another OEM must reduce the production output. In this contribution, a game-based learning approach is presented, which should enable manufacturing companies to derive their own strategies for climate adaption out of a mix of different actions. Based on data from a regional study of small, medium and large manufacturing companies in Mainfranken, a strongly industrialized region of northern Bavaria (Germany) the game-based learning approach is designed. Out of this, the actual state of efforts due to climate adaption is evaluated. First, the results are used to collect single actions for manufacturing companies and second, further actions can be identified. Then, a variety of climate adaption activities can be clustered according to the scope of activity of the company. The combination of different actions e.g. the renewal of the building envelope with regard to thermal insulation, its benefits and drawbacks leads to a specific strategy for climate adaption for each company. Within the game-based approach, the players take on different roles in a fictionalcompany and discuss the order and the characteristics of each action taken into their climate adaption strategy. Different indicators such as economic, ecologic and stakeholder satisfaction compare the success of the respective measures in a competitive format with other virtual companies deriving their own strategy. A "play through" climate change scenarios with targeted adaptation actions illustrate the impact of different actions and their combination onthefictional company.

Keywords: business strategy, climate change, climate adaption, game-based learning

Procedia PDF Downloads 207
30584 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 142
30583 Geography Undergraduates 360⁰ Academic Peer Learning And Mentoring 2021 – 2023: A Pilot Study

Authors: N. Ayob, N. C. Nkosi, R. P. Burger, S. J. Piketh, F. Letlaila, O. Maphosa

Abstract:

South African higher tertiary institution have been faced with high dropout rates. About 50 to 60% of first years drop out to due to various reasons one being inadequate academic support. Geography 111 (GEOG 111) module is historically known for having below 50% pass rate, high dropout rate and identified as a first year risk module. For the first time GEOG 111 (2021) on the Mahikeng Campus admitted 150 students pursuing more than 6 different qualifications (BA and BSc) from the Humanities Faculty and FNAS. First year students had difficulties transitioning from secondary to tertiary institutions as we shifted to remote learning while we navigate through the Covid-19 pandemic. The traditional method of teaching does not encourage students to help each other. With remote learning we do not have control over what the students share and perhaps this can be a learning opportunity to embrace peer learning and change the manner in which we assess the students. The purpose of this pilot study was to assist GEOG111 students with academic challenges whilst improving their University experience. This was a qualitative study open to all GEOG111, repeaters, students who are not confident in their Geographical knowledge and never did Geography at high school level. The selected 9 Golden Key International Honour Society Geography mentors attended an academic mentor training program with module lecturers. About 17.6% of the mentees did not have a geography background however, 94% of the mentees passed, 1 mentee had a mark of 38%. 11 of the participants had a mark >60% with one student that excelled 70%. It is evident that mentorship helped students reach their academic potential. Peer learning and mentoring are associated with improved academic performance and allows the students to take charge of their learning and academic experience. Thus an important element as we transform pedagogies at higher learning institutions.

Keywords: geography, risk module, peer mentoring, peer learning

Procedia PDF Downloads 155
30582 Resin Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, resin, textiles, wrinkle

Procedia PDF Downloads 254
30581 The Lived Experiences of Paramedical Students Engaged in Virtual Hands-on Learning

Authors: Zyra Cheska Hidalgo, Joehiza Mae Renon, Kzarina Buen, Girlie Mitrado

Abstract:

ABSTRACT: The global coronavirus disease (COVID-19) has dramatically impacted the lives of many, including education and our economy. Thus, it presents a massive challenge for medical education as instructors are mandated to deliver their lectures virtually to ensure the continuity of the medical education process and ensure students' safety. The purpose of this research paper is to determine the lived experiences of paramedical students who are engaged in virtual hands-on learning and to determine the different coping strategies they used to deal with virtual hands-on learning. The researchers used the survey method of descriptive research design to determine the lived experiences and coping strategies of twenty (20) paramedical students from Lorma Colleges (particularly the College of Medicine Department). The data were collected through online questionnaires, particularly with the use of google forms. This study shows technical issues, difficulty in adapting styles, distractions and time management issues, mental and physical health issues, and lack of interest and motivation are the most common problems and challenges experienced by paramedical students. On the other hand, the coping strategies used by paramedical students to deal with those challenges include time management, engagement in leisure activities, acceptance of responsibilities, studying, and adapting. With the data gathered, the researchers concluded that virtual hands-on learning effectively increases the knowledge of paramedical students. However, teaching and learning barriers must have to be considered to implement virtual hands-on learning successfully.

Keywords: virtual hands-on learning, E-learning, paramedical students, medical education

Procedia PDF Downloads 131
30580 A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels

Authors: Jingwen Shan

Abstract:

In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.

Keywords: TAM, learning behavior intentions, robot courses, primary and secondary school students

Procedia PDF Downloads 151
30579 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback

Authors: Jacopo Baboni Schilingi

Abstract:

We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.

Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication

Procedia PDF Downloads 154
30578 Formation of Science Literations Based on Indigenous Science Mbaru Niang Manggarai

Authors: Yuliana Wahyu, Ambros Leonangung Edu

Abstract:

The learning praxis that is proposed by 2013 Curriculum (K-13) is no longer school-oriented as a supply-driven, but now a demand-driven provider. This vision is connected with Jokowi-Kalla Nawacita program to create a competitive nation in the global era. Competition is a social fact that must be faced. Therefore the curriculum will design a process to be the innovators and entrepreneurs.To get this goal, K-13 implements the character education. This aims at creating the innovators and entrepreneurs from an early age (primary school). One part of strengthening it is literacy formations (reading, numeracy, science, ICT, finance, and culture). Thus, science literacy is an integral part of character education. The above outputs are only formed through the innovative process through intra-curricular (blended learning), co-curriculer (hands-on learning) and extra-curricular (personalized learning). Unlike the curriculums before that child cram with the theories dominating the intellectual process, new breakthroughs make natural, social, and cultural phenomena as learning sources. For example, Science in primary schoolsplaceBiology as the platform. And Science places natural, social, and cultural phenomena as a learning field so that students can learn, discover, solve concrete problems, and the prospects of development and application in their everyday lives. Science education not only learns about facts collection or natural phenomena but also methods and scientific attitudes. In turn, Science will form the science literacy. Science literacy have critical, creative, logical, and initiative competences in responding to the issues of culture, science and technology. This is linked with science nature which includes hands-on and minds-on. To sustain the effectiveness of science learning, K-13 opens a new way of viewing a contextual learning model in which facts or natural phenomena are drawn closer to the child's learning environment to be studied and analyzed scientifically. Thus, the topic of elementary science discussion is the practical and contextual things that students encounter. This research is about to contextualize Science in primary schools at Manggarai, NTT, by placing local wisdom as a learning source and media to form the science literacy. Explicitly, this study discovers the concept of science and mathematics in Mbaru Niang. Mbaru Niang is a forgotten potentials of the centralistic-theoretical mainstream curriculum so far. In fact, the traditional Manggarai community stores and inherits much of the science-mathematical indigenous sciences. In the traditional house structures are full of science and mathematics knowledge. Every details have style, sound and mathematical symbols. Learning this, students are able to collaborate and synergize the content and learning resources in student learning activities. This is constructivist contextual learning that will be applied in meaningful learning. Meaningful learning allows students to learn by doing. Students then connect topics to the context, and science literacy is constructed from their factual experiences. The research location will be conducted in Manggarai through observation, interview, and literature study.

Keywords: indigenous science, Mbaru Niang, science literacy, science

Procedia PDF Downloads 209
30577 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
30576 Enhancing Students’ Academic Engagement in Mathematics through a “Concept+Language Mapping” Approach

Authors: Jodie Lee, Lorena Chan, Esther Tong

Abstract:

Hong Kong students face a unique learning environment. Starting from the 2010/2011 school year, The Education Bureau (EDB) of the Government of the Hong Kong Special Administrative Region implemented the fine-tuned Medium of Instruction (MOI) arrangements for secondary schools. Since then, secondary schools in Hong Kong have been given the flexibility to decide the most appropriate MOI arrangements for their schools and under the new academic structure for senior secondary education, particularly on the compulsory part of the mathematics curriculum. In 2019, Hong Kong Diploma of Secondary Education Examination (HKDSE), over 40% of school day candidates attempted the Mathematics Compulsory Part examination in the Chinese version while the rest took the English version. Moreover, only 14.38% of candidates sat for one of the extended Mathematics modules. This results in a serious of intricate issues to students’ learning in post-secondary education programmes. It is worth to note that when students further pursue to an higher education in Hong Kong or even oversea, they may facing substantial difficulties in transiting learning from learning mathematics in their mother tongue in Chinese-medium instruction (CMI) secondary schools to an English-medium learning environment. Some students understood the mathematics concepts were found to fail to fulfill the course requirements at college or university due to their learning experience in secondary study at CMI. They are particularly weak in comprehending the mathematics questions when they are doing their assessment or attempting the test/examination. A government funded project was conducted with the aims of providing integrated learning context and language support to students with a lower level of numeracy and/or with CMI learning experience. By introducing this “integrated concept + language mapping approach”, students can cope with the learning challenges in the compulsory English-medium mathematics and statistics subjects in their tertiary education. Ultimately, in the hope that students can enhance their mathematical ability, analytical skills, and numerical sense for their lifelong learning. The “Concept + Language Mapping “(CLM) approach was adopted and tried out in the bridging courses for students with a lower level of numeracy and/or with CMI learning experiences. At the beginning of each class, a pre-test was conducted, and class time was then devoted to introducing the concepts by CLM approach. For each concept, the key thematic items and their different semantic relations are presented using graphics and animations via the CLM approach. At the end of each class, a post-test was conducted. Quantitative data analysis was performed to study the effect on students’ learning via the CLM approach. Stakeholders' feedbacks were collected to estimate the effectiveness of the CLM approach in facilitating both content and language learning. The results based on both students’ and lecturers’ feedback indicated positive outcomes on adopting the CLM approach to enhance the mathematical ability and analytical skills of CMI students.

Keywords: mathematics, Concept+Language Mapping, level of numeracy, medium of instruction

Procedia PDF Downloads 81
30575 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 30
30574 Exploring the Effective Learning Strategies for the Adult Learners in India: An Exploratory Study of Malcolm Knowls Principles and Their Use in the Education Policies of India with a Special Focus on the New India Literacy Programme

Authors: Km Tanu

Abstract:

It has been widely accepted that the learning style of adults and children is different, the learning motivation among adults vary, and even their learning preferences cannot be predetermined. In India, where the population is widely diverse and socio-economic and cultural disparities are there, the learning strategies should also be according to their needs and preferences. The present study explores the concept of adult learners in India in order to understand their needs and styles better. The adult learning principles of Malcolm Knowles have been analyzed, and its presence in the different policies and programs has been traced. To what extent these principles and other such concepts would be beneficial for the Indian population and for effective learning strategies, and what contextual understanding is needed, has been argued in the study. Descriptive research methodology, along with content and thematic analyses, has been used for the paper. It has been argued that there are four areas that play crucial roles in making learning effective. These are the learner, the facilitator, the resources and the policy. The prior experiences of the learners, their motivation, the group to which they belong (i.e., the learning styles and the strategies can be varied for the group of farmers and migrant laborers), and their expected outcome play an important role in making any adult education program successful but along with this, the role of facilitator or the educator is also very important as it is not easy to deal with the adult learners, the understanding that the task is not to teach the adult learners but to make them learn and to use their prior knowledge is a task in itself, proper training is needed for that matter. Many times, it has been seen that adult education programs are poorly funded, or even if they are funded, the fund is not utilized well; the unavailability of the resources is one of the reasons for the failure of adult education programs, and if we see these four points as a triangle, at the bottom, there is a policy document. A well-stated and described doable policy document is also equally important.

Keywords: adult education, Indian adult learner, effective learning styles, Malcolm Knowles learning principles, adult education policies and program

Procedia PDF Downloads 64
30573 K-12 Students’ Digital Life: Activities and Attitudes

Authors: Meital Amzalag, Sharon Hardof-Jaffe

Abstract:

In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.

Keywords: technology and learning, K-12, digital life, gender differences

Procedia PDF Downloads 134
30572 Challenges in Learning Legal English from the Students’ Perspective at Hanoi Law University

Authors: Nhac Thanh Huong

Abstract:

Legal English, also known as Language of the Law (Mellinkoff, David. 2004), is an indispensable factor contributing to the development of legal field. At Hanoi Law University, legal English is a compulsory subject in the syllabus of legal English major; International Trade law and Fast-track law training program. The question that what obstacles students face with when dealing with legal English, however, has not been answered at that institution. Therefore, this present research, which makes use of survey questionnaires as the main method, aims to study the challenges of learning legal English from the students’ perspective, from which some useful solutions are drawn up to overcome these difficulties and improve the effectiveness of learning legal English. The results indicate notable difficulties arising from the level of general English skills, the characteristics of legal English and legal background knowledge. These findings lay a scientific foundation for suggesting some solutions for practical applications in teaching as well as learning legal English among both teachers and students.

Keywords: challenges, HLU, Legal English, students' perspective

Procedia PDF Downloads 193
30571 Students’ Perception and Patterns of Listening Behaviour in an Online Forum Discussion

Authors: K. L. Wong, I. N. Umar

Abstract:

Online forum is part of a Learning Management System (LMS) environment in which students share opinions. This study attempts to investigate the perceptions of students towards online forum and their patterns of listening behaviour during the forum interaction. The students’ perceptions were measured using a questionnaire, in which seven dimensions were used including online experience, benefits of forum participation, cost of participation, perceived ease of use, usefulness, attitude and intention. Meanwhile, their patterns of listening behaviours were obtained using the log file extracted from the LMS. A total of 25 postgraduate students undertaking a course were involved in this study, and their activities in the forum session were recorded by the LMS and used as a log file. The results from the questionnaire analysis indicated that the students perceived that the forum is easy to use, useful, and bring benefits to them. Also, they showed positive attitude towards online forum, and they have the intention to use it in future. Based on the log data, the participants were also divided into six clusters of listening behaviour, in which they are different in terms of temporality, breadth, depth and speaking level. The findings were compared to previous clusters grouping and future recommendations are also discussed.

Keywords: e-learning, learning management system, listening behavior, online forum

Procedia PDF Downloads 432
30570 Learning Environment and Motivation of Cavite National High School Students

Authors: Madelaine F. Gatchalian, Mary Jane D. Tepora

Abstract:

This study was designed to determine the relationship between learning environment and motivation of CNHS, SY 2012-2013. There were 376 respondents taken randomly. Frequency distribution, percentage, mean, standard deviation, Mann Whitney Test, Kruskall Wallis One-way ANOVA and Spearman Rank Correlational Coefficient were used in analyzing the data. As to age, most of the respondents were 13 years old while female students outnumbered the male students. Majority of parents’ educational attainment of CNHS students were high school/vocational graduates. Most fathers worked in the private sector, while majority of the mothers were unemployed whose family income range from Php 5,000.00 to Php 14,999.00. Most of the respondents were first child composed of five family members. Findings showed no significant differences in perceived learning environment when respondents were grouped in terms of age, sex, parents’ educational attainment, parents’ occupation, sibling order and number of family members. Only monthly family income showed significant differences in perceived learning environment. There are no significant differences in perceived learning motivation when respondents were grouped in terms of age, sex, parents’ educational attainment (father), parents’ occupation (father), sibling order, and number of family members. Parents’ educational attainment (mother), parents’ occupation (mother) and monthly family income showed significant differences in perceived learning motivation. There is significant relationship between the six subscales of perceived learning environment, namely: student cohesiveness, teacher support, involvement, task orientation, cooperation and equity and perceived learning motivation of CNHS students, SY, 2012-2013. The results of this study indicated that learning environment including student cohesiveness, teachers support, involvement, task orientation, cooperation and equity is significantly related to students’ learning motivation.

Keywords: learning environment, motivation, demographic profile, secondary students

Procedia PDF Downloads 376
30569 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision

Authors: Lianzhong Zhang, Chao Huang

Abstract:

Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.

Keywords: SAR, sea-land segmentation, deep learning, transformer

Procedia PDF Downloads 181
30568 Protecting the Democracy of Children through Sustainable Risk Management: An Investigation into Risk Assessment and Nature-Based Play

Authors: Molly Gerrish

Abstract:

This work explores the physical, emotional, social, and cognitive risks and benefits related to nature-based teaching and highlights the importance of promoting a sustainable workforce within early childhood programs. Assessing and managing risks can help programs reimagine their approach to teaching, learning, recruitment, family connectivity, and staff motivation. The importance of staff sustainability and motivation/engagement related to social justice and the environment will be discussed. We will explore ways to manage fears and limitations faced by early childhood programs regarding nature experiences and risky play in a variety of locations using a lens of place-based learning. We will also examine the alignment of sustainability and social-emotional development, mental health supports, social awareness, and risk assessment. The work will discuss the varied perceptions of risk in diverse areas and the impact on the early childhood workforce. Motivational theory and compassion resiliency are hallmarks of both recruiting and retaining high-quality early childhood educators; the work will discuss how to balance programmatic constraints and healthy motivation for students and teachers while empowering individuals to advocate for their mental health and well-being. Finally, the work will highlight the positive impact of nature-based teaching practices and the overall benefit to young children and their educators.

Keywords: child’s rights, inclusion, nature-based education, risk assessment

Procedia PDF Downloads 60
30567 Evaluation of Massive Open Online Course in a Rural Marginalized Area: Case Study of Alice Community, Eastern Cape, South Africa

Authors: Dare Ebenezer Fatumo, Olusesan Emmanuel Adelabu

Abstract:

Online learning has taken another dimension through the introduction of Massive Open Online Courses (MOOCs), it has also become an important resource base for teaching and learning. This research aimed at investigating the use of Massive Open Online Course in a rural marginalized area. The survey research design of descriptive nature was adopted to evaluate the awareness and usage of Massive Open Online Course (MOOCs) in Alice community, Eastern Cape, South Africa. This study also employed quantitative approach by using self-structured questionnaire to evoke information from the respondents. The data collected were analyzed by Statistical Package for Social Sciences (SPSS). The findings revealed amongst others the efficacy of Massive Open Online Course (MOOCs) in fostering teaching and learning in rural marginalized areas. This study concludes that MOOCs is a veritable medium for busy or less privileged individual to acquire a degree or certification. Therefore, the study recommends MOOCs platform to be fully embraced by people in rural marginalized areas, awareness programs about its usefulness should be propagated across the municipalities nationwide.

Keywords: distance learning, information and communication technology, massive open online course, online learning, teaching and learning

Procedia PDF Downloads 178
30566 Techniques to Characterize Subpopulations among Hearing Impaired Patients and Its Impact for Hearing Aid Fitting

Authors: Vijaya K. Narne, Gerard Loquet, Tobias Piechowiak, Dorte Hammershoi, Jesper H. Schmidt

Abstract:

BEAR, which stands for better hearing rehabilitation is a large-scale project in Denmark designed and executed by three national universities, three hospitals, and the hearing aid industry with the aim to improve hearing aid fitting. A total of 1963 hearing impaired people were included and were segmented into subgroups based on hearing-loss, demographics, audiological and questionnaires data (i.e., the speech, spatial and qualities of hearing scale [SSQ-12] and the International Outcome Inventory for Hearing-Aids [IOI-HA]). With the aim to provide a better hearing-aid fit to individual patients, we applied modern machine learning techniques with traditional audiograms rule-based systems. Results show that age, speech discrimination scores, and audiogram configurations were evolved as important parameters in characterizing sub-population from the data-set. The attempt to characterize sub-population reveal a clearer picture about the individual hearing difficulties encountered and the benefits derived from more individualized hearing aids.

Keywords: hearing loss, audiological data, machine learning, hearing aids

Procedia PDF Downloads 154