Search results for: multi-layers decision engine
3067 Formation of the Investment Portfolio of Intangible Assets with a Wide Pairwise Comparison Matrix Application
Authors: Gulnara Galeeva
Abstract:
The Analytic Hierarchy Process is widely used in the economic and financial studies, including the formation of investment portfolios. In this study, a generalized method of obtaining a vector of priorities for the case with separate pairwise comparisons of the expert opinion being presented as a set of several equal evaluations on a ratio scale is examined. The author claims that this method allows solving an important and up-to-date problem of excluding vagueness and ambiguity of the expert opinion in the decision making theory. The study describes the authentic wide pairwise comparison matrix. Its application in the formation of the efficient investment portfolio of intangible assets of a small business enterprise with limited funding is considered. The proposed method has been successfully approbated on the practical example of a functioning dental clinic. The result of the study confirms that the wide pairwise comparison matrix can be used as a simple and reliable method for forming the enterprise investment policy. Moreover, a comparison between the method based on the wide pairwise comparison matrix and the classical analytic hierarchy process was conducted. The results of the comparative analysis confirm the correctness of the method based on the wide matrix. The application of a wide pairwise comparison matrix also allows to widely use the statistical methods of experimental data processing for obtaining the vector of priorities. A new method is available for simple users. Its application gives about the same accuracy result as that of the classical hierarchy process. Financial directors of small and medium business enterprises get an opportunity to solve the problem of companies’ investments without resorting to services of analytical agencies specializing in such studies.Keywords: analytic hierarchy process, decision processes, investment portfolio, intangible assets
Procedia PDF Downloads 2653066 A Study of Traditional Mode in the Framework of Sustainable Urban Transportation
Authors: Juanita, B. Kombaitan, Iwan Pratoyo Kusumantoro
Abstract:
The traditional mode is a non-motorized vehicle powered by human or animal power. The objective of the study was to define the strategy of using traditional modes by the framework of sustainable urban transport in support of urban tourism activities. The study of the traditional mode does not include a modified mode using the engine power as motor tricycles are often called ‘bentor ‘in Indonesia. The use of non-motorized traditional mode in Indonesia has begun to shift, and its use began to be eliminated by the change of propulsion using the machine. In an effort to push back the use of traditional mode one of them with tourism activities. Strategies for the use of traditional modes within the framework of sustainable urban transport are seen from three dimensions: social, economic and environmental. The social dimension related to accessibility and livability, an economic dimension related to traditional modes can promote products and tourist attractions, while the environmental dimension related to the needs of the users/groups with respect to safety, comfort. The traditional mode is rarely noticed by the policy makers, and public opinion in its use needs attention. The involvement of policy-making between stakeholders and the community is needed in the development of sustainable traditional mode strategies in support of urban tourism activities.Keywords: traditional mode, sustainable, urban, transportation
Procedia PDF Downloads 2653065 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems
Abstract:
Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.Keywords: artificial life, industrial control system (ICS), IDS, prey predator (PP), SCADA, SDC
Procedia PDF Downloads 3013064 From Creativity to Innovation: Tracking Rejected Ideas
Authors: Lisete Barlach, Guilherme Ary Plonski
Abstract:
Innovative ideas are not always synonymous with business opportunities. Any idea can be creative and not recognized as a potential project in which money and time will be invested, among other resources. Even in firms that promote and enhance innovation, there are two 'check-points', the first corresponding to the acknowledgment of the idea as creative and the second, its consideration as a business opportunity. Both the recognition of new business opportunities or new ideas involve cognitive and psychological frameworks which provide individuals with a basis for noticing connections between seemingly independent events or trends as if they were 'connecting the dots'. It also involves prototypes-representing the most typical member of a certain category–functioning as 'templates' for this recognition. There is a general assumption that these kinds of evaluation processes develop through experience, explaining why expertise plays a central role in this process: the more experienced a professional, the easier for him (her) to identify new opportunities in business. But, paradoxically, an increase in expertise can lead to the inflexibility of thought due to automation of procedures. And, besides this, other cognitive biases can also be present, because new ideas or business opportunities generally depend on heuristics, rather than on established algorithms. The paper presents a literature review about the Einstellung effect by tracking famous cases of rejected ideas, extracted from historical records. It also presents the results of empirical research, with data upon rejected ideas gathered from two different environments: projects rejected during first semester of 2017 at a large incubator center in Sao Paulo and ideas proposed by employees that were rejected by a well-known business company, at its Brazilian headquarter. There is an implicit assumption that Einstellung effect tends to be more and more present in contemporaneity, due to time pressure upon decision-making and idea generation process. The analysis discusses desirability, viability, and feasibility as elements that affect decision-making.Keywords: cognitive biases, Einstellung effect, recognition of business opportunities, rejected ideas
Procedia PDF Downloads 2043063 Modeling of Carbon Monoxide Distribution under the Sky-Train Stations
Authors: Suranath Chomcheon, Nathnarong Khajohnsaksumeth, Benchawan Wiwatanapataphee
Abstract:
Carbon monoxide is one of the harmful gases which have colorless, odorless, and tasteless. Too much carbon monoxide taken into the human body causes the reduction of oxygen transportation within human body cells leading to many symptoms including headache, nausea, vomiting, loss of consciousness, and death. Carbon monoxide is considered as one of the air pollution indicators. It is mainly released as soot from the exhaust pipe of the incomplete combustion of the vehicle engine. Nowadays, the increase in vehicle usage and the slowly moving of the vehicle struck by the traffic jam has created a large amount of carbon monoxide, which accumulated in the street canyon area. In this research, we study the effect of parameters such as wind speed and aspect ratio of the height building affecting the ventilation. We consider the model of the pollutant under the Bangkok Transit System (BTS) stations in a two-dimensional geometrical domain. The convention-diffusion equation and Reynolds-averaged Navier-stokes equation is used to describe the concentration and the turbulent flow of carbon monoxide. The finite element method is applied to obtain the numerical result. The result shows that our model can describe the dispersion patterns of carbon monoxide for different wind speeds.Keywords: air pollution, carbon monoxide, finite element, street canyon
Procedia PDF Downloads 1263062 Analysis of Farm Management Skills in Broiler Poultry Producers in Botswana
Authors: Som Pal Baliyan
Abstract:
The purpose of this quantitative study was to analyze farm management skills in broiler poultryproducers in Botswana. The study adopted a descriptive and correlation research design. The population of the study was the poultry farm operators who had been in broiler poultry farming at least for two years. Based on the information from literature, a questionnaire was constructed for data collection on seven areas of farm management skills namely; planning skills, accounting and financial management skills, production management skills, product procurement and marketing skills, decision making skills, risk management skills, and specific technical skills. The validity and reliability of the questionnaire were accomplished by a panel of experts and by calculating the Cronbach’s alpha coefficient, respectively. Data were collected through a survey of 60 randomly sampled poultry farm operators in Botswana. Data were analyzed through descriptive statistical tools whereby the level of farm management skills were determined by calculating means and standard deviations of the management skills among the broiler producers. The level of farm management skills in broilers producers was discussed. All the seven farm management skills were ranked based on their calculated means. The specific technical skills and risk management skills were the highest and the lowest ranked farm management skills, respectively.Findings revealed that the broiler producers had skills above the average level only in specific technical skills whereas the skill levels in the remaining six farm management skills under study were found below the average level. This prevailing low level of farm management skills can be justified asthe cause of failure or poor performance of the broiler poultry farms in Botswana. Therefore, in order to improve the efficiency and productivityin broiler production in the country, it was recommended that the broiler poultry producers should be adequately trained in areas of planning skills, financial management skills, production management skills, product procurement and marketing skills, decision making skills and risk management skills.Keywords: poultry production, broiler production, management skills, levels of skills
Procedia PDF Downloads 4003061 Parameters Influencing Human Machine Interaction in Hospitals
Authors: Hind Bouami
Abstract:
Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making
Procedia PDF Downloads 1813060 Aerodynamic Study of Formula 1 Car in Upsight Down Configuration
Authors: Hrishit Mitra, Saptarshi Mandal
Abstract:
The study of aerodynamics for Formula 1 cars is very crucial in determining their performance. In the current F1 industry, when each engine manufacturer exhibits a torque and peak speed that differ by less than 5%, the emphasis on maximizing performance is dependent heavily on the utilization of aerodynamics. This work examines the aerodynamic characteristics of an F1 car by utilizing computational fluid dynamics in order to substantiate the hypothesis that an F1 car can go upside down in a tunnel without any external assistance, only due to the downforce it produces. In addition to this, this study also suggests the implementation of a 'flexi-wing' front in F1 cars to optimize downforce and reduce drag. Furthermore, this paper provides a concise overview of the historical development of aerodynamics in F1, with a specific emphasis on the progression of aerodynamics and the impact of downforce on the dynamics of vehicles. Next, an examination of wings has been provided, comparing the performance of the suggested wing at high speeds and low speeds. Three simulations have been conducted: one to test the complete aerodynamics and validate the hypothesis discussed above, and two specifically focused on the flexi wing, one at high speed and one at low speed. The collected results have been examined to analyze the performance of the front flexi wing. Performance analysis was conducted from the measurement of downforce and drag coefficient, as well as the pressure and velocity distributions.Keywords: high speed flexi wing, low speed flexi wing, F1 car aerodynamics, F1 car drag reduction
Procedia PDF Downloads 123059 Destination Decision Model for Cruising Taxis Based on Embedding Model
Authors: Kazuki Kamada, Haruka Yamashita
Abstract:
In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.Keywords: taxi industry, decision making, recommendation system, embedding model
Procedia PDF Downloads 1383058 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 1253057 Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles
Authors: O. S. Pradeep, S. Vigneshwaran, K. Praveen Kumar, K. Jeyendran, V. R. Sanal Kumar
Abstract:
The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0o, 30o, 45o, and 60o. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket.Keywords: combustion chamber, injector, liquid rocket, rocket engine wall heat flux
Procedia PDF Downloads 4873056 The Development of an Agent-Based Model to Support a Science-Based Evacuation and Shelter-in-Place Planning Process within the United States
Authors: Kyle Burke Pfeiffer, Carmella Burdi, Karen Marsh
Abstract:
The evacuation and shelter-in-place planning process employed by most jurisdictions within the United States is not informed by a scientifically-derived framework that is inclusive of the behavioral and policy-related indicators of public compliance with evacuation orders. While a significant body of work exists to define these indicators, the research findings have not been well-integrated nor translated into useable planning factors for public safety officials. Additionally, refinement of the planning factors alone is insufficient to support science-based evacuation planning as the behavioral elements of evacuees—even with consideration of policy-related indicators—must be examined in the context of specific regional transportation and shelter networks. To address this problem, the Federal Emergency Management Agency and Argonne National Laboratory developed an agent-based model to support regional analysis of zone-based evacuation in southeastern Georgia. In particular, this model allows public safety officials to analyze the consequences that a range of hazards may have upon a community, assess evacuation and shelter-in-place decisions in the context of specified evacuation and response plans, and predict outcomes based on community compliance with orders and the capacity of the regional (to include extra-jurisdictional) transportation and shelter networks. The intention is to use this model to aid evacuation planning and decision-making. Applications for the model include developing a science-driven risk communication strategy and, ultimately, in the case of evacuation, the shortest possible travel distance and clearance times for evacuees within the regional boundary conditions.Keywords: agent-based modeling for evacuation, decision-support for evacuation planning, evacuation planning, human behavior in evacuation
Procedia PDF Downloads 2323055 Challenges of Implementing Participatory Irrigation Management for Food Security in Semi Arid Areas of Tanzania
Authors: Pilly Joseph Kagosi
Abstract:
The study aims at assessing challenges observed during the implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation, and literature review. Data collected from the questionnaire was analysed using SPSS while PRA data was analysed with the help of local communities during PRA exercise. Data from other methods were analysed using content analysis. The study revealed that PIM approach has a contribution in improved food security at household level due to the involvement of communities in water management activities and decision making which enhanced the availability of water for irrigation and increased crop production. However, there were challenges observed during the implementation of the approach including; minimum participation of beneficiaries in decision-making during planning and designing stages, meaning inadequate devolution of power among scheme owners. Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However, it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.Keywords: challenges, participatory approach, irrigation management, food security, semi arid areas
Procedia PDF Downloads 3243054 Maori Primary Industries Responses to Climate Change and Freshwater Policy Reforms in Aotearoa New Zealand
Authors: Tanira Kingi, Oscar Montes Oca, Reina Tamepo
Abstract:
The introduction of the Climate Change Response (Zero Carbon) Amendment Act (2019) and the National Policy Statement for Freshwater Management (2020) both contain underpinning statements that refer to the principles of the Treaty of Waitangi and cultural concepts of stewardship and environmental protection. Maori interests in New Zealand’s agricultural, forestry, fishing and horticultural sectors are significant. The organizations that manage these investments do so on behalf of extended family groups that hold inherited interests based on genealogical connections (whakapapa) to particular tribal units (iwi and hapu) and areas of land (whenua) and freshwater bodies (wai). This paper draws on the findings of current research programmes funded by the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) and the Our Land & Water National Science Challenge (OLW NSC) to understand the impact of cultural knowledge and imperatives on agricultural GHG and freshwater mitigation and land-use change decisions. In particular, the research outlines mitigation and land-use change scenario decision support frameworks that model changes in emissions profiles (reductions in biogenic methane, nitrous oxide and nutrient emissions to freshwater) of agricultural and forestry production systems along with impacts on key economic indicators and socio-cultural factors. The paper also assesses the effectiveness of newly introduced partnership arrangements between Maori groups/organizations and key government agencies on policy co-design and implementation, and in particular, decisions to adopt mitigation practices and to diversify land use.Keywords: co-design and implementation of environmental policy, indigenous environmental knowledge, Māori land tenure and agribusiness, mitigation and land use change decision support frameworks
Procedia PDF Downloads 2153053 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning
Procedia PDF Downloads 2973052 Corpus-Based Analysis on the Translatability of Conceptual Vagueness in Traditional Chinese Medicine Classics Huang Di Nei Jing
Authors: Yan Yue
Abstract:
Huang Di Nei Jing (HDNJ) is one of the significant traditional Chinese medicine (TCM) classics which lays the foundation of TCM theory and practice. It is an important work for the world to study the ancient civilizations and medical history of China. Language in HDNJ is highly concise and vague, and notably challenging to translate. This paper investigates the translatability of one particular vagueness in HDNJ: the conceptual vagueness which carries the Chinese philosophical and cultural connotations. The corpora tool Sketch Engine is used to provide potential online contexts and word behaviors. Selected two English translations of HDNJ by TCM practitioner and non-practitioner are used to examine frequency and distribution of linguistic features of the translation. It was found the hypothesis about the universals of translated language (explicitation, normalisation) is true in one translation, but it is on the sacrifice of some original contextual connotations. Transliteration is purposefully used in the second translation to retain the original flavor, which is argued as a violation of the principle of relevance in communication because it yields little contextual effects and demands more processing effort of the reader. The translatability of conceptual vagueness in HDNJ is constrained by source language context and the reader’s cognitive environment.Keywords: corpus-based translation, translatability, TCM classics, vague language
Procedia PDF Downloads 3773051 The Role of Metaphor in Communication
Authors: Fleura Shkëmbi, Valbona Treska
Abstract:
In elementary school, we discover that a metaphor is a decorative linguistic device just for poets. But now that we know, it's also a crucial tactic that individuals employ to understand the universe, from fundamental ideas like time and causation to the most pressing societal challenges today. Metaphor is the use of language to refer to something other than what it was originally intended for or what it "literally" means in order to suggest a similarity or establish a connection between the two. People do not identify metaphors as relevant in their decisions, according to a study on metaphor and its effect on decision-making; instead, they refer to more "substantive" (typically numerical) facts as the basis for their problem-solving decision. Every day, metaphors saturate our lives via language, cognition, and action. They argue that our conceptions shape our views and interactions with others and that concepts define our reality. Metaphor is thus a highly helpful tool for both describing our experiences to others and forming notions for ourselves. In therapeutic contexts, their shared goal appears to be twofold. The cognitivist approach to metaphor regards it as one of the fundamental foundations of human communication. The benefits and disadvantages of utilizing the metaphor differ depending on the target domain that the metaphor portrays. The challenge of creating messages and surroundings that affect customers' notions of abstract ideas in a variety of industries, including health, hospitality, romance, and money, has been studied for decades in marketing and consumer psychology. The aim of this study is to examine, through a systematic literature review, the role of the metaphor in communication and in advertising. This study offers a selected analysis of this literature, concentrating on research on customer attitudes and product appraisal. The analysis of the data identifies potential research questions. With theoretical and applied implications for marketing, design, and persuasion, this study sheds light on how, when, and for whom metaphoric communications are powerful.Keywords: metaphor, communication, advertising, cognition, action
Procedia PDF Downloads 983050 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario
Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos
Abstract:
Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method
Procedia PDF Downloads 813049 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 3093048 Multiple Version of Roman Domination in Graphs
Authors: J. C. Valenzuela-Tripodoro, P. Álvarez-Ruíz, M. A. Mateos-Camacho, M. Cera
Abstract:
In 2004, it was introduced the concept of Roman domination in graphs. This concept was initially inspired and related to the defensive strategy of the Roman Empire. An undefended place is a city so that no legions are established on it, whereas a strong place is a city in which two legions are deployed. This situation may be modeled by labeling the vertices of a finite simple graph with labels {0, 1, 2}, satisfying the condition that any 0-vertex must be adjacent to, at least, a 2-vertex. Roman domination in graphs is a variant of classic domination. Clearly, the main aim is to obtain such labeling of the vertices of the graph with minimum cost, that is to say, having minimum weight (sum of all vertex labels). Formally, a function f: V (G) → {0, 1, 2} is a Roman dominating function (RDF) in the graph G = (V, E) if f(u) = 0 implies that f(v) = 2 for, at least, a vertex v which is adjacent to u. The weight of an RDF is the positive integer w(f)= ∑_(v∈V)▒〖f(v)〗. The Roman domination number, γ_R (G), is the minimum weight among all the Roman dominating functions? Obviously, the set of vertices with a positive label under an RDF f is a dominating set in the graph, and hence γ(G)≤γ_R (G). In this work, we start the study of a generalization of RDF in which we consider that any undefended place should be defended from a sudden attack by, at least, k legions. These legions can be deployed in the city or in any of its neighbours. A function f: V → {0, 1, . . . , k + 1} such that f(N[u]) ≥ k + |AN(u)| for all vertex u with f(u) < k, where AN(u) represents the set of active neighbours (i.e., with a positive label) of vertex u, is called a [k]-multiple Roman dominating functions and it is denoted by [k]-MRDF. The minimum weight of a [k]-MRDF in the graph G is the [k]-multiple Roman domination number ([k]-MRDN) of G, denoted by γ_[kR] (G). First, we prove that the [k]-multiple Roman domination decision problem is NP-complete even when restricted to bipartite and chordal graphs. A problem that had been resolved for other variants and wanted to be generalized. We know the difficulty of calculating the exact value of the [k]-MRD number, even for families of particular graphs. Here, we present several upper and lower bounds for the [k]-MRD number that permits us to estimate it with as much precision as possible. Finally, some graphs with the exact value of this parameter are characterized.Keywords: multiple roman domination function, decision problem np-complete, bounds, exact values
Procedia PDF Downloads 1083047 Augmented Reality Using Cuboid Tracking as a Support for Early Stages of Architectural Design
Authors: Larissa Negris de Souza, Ana Regina Mizrahy Cuperschmid, Daniel de Carvalho Moreira
Abstract:
Augmented Reality (AR) alters the elaboration of the architectural project, which relates to project cognition: representation, visualization, and perception of information. Understanding these features from the earliest stages of the design can facilitate the study of relationships, zoning, and overall dimensions of the forms. This paper’s goal was to explore a new approach for information visualization during the early stages of architectural design using Augmented Reality (AR). A three-dimensional marker inspired by the Rubik’s Cube was developed, and its performance, evaluated. This investigation interwovens the acquired knowledge of traditional briefing methods and contemporary technology. We considered the concept of patterns (Alexander et al. 1977) to outline geometric forms and associations using visual programming. The Design Science Research was applied to develop the study. An SDK was used in a game engine to generate the AR app. The tool's functionality was assessed by verifying the readability and precision of the reconfigurable 3D marker. The results indicated an inconsistent response. To use AR in the early stages of architectural design the system must provide consistent information and appropriate feedback. Nevertheless, we conclude that our framework sets the ground for looking deep into AR tools for briefing design.Keywords: augmented reality, cuboid marker, early design stages, graphic representation, patterns
Procedia PDF Downloads 983046 Urban Growth and Its Impact on Natural Environment: A Geospatial Analysis of North Part of the UAE
Authors: Mohamed Bualhamam
Abstract:
Due to the complex nature of tourism resources of the Northern part of the United Arab Emirates (UAE), the potential of Geographical Information Systems (GIS) and Remote Sensing (RS) in resolving these issues was used. The study was an attempt to use existing GIS data layers to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth and give some specific recommendations to protect the area. By identifying sensitive natural environment and archaeological heritage resources, public agencies and citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas. The paper concludes that applications of GIS and RS in study of urban growth impact in tourism resources are a strong and effective tool that can aid in tourism planning and decision-making. The study area is one of the fastest growing regions in the country. The increase in population along the region, as well as rapid growth of towns, has increased the threat to natural resources and archeological sites. Satellite remote sensing data have been proven useful in assessing the natural resources and in monitoring the changes. The study used GIS and RS to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth. The result of GIS analyses shows that the Northern part of the UAE has variety for tourism resources, which can use for future tourism development. Rapid urban development in the form of small towns and different economic activities are showing in different places in the study area. The urban development extended out of old towns and have negative affected of sensitive tourism resources in some areas. Tourism resources for the Northern part of the UAE is a highly complex resources, and thus requires tools that aid in effective decision making to come to terms with the competing economic, social, and environmental demands of sustainable development. The UAE government should prepare a tourism databases and a GIS system, so that planners can be accessed for archaeological heritage information as part of development planning processes. Applications of GIS in urban planning, tourism and recreation planning illustrate that GIS is a strong and effective tool that can aid in tourism planning and decision- making. The power of GIS lies not only in the ability to visualize spatial relationships, but also beyond the space to a holistic view of the world with its many interconnected components and complex relationships. The worst of the damage could have been avoided by recognizing suitable limits and adhering to some simple environmental guidelines and standards will successfully develop tourism in sustainable manner. By identifying sensitive natural environment and archaeological heritage resources of the Northern part of the UAE, public agencies and private citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas.Keywords: GIS, natural environment, UAE, urban growth
Procedia PDF Downloads 2613045 Improving Research by the Integration of a Collaborative Dimension in an Information Retrieval (IR) System
Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick
Abstract:
In computer science, the purpose of finding useful information is still one of the most active and important research topics. The most popular application of information retrieval (IR) are Search Engines, they meet users' specific needs and aim to locate the effective information in the web. However, these search engines have some limitations related to the relevancy of the results and the ease to explore those results. In this context, we proposed in previous works a Multi-Space Search Engine model that is based on a multidimensional interpretation universe. In the present paper, we integrate an additional dimension that allows to offer users new research experiences. The added component is based on creating user profiles and calculating the similarity between them that then allow the use of collaborative filtering in retrieving search results. To evaluate the effectiveness of the proposed model, a prototype is developed. The experiments showed that the additional dimension has improved the relevancy of results by predicting the interesting items of users based on their experiences and the experiences of other similar users. The offered personalization service allows users to approve the pertinent items, which allows to enrich their profiles and further improve research.Keywords: information retrieval, v-facets, user behavior analysis, user profiles, topical ontology, association rules, data personalization
Procedia PDF Downloads 2623044 Agent-Based Modelling to Improve Dairy-origin Beef Production: Model Description and Evaluation
Authors: Addisu H. Addis, Hugh T. Blair, Paul R. Kenyon, Stephen T. Morris, Nicola M. Schreurs, Dorian J. Garrick
Abstract:
Agent-based modeling (ABM) enables an in silico representation of complex systems and cap-tures agent behavior resulting from interaction with other agents and their environment. This study developed an ABM to represent a pasture-based beef cattle finishing systems in New Zea-land (NZ) using attributes of the rearer, finisher, and processor, as well as specific attributes of dairy-origin beef cattle. The model was parameterized using values representing 1% of NZ dairy-origin cattle, and 10% of rearers and finishers in NZ. The cattle agent consisted of 32% Holstein-Friesian, 50% Holstein-Friesian–Jersey crossbred, and 8% Jersey, with the remainder being other breeds. Rearers and finishers repetitively and simultaneously interacted to determine the type and number of cattle populating the finishing system. Rearers brought in four-day-old spring-born calves and reared them until 60 calves (representing a full truck load) on average had a live weight of 100 kg before selling them on to finishers. Finishers mainly attained weaners from rearers, or directly from dairy farmers when weaner demand was higher than the supply from rearers. Fast-growing cattle were sent for slaughter before the second winter, and the re-mainder were sent before their third winter. The model finished a higher number of bulls than heifers and steers, although it was 4% lower than the industry reported value. Holstein-Friesian and Holstein-Friesian–Jersey-crossbred cattle dominated the dairy-origin beef finishing system. Jersey cattle account for less than 5% of total processed beef cattle. Further studies to include re-tailer and consumer perspectives and other decision alternatives for finishing farms would im-prove the applicability of the model for decision-making processes.Keywords: agent-based modelling, dairy cattle, beef finishing, rearers, finishers
Procedia PDF Downloads 993043 From Pink to Ink: Understanding the Decision-Making Process of Post-mastectomy Women Who Have Covered Their Scars with Decorative Tattoos
Authors: Fernanda Rodriguez
Abstract:
Breast cancer is pervasive among women, and an increasing number of women are opting for a mastectomy: a medical operation in which one or both breasts are removed with the intention of treating or averting breast cancer. However, there is an emerging population of cancer survivors in European nations that, rather than attempting to reconstruct their breasts to resemble as much as possible ‘normal’ breasts, have turned to dress their scars with decorative tattoos. At a practical level, this study hopes to improve the support systems of these women by possibly providing professionals in the medical field, tattoo artists, and family members of cancer survivors with a deeper understanding of their motivations and decision-making processes for choosing an alternative restorative route - such as decorative tattoos - after their mastectomy. At an intellectual level, however, this study aims to narrow a gap in the academic field concerning the relationship between mastectomies and alternative methods of healing, such as decorative tattoos, as well as to broaden the understanding regarding meaning-making and the ‘normal’ feminine body. Thus, by means of semi-structured interviews and a phenomenological standpoint, this research set itself the goal to understand why do women who have undergone a mastectomy choose to dress their scars with decorative tattoos instead of attempting to regain ‘normalcy’ through breast reconstruction or 3D areola tattoos? The results obtained from the interviews with fifteen women showed that the disillusionment with one part of the other of breast restoration techniques had led these women to find an alternative form of healing that allows them not only to close a painful chapter of their life but also to regain control over their bodies after a period of time in which agency was taking away from them. Decorative post-mastectomy tattoos allow these women to grant their bodies with new meanings and produce their own interpretation of their feminine body and identity.Keywords: alternative femininity, decorative mastectomy tattoos, gender embodiment, social stigmatization
Procedia PDF Downloads 1203042 Application of Environmental Justice Concept in Urban Planning, The Peri-Urban Environment of Tehran as the Case Study
Authors: Zahra Khodaee
Abstract:
Environmental Justice (EJ) concept consists of multifaceted movements, community struggles, and discourses in contemporary societies that seek to reduce environmental risks, increase environmental protections, and generally reduce environmental inequalities suffered by minority and poor communities; a term that incorporates ‘environmental racism’ and ‘environmental classism,’ captures the idea that different racial and socioeconomic groups experience differential access to environmental quality. This article explores environmental justice as an urban phenomenon in urban planning and applies it in peri-urban environment of a metropolis. Tehran peri-urban environments which are the result of meeting the city- village- nature systems or «city-village junction» have gradually faced effects such as accelerated environmental decline, changes without land-use plan, and severe service deficiencies. These problems are instances of environmental injustice which make the planners to adjust the problems and use and apply the appropriate strategies and policies by looking for solutions and resorting to theories, techniques and methods related to environmental justice. In order to access to this goal, try to define environmental justice through justice and determining environmental justice indices to analysis environmental injustice in case study. Then, make an effort to introduce some criteria to select case study in two micro and micro levels. Qiyamdasht town as the peri-urban environment of Tehran metropolis is chosen and examined to show the existence of environmental injustice by questionnaire analysis and SPSS software. Finally, use AIDA technique to design a strategic plan and reduce environmental injustice in case study by introducing the better scenario to be used in policy and decision making areas.Keywords: environmental justice, metropolis of Tehran, Qiyam, Dasht peri, urban settlement, analysis of interconnected decision area (AIDA)
Procedia PDF Downloads 4903041 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2083040 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 733039 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 1423038 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 17