Search results for: quantification accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4192

Search results for: quantification accuracy

2512 Moderate Electric Field Influence on Carotenoids Extraction Time from Heterochlorella luteoviridis

Authors: Débora P. Jaeschke, Eduardo A. Merlo, Rosane Rech, Giovana D. Mercali, Ligia D. F. Marczak

Abstract:

Carotenoids are high value added pigments that can be alternatively extracted from some microalgae species. However, the application of carotenoids synthetized by microalgae is still limited due to the utilization of organic toxic solvents. In this context, studies involving alternative extraction methods have been conducted with more sustainable solvents to replace and reduce the solvent volume and the extraction time. The aim of the present work was to evaluate the extraction time of carotenoids from the microalgae Heterochlorella luteoviridis using moderate electric field (MEF) as a pre-treatment to the extraction. The extraction methodology consisted of a pre-treatment in the presence of MEF (180 V) and ethanol (25 %, v/v) for 10 min, followed by a diffusive step performed for 50 min using a higher ethanol concentration (75 %, v/v). The extraction experiments were conducted at 30 °C and, to keep the temperature at this value, it was used an extraction cell with a water jacket that was connected to a water bath. Also, to enable the evaluation of MEF effect on the extraction, control experiments were performed using the same cell and conditions without voltage application. During the extraction experiments, samples were withdrawn at 1, 5 and 10 min of the pre-treatment and at 1, 5, 30, 40 and 50 min of the diffusive step. Samples were, then, centrifuged and carotenoids analyses were performed in the supernatant. Furthermore, an exhaustive extraction with ethyl acetate and methanol was performed, and the carotenoids content found for this analyses was considered as the total carotenoids content of the microalgae. The results showed that the application of MEF as a pre-treatment to the extraction influenced the extraction yield and the extraction time during the diffusive step; after the MEF pre-treatment and 50 min of the diffusive step, it was possible to extract up to 60 % of the total carotenoids content. Also, results found for carotenoids concentration of the extracts withdrawn at 5 and 30 min of the diffusive step did not presented statistical difference, meaning that carotenoids diffusion occurs mainly in the very beginning of the extraction. On the other hand, the results for control experiments showed that carotenoids diffusion occurs mostly during 30 min of the diffusive step, which evidenced MEF effect on the extraction time. Moreover, carotenoids concentration on samples withdrawn during the pre-treatment (1, 5 and 10 min) were below the quantification limit of the analyses, indicating that the extraction occurred in the diffusive step, when ethanol (75 %, v/v) was added to the medium. It is possible that MEF promoted cell membrane permeabilization and, when ethanol (75 %) was added, carotenoids interacted with the solvent and the diffusion occurred easily. Based on the results, it is possible to infer that MEF promoted the decrease of carotenoids extraction time due to the increasing of the permeability of the cell membrane which facilitates the diffusion from the cell to the medium.

Keywords: moderate electric field (MEF), pigments, microalgae, ethanol

Procedia PDF Downloads 463
2511 Cytokine Profiling in Cultured Endometrial Cells after Hormonal Treatment

Authors: Mark Gavriel, Ariel J. Jaffa, Dan Grisaru, David Elad

Abstract:

The human endometrium-myometrium interface (EMI) is the uterine inner barrier without a separatig layer. It is composed of endometrial epithelial cells (EEC) and endometrial stromal cells (ESC) in the endometrium and myometrial smooth muscle cells (MSMC) in the myometrium. The EMI undergoes structural remodeling during the menstruation cycle which are essential for human reproduction. Recently, we co-cultured a layer-by-layer in vitro model of EEC, ESC and MSMC on a synthetic membrane for mechanobiology experiments. We also treated the model with progesterone and β-estradiol in order to mimic the in vivo receptive uterus In the present study we analyzed the cytokines profile in a single layer of EEC the hormonal treated in vitro model of the EMI. The methodologies of this research include simple tissue-engineering . First, we cultured commercial EEC (RL95-2, ATCC® CRL-1671™) in 24-wellplate. Then, we applied an hormonal stimuli protocol with 17-β-estradiol and progesterone in time dependent concentration according to the human physiology that mimics the menstrual cycle. We collected cell supernatant samples of control, pre-ovulation, ovulation and post-ovulaton periods for analysis of the secreted proteins and cytokines. The cytokine profiling was performed using the Proteome Profiler Human XL Cytokine Array Kit (R&D Systems, Inc., USA) that can detect105 human soluble cytokines. The relative quantification of all the cytokines will be analyzed using xMAP – LUMINEX. We conducted a fishing expedition with the 4 membranes Proteome Profiler. We processed the images, quantified the spots intensity and normalized these values by the negative control and reference spots at the membrane. Analyses of the relative quantities that reflected change higher than 5% of the control points of the kit revealed the The results clearly showed that there are significant changes in the cytokine level for inflammation and angiogenesis pathways. Analysis of tissue-engineered models of the uterine wall will enable deeper investigation of molecular and biomechanical aspects of early reproductive stages (e.g. the window of implantation) or developments of pathologies.

Keywords: tissue-engineering, hormonal stimuli, reproduction, multi-layer uterine model, progesterone, β-estradiol, receptive uterine model, fertility

Procedia PDF Downloads 132
2510 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy

Authors: Grishma D. Solanki, Karshan Kandoriya

Abstract:

In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.

Keywords: copy-move image forgery, digital forensics, image forensics, image forgery

Procedia PDF Downloads 288
2509 A Review of Deformation and Settlement Monitoring on the Field: Types and Applications

Authors: Hassan Ali, Abdulrahman Hamid

Abstract:

This paper discusses using of instruments to monitor deformation and settlement. Specifically, it concentrates on field instruments such as inclinometer and plate load test and their applications in the field. Inclinometer has been used effectively to monitor lateral earth movements and settlement in landslide areas, embankments and foundations. They are also used to monitor the deflection of retaining walls and piles under load. This paper is reviewing types of inclinometer systems, comparison between systems, applications, field accuracy and correction. The paper also will present a case study of using inclinometer to monitor the creep movements within the ancient landslide on The Washington Park Station. Furthermore, the application of deformation and settlement instruments in Saudi Arabia will be discussed in this manuscript.

Keywords: inclinometer, plate load test, backfills, sand, deformation and settlement

Procedia PDF Downloads 280
2508 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations

Authors: Fuziyah Ishak, Siti Norazura Ahmad

Abstract:

Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.

Keywords: accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations

Procedia PDF Downloads 425
2507 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area

Authors: Kamalpreet Kaur, Renu Dhir

Abstract:

Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.

Keywords: climate, satellite images, prediction, classification

Procedia PDF Downloads 74
2506 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.

Keywords: pattern recognition, global terrorism database, Manhattan distance, k-means clustering, terrorism data analysis

Procedia PDF Downloads 386
2505 Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams

Authors: Firooz Bakhtiari-Nejad, Hamidreza Rostami, Meysam Mirzaee, Mona Zandbaf

Abstract:

Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-Contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employed for a modal analysis of a beam and detecting crack of the beam. The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems.

Keywords: experimental analysis, moving load, non-contact excitation, materials engineering

Procedia PDF Downloads 465
2504 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim

Abstract:

In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection

Procedia PDF Downloads 531
2503 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management

Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide

Abstract:

This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.

Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis

Procedia PDF Downloads 11
2502 Mathematical Based Forecasting of Heart Attack

Authors: Razieh Khalafi

Abstract:

Myocardial infarction (MI) or acute myocardial infarction (AMI), commonly known as a heart attack, occurs when blood flow stops to part of the heart causing damage to the heart muscle. An ECG can often show evidence of a previous heart attack or one that's in progress. The patterns on the ECG may indicate which part of your heart has been damaged, as well as the extent of the damage. In chaos theory, the correlation dimension is a measure of the dimensionality of the space occupied by a set of random points, often referred to as a type of fractal dimension. In this research by considering ECG signal as a random walk we work on forecasting the oncoming heart attack by analyzing the ECG signals using the correlation dimension. In order to test the model a set of ECG signals for patients before and after heart attack was used and the strength of model for forecasting the behavior of these signals were checked. Results shows this methodology can forecast the ECG and accordingly heart attack with high accuracy.

Keywords: heart attack, ECG, random walk, correlation dimension, forecasting

Procedia PDF Downloads 541
2501 The Conflict of Grammaticality and Meaningfulness of the Corrupt Words: A Cross-lingual Sociolinguistic Study

Authors: Jayashree Aanand, Gajjam

Abstract:

The grammatical tradition in Sanskrit literature emphasizes the importance of the correct use of Sanskrit words or linguistic units (sādhu śabda) that brings the meritorious values, denying the attribution of the same religious merit to the incorrect use of Sanskrit words (asādhu śabda) or the vernacular or corrupt forms (apa-śabda or apabhraṁśa), even though they may help in communication. The current research, the culmination of the doctoral research on sentence definition, studies the difference among the comprehension of both correct and incorrect word forms in Sanskrit and Marathi languages in India. Based on the total of 19 experiments (both web-based and classroom-controlled) on approximately 900 Indian readers, it is found that while the incorrect forms in Sanskrit are comprehended with lesser accuracy than the correct word forms, no such difference can be seen for the Marathi language. It is interpreted that the incorrect word forms in the native language or in the language which is spoken daily (such as Marathi) will pose a lesser cognitive load as compared to the language that is not spoken on a daily basis but only used for reading (such as Sanskrit). The theoretical base for the research problem is as follows: among the three main schools of Language Science in ancient India, the Vaiyākaraṇas (Grammarians) hold that the corrupt word forms do have their own expressive power since they convey meaning, while as the Mimāṁsakas (the Exegesists) and the Naiyāyikas (the Logicians) believe that the corrupt forms can only convey the meaning indirectly, by recalling their association and similarity with the correct forms. The grammarians argue that the vernaculars that are born of the speaker’s inability to speak proper Sanskrit are regarded as degenerate versions or fallen forms of the ‘divine’ Sanskrit language and speakers who could not use proper Sanskrit or the standard language were considered as Śiṣṭa (‘elite’). The different ideas of different schools strictly adhere to their textual dispositions. For the last few years, sociolinguists have agreed that no variety of language is inherently better than any other; they are all the same as long as they serve the need of people that use them. Although the standard form of a language may offer the speakers some advantages, the non-standard variety is considered the most natural style of speaking. This is visible in the results. If the incorrect word forms incur the recall of the correct word forms in the reader as the theory suggests, it would have added one extra step in the process of sentential cognition leading to more cognitive load and less accuracy. This has not been the case for the Marathi language. Although speaking and listening to the vernaculars is the common practice and reading the vernacular is not, Marathi readers have readily and accurately comprehended the incorrect word forms in the sentences, as against the Sanskrit readers. The primary reason being Sanskrit is spoken and also read in the standard form only and the vernacular forms in Sanskrit are not found in the conversational data.

Keywords: experimental sociolinguistics, grammaticality and meaningfulness, Marathi, Sanskrit

Procedia PDF Downloads 126
2500 Quantifying Automation in the Architectural Design Process via a Framework Based on Task Breakdown Systems and Recursive Analysis: An Exploratory Study

Authors: D. M. Samartsev, A. G. Copping

Abstract:

As with all industries, architects are using increasing amounts of automation within practice, with approaches such as generative design and use of AI becoming more commonplace. However, the discourse on the rate at which the architectural design process is being automated is often personal and lacking in objective figures and measurements. This results in confusion between people and barriers to effective discourse on the subject, in turn limiting the ability of architects, policy makers, and members of the public in making informed decisions in the area of design automation. This paper proposes the use of a framework to quantify the progress of automation within the design process. The use of a reductionist analysis of the design process allows it to be quantified in a manner that enables direct comparison across different times, as well as locations and projects. The methodology is informed by the design of this framework – taking on the aspects of a systematic review but compressed in time to allow for an initial set of data to verify the validity of the framework. The use of such a framework of quantification enables various practical uses such as predicting the future of the architectural industry with regards to which tasks will be automated, as well as making more informed decisions on the subject of automation on multiple levels ranging from individual decisions to policy making from governing bodies such as the RIBA. This is achieved by analyzing the design process as a generic task that needs to be performed, then using principles of work breakdown systems to split the task of designing an entire building into smaller tasks, which can then be recursively split further as required. Each task is then assigned a series of milestones that allow for the objective analysis of its automation progress. By combining these two approaches it is possible to create a data structure that describes how much various parts of the architectural design process are automated. The data gathered in the paper serves the dual purposes of providing the framework with validation, as well as giving insights into the current situation of automation within the architectural design process. The framework can be interrogated in many ways and preliminary analysis shows that almost 40% of the architectural design process has been automated in some practical fashion at the time of writing, with the rate at which progress is made slowly increasing over the years, with the majority of tasks in the design process reaching a new milestone in automation in less than 6 years. Additionally, a further 15% of the design process is currently being automated in some way, with various products in development but not yet released to the industry. Lastly, various limitations of the framework are examined in this paper as well as further areas of study.

Keywords: analysis, architecture, automation, design process, technology

Procedia PDF Downloads 104
2499 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 369
2498 Constrained RGBD SLAM with a Prior Knowledge of the Environment

Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome

Abstract:

In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.

Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model

Procedia PDF Downloads 414
2497 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models

Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara

Abstract:

In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.

Keywords: general metric, unsupervised learning, classification, intersection over union

Procedia PDF Downloads 47
2496 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network

Authors: Boukari Nassim

Abstract:

This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.

Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network

Procedia PDF Downloads 346
2495 Photoplethysmography-Based Device Designing for Cardiovascular System Diagnostics

Authors: S. Botman, D. Borchevkin, V. Petrov, E. Bogdanov, M. Patrushev, N. Shusharina

Abstract:

In this paper, we report the development of the device for diagnostics of cardiovascular system state and associated automated workstation for large-scale medical measurement data collection and analysis. It was shown that optimal design for the monitoring device is wristband as it represents engineering trade-off between accuracy and usability. The monitoring device is based on the infrared reflective photoplethysmographic sensor, which allows collecting multiple physiological parameters, such as heart rate and pulsing wave characteristics. Developed device use BLE interface for medical and supplementary data transmission to the coupled mobile phone, which process it and send it to the doctor's automated workstation. Results of this experimental model approbation confirmed the applicability of the proposed approach.

Keywords: cardiovascular diseases, health monitoring systems, photoplethysmography, pulse wave, remote diagnostics

Procedia PDF Downloads 492
2494 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing

Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari

Abstract:

A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.

Keywords: bacteria chromosome, bacterial identification, sequence, primer generation

Procedia PDF Downloads 193
2493 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: factorization machines, feature engineering, negative ratings, recommendation systems

Procedia PDF Downloads 242
2492 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates

Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc

Abstract:

Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.

Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS

Procedia PDF Downloads 357
2491 Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper

Authors: Sh. Foroughi, V. Karamzadeh, M. Packirisamy

Abstract:

This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible.

Keywords: electro thermal actuator, MEMS, microgripper, MOEMS

Procedia PDF Downloads 165
2490 Parametric Template-Based 3D Reconstruction of the Human Body

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo, Linhang Zhu

Abstract:

This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction.

Keywords: parametric human body templates, reconstruction of the human body, multi-view, joint

Procedia PDF Downloads 79
2489 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 421
2488 Forecasting Amman Stock Market Data Using a Hybrid Method

Authors: Ahmad Awajan, Sadam Al Wadi

Abstract:

In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.

Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series

Procedia PDF Downloads 129
2487 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory

Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov

Abstract:

The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.

Keywords: analytical regularization method, electromagnetic theory evolutionary equations of time-domain, TM Field

Procedia PDF Downloads 500
2486 Supervised Learning for Cyber Threat Intelligence

Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk

Abstract:

The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.

Keywords: threat information sharing, supervised learning, data classification, performance evaluation

Procedia PDF Downloads 148
2485 A Modified QuEChERS Method Using Activated Carbon Fibers as r-DSPE Sorbent for Sample Cleanup: Application to Pesticides Residues Analysis in Food Commodities Using GC-MS/MS

Authors: Anshuman Srivastava, Shiv Singh, Sheelendra Pratap Singh

Abstract:

A simple, sensitive and effective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for simultaneous analysis of multi pesticide residues (organophosphate, organochlorines, synthetic pyrethroids and herbicides) in food commodities using phenolic resin based activated carbon fibers (ACFs) as reversed-dispersive solid phase extraction (r-DSPE) sorbent in modified QuEChERS (Quick Easy Cheap Effective Rugged Safe) method. The acetonitrile-based QuEChERS technique was used for the extraction of the analytes from food matrices followed by sample cleanup with ACFs instead of traditionally used primary secondary amine (PSA). Different physico-chemical characterization techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and Brunauer-Emmet-Teller surface area analysis were employed to investigate the engineering and structural properties of ACFs. The recovery of pesticides and herbicides was tested at concentration levels of 0.02 and 0.2 mg/kg in different commodities such as cauliflower, cucumber, banana, apple, wheat and black gram. The recoveries of all twenty-six pesticides and herbicides were found in acceptable limit (70-120%) according to SANCO guideline with relative standard deviation value < 15%. The limit of detection and limit of quantification of the method was in the range of 0.38-3.69 ng/mL and 1.26 -12.19 ng/mL, respectively. In traditional QuEChERS method, PSA used as r-DSPE sorbent plays a vital role in sample clean-up process and demonstrates good recoveries for multiclass pesticides. This study reports that ACFs are better in terms of removal of co-extractives in comparison of PSA without compromising the recoveries of multi pesticides from food matrices. Further, ACF replaces the need of charcoal in addition to the PSA from traditional QuEChERS method which is used to remove pigments. The developed method will be cost effective because the ACFs are significantly cheaper than the PSA. So the proposed modified QuEChERS method is more robust, effective and has better sample cleanup efficiency for multiclass multi pesticide residues analysis in different food matrices such as vegetables, grains and fruits.

Keywords: QuEChERS, activated carbon fibers, primary secondary amine, pesticides, sample preparation, carbon nanomaterials

Procedia PDF Downloads 271
2484 A Dislocation-Based Explanation to Quasi-Elastic Release in Shock Loaded Aluminum

Authors: Song L. Yao, Ji D. Yu, Xiao Y. Pei

Abstract:

An explanation is introduced to study the quasi-elastic release phenomenon in shock compressed aluminum. A dislocation-based model, taking into account of dislocation substructures and evolutions, is applied to simulate the elastic-plastic response of both single crystal and polycrystalline aluminum. Simulated results indicate that dislocation immobilization during dynamic deformation results in a smooth increase of yield stress, which leads to the quasi-elastic release. While the generation of dislocations caused by plastic release wave results in the appearance of transition point between the quasi-elastic release and the plastic release in the profile. The quantities of calculated shear strength and dislocation density are in accordance with experimental result, which demonstrates the accuracy of our simulations.

Keywords: dislocation density, quasi-elastic release, wave profile, shock wave

Procedia PDF Downloads 282
2483 Overview of Fiber Optic Gyroscopes as Ring Laser Gyros and Fiber Optic Gyros and the Comparison Between Them

Authors: M. Abdo, Mohamed Shalaby

Abstract:

A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros and fiber optic gyroscopes and ring laser gyroscopes and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and Brillion fiber optic gyroscopes.

Keywords: mechanical gyros, ring laser gyros, interferometric finer optic gyros, Resonator fiber optic gyros

Procedia PDF Downloads 80