Search results for: machine learning tools and techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16903

Search results for: machine learning tools and techniques

15223 Creating Inclusive Information Services: Librarians’ Design-Thinking Approach to Helping Students Succeed in the Digital Age

Authors: Yi Ding

Abstract:

With the rapid development of educational technologies, higher education institutions are facing the challenge of creating an inclusive learning environment for students from diverse backgrounds. Academic libraries, the hubs of research, instruction, and innovation at higher educational institutions, are facing the same challenge. While academic librarians worldwide have been working hard to provide services for emerging information technology such as information literacy education, online learning support, and scholarly communication advocacy, the problem of digital exclusion remains a difficult one at higher education institutions. Information services provided by academic libraries can result in the digital exclusion of students from diverse backgrounds, such as students with various digital readiness levels, students with disabilities, as well as English-as-a-Second-Language learners. This research study shows how academic librarians can design digital learning objects that are cognizant of differences in learner traits and student profiles through the lens of design thinking. By demonstrating how the design process of digital learning objects can take into consideration users’ needs, experiences, and engagement with different technologies, this research study explains design principles of accessibility, connectivity, and scalability in creating inclusive digital learning objects as shown in various case studies. Equipped with the mindset and techniques to be mindful of diverse student learning traits and profiles when designing information services, academic libraries can improve the digital inclusion and ultimately student success at higher education institutions.

Keywords: academic librarians, digital inclusion, information services, digital learning objects, student success

Procedia PDF Downloads 216
15222 Artificial Intelligence in Ethiopian Universities: The Influence of Technological Readiness, Acceptance, Perceived Risk, and Trust on Implementation - An Integrative Research Approach

Authors: Merih Welay Welesilassie

Abstract:

Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.

Keywords: digital readiness support, AI acceptance, risk, trust

Procedia PDF Downloads 15
15221 Reactive Learning about Food Waste Reduction in a Food Processing Plant in Gauteng Province, South Africa

Authors: Nesengani Elelwani Clinton

Abstract:

This paper presents reflective learning as an opportunity commonly available and used for food waste learning in a food processing company in the transition to sustainable and just food systems. In addressing how employees learn about food waste during food processing, the opportunities available for food waste learning were investigated. Reflective learning appeared to be the most used approach to learning about food waste. In the case of food waste learning, reflective learning was a response after employees wasted a substantial amount of food, where process controllers and team leaders would highlight the issue to employees who wasted food and explain how food waste could be reduced. This showed that learning about food waste is not proactive, and there continues to be a lack of structured learning around food waste. Several challenges were highlighted around reflective learning about food waste. Some of the challenges included understanding the language, lack of interest from employees, set times to reach production targets, and working pressures. These challenges were reported to be hindering factors in understanding food waste learning, which is not structured. A need was identified for proactive learning through structured methods. This is because it was discovered that in the plant, where food processing activities happen, the signage and posters that are there are directly related to other sustainability issues such as food safety and health. This indicated that there are low levels of awareness about food waste. Therefore, this paper argues that food waste learning should be proactive. The proactive learning approach should include structured learning materials around food waste during food processing. In the structuring of the learning materials, individual trainers should be multilingual. This will make it possible for those who do not understand English to understand in their own language. And lastly, there should be signage and posters in the food processing plant around food waste. This will bring more awareness around food waste, and employees' behaviour can be influenced by the posters and signage in the food processing plant. Thus, will enable a transition to a just and sustainable food system.

Keywords: sustainable and just food systems, food waste, food waste learning, reflective learning approach

Procedia PDF Downloads 130
15220 Toward Green Islamic Finance: A Case Study from an Emirati Islamic Bank

Authors: Nada Hamed, Mariam Aldhaheri, Sonia Abdennadher

Abstract:

Islamic Finance is not a new term that emerging in the global market, but it is still under scope by many countries. Its characteristics and regulation are not widely clear and implemented. In 2015, The United Nation announced a plan about potential benefits of using Islamic Finance as a sustainable development approach. Enhancing its application in financial markets could protect from unexpected crisis that might be created from the traditional tools of finance. This paper focuses on this area to test if Islamic finance could be used for maintaining sustainable development and if the term of 'Green Islamic Finance' could be implemented to minimize the deficiencies and 'pollution’ generated from traditional techniques and tools of finance. This paper intends to measure the impact on financial performance and sustainability when financial institutions use Islamic finance or better practice it. The objective of this explanatory research is to measure the performance of Islamic Finance with using a case study of an Islamic bank. The paper would analyze and compare the behavior of financial institutions that used traditional financing tools and converted to Islamic banking system. The methodology used is based on a case study of an Islamic bank in Dubai with comparing its performance before implementing Islamic Finance and after. The selected case study represents the first national bank in Emirates Arab Unis who adopt the Islamic finance approach. Based on a time series analysis, a quantitative analysis would be also used through looking at various set of ratios that are routinely used to measure bank performance.

Keywords: Islamic finance, financial stability, green finance, Islamic finance practices, financial ratios

Procedia PDF Downloads 226
15219 A Qualitative Student-Perspective Study of Student-Centered Learning Practices in the Context of Irish Teacher Education

Authors: Pauline Logue

Abstract:

In recent decades, the Irish Department of Education and Skills has pro-actively promoted student-center learning methodologies. Similarly, the National Forum for the Enhancement of Teaching and Learning has advocated such strategies, aligning them with student success. These developments have informed the author’s professional practice as a teacher educator. This qualitative student-perspective study focuses on a review of one pilot initiative in the academic year 2020-2021, namely, the implementation of universal design for learning strategies within teacher education, employing student-centered learning strategies. Findings included: that student-centered strategies enhanced student performance and success overall, with some minor evidence of student resistance. It was concluded that a dialogical review with student teachers on prior learning experiences (from intellectual and affective perspectives) and learning environments (physical, virtual, and emotional) could facilitate greater student ownership of learning. It is recommended to more formally structure such a dialogical review in a future delivery.

Keywords: professional practice, student-centered learning, teacher education, universal design for learning

Procedia PDF Downloads 195
15218 Open-Source YOLO CV For Detection of Dust on Solar PV Surface

Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden

Abstract:

Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.

Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing

Procedia PDF Downloads 32
15217 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 350
15216 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
15215 The Integration and Automation of EDA Tools in an Integrated Circuit Design Environment

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Rozaimah Baharim, M. Hanif M. Nasir

Abstract:

This paper will discuss how EDA tools are integrated and automated in an Integrated Circuit Design Environment. Some of the problems face in our current environment is that users need to configure manually on the library paths, start-up files and project directories. Certain manual processes that happen between the users and applications can be automated but they must be transparent to the users. For example, the users can run the applications directly after login without knowing the library paths and start-up files locations. The solution to these problems is to automate the processes using standard configuration files which will benefit the users and EDA support. This paper will discuss how the implementation is done to automate the process using scripting languages such as Perl, Tcl, Scheme and Shell Script. These scripting tools are great assets for design engineers to build a robust and powerful design flow and this technique is widely used to integrate all the tools together.

Keywords: EDA tools, Integrated Circuits, scripting, integration, automation

Procedia PDF Downloads 324
15214 A Case Study of Meaningful Learning in Play for Young Children

Authors: Baoliang Xu

Abstract:

The future of education should focus on creating meaningful learning for learners. Play is a basic form and an important means of carrying out kindergarten educational activities, which promotes the creation and development of meaningful learning and is of great importance in the harmonious physical and mental development of young children. Through literature research and case studies, this paper finds that: meaningful learning has the characteristics of contextuality, interaction and constructiveness; teachers should pay great attention to the guidance of children's games, fully respect children's autonomy and create a prepared game environment; children's meaningful learning exists in games and hidden in things that interest them, and "the generation of questions The "generation of questions" fuels the depth of children's meaningful learning, and teachers' professional support helps children's meaningful learning to develop continuously. In short, teachers' guidance of young children's play should be emphasized to effectively provide scaffolding instruction to promote meaningful learning in a holistic manner.

Keywords: meaningful learning, young childhood, game, case study

Procedia PDF Downloads 71
15213 Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton

Authors: Alison Power

Abstract:

Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.

Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork

Procedia PDF Downloads 126
15212 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 176
15211 Prototype Development of ARM-7 Based Embedded Controller for Packaging Machine

Authors: Jeelka Ray

Abstract:

Survey of the papers revealed that there is no practical design available for packaging machine based on Embedded system, so the need arose for the development of the prototype model. In this paper, author has worked on the development of an ARM7 based Embedded Controller for controlling the sequence of packaging machine. The unit is made user friendly with TFT and Touch Screen implementing human machine interface (HMI). The different system components are briefly discussed, followed by a description of the overall design. The major functions which involve bag forming, sealing temperature control, fault detection, alarm, animated view on the home screen when the machine is working as per different parameters set makes the machine performance more successful. LPC2478 ARM 7 Embedded Microcontroller controls the coordination of individual control function modules. In back gone days, these machines were manufactured with mechanical fittings. Later on, the electronic system replaced them. With the help of ongoing technologies, these mechanical systems were controlled electronically using Microprocessors. These became the backbone of the system which became a cause for the updating technologies in which the control was handed over to the Microcontrollers with Servo drives for accurate positioning of the material. This helped to maintain the quality of the products. Including all, RS 485 MODBUS Communication technology is used for synchronizing AC Drive & Servo Drive. These all concepts are operated either manually or through a Graphical User Interface. Automatic tuning of heaters, sealers and their temperature is controlled using Proportional, Integral and Derivation loops. In the upcoming latest technological world, the practical implementation of the above mentioned concepts is really important to be in the user friendly environment. Real time model is implemented and tested on the actual machine and received fruitful results.

Keywords: packaging machine, embedded system, ARM 7, micro controller, HMI, TFT, touch screen, PID

Procedia PDF Downloads 275
15210 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 229
15209 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis

Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie

Abstract:

Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.

Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis

Procedia PDF Downloads 83
15208 An Exploratory Study on the Integration of Neurodiverse University Students into Mainstream Learning and Their Performance: The Case of the Jones Learning Center

Authors: George Kassar, Phillip A. Cartwright

Abstract:

Based on data collected from The Jones Learning Center (JLC), University of the Ozarks, Arkansas, U.S., this study explores the impact of inclusive classroom practices on neuro-diverse college students’ and their consequent academic performance having participated in integrative therapies designed to support students who are intellectually capable of obtaining a college degree, but who require support for learning challenges owing to disabilities, AD/HD, or ASD. The purpose of this study is two-fold. The first objective is to explore the general process, special techniques, and practices of the (JLC) inclusive program. The second objective is to identify and analyze the effectiveness of the processes, techniques, and practices in supporting the academic performance of enrolled college students with learning disabilities following integration into mainstream university learning. Integrity, transparency, and confidentiality are vital in the research. All questions were shared in advance and confirmed by the concerned management at the JLC. While administering the questionnaire as well as conducted the interviews, the purpose of the study, its scope, aims, and objectives were clearly explained to all participants prior starting the questionnaire / interview. Confidentiality of all participants assured and guaranteed by using encrypted identification of individuals, thus limiting access to data to only the researcher, and storing data in a secure location. Respondents were also informed that their participation in this research is voluntary, and they may withdraw from it at any time prior to submission if they wish. Ethical consent was obtained from the participants before proceeding with videorecording of the interviews. This research uses a mixed methods approach. The research design involves collecting, analyzing, and “mixing” quantitative and qualitative methods and data to enable a research inquiry. The research process is organized based on a five-pillar approach. The first three pillars are focused on testing the first hypothesis (H1) directed toward determining the extent to the academic performance of JLC students did improve after involvement with comprehensive JLC special program. The other two pillars relate to the second hypothesis (H2), which is directed toward determining the extent to which collective and applied knowledge at JLC is distinctive from typical practices in the field. The data collected for research were obtained from three sources: 1) a set of secondary data in the form of Grade Point Average (GPA) received from the registrar, 2) a set of primary data collected throughout structured questionnaire administered to students and alumni at JLC, and 3) another set of primary data collected throughout interviews conducted with staff and educators at JLC. The significance of this study is two folds. First, it validates the effectiveness of the special program at JLC for college-level students who learn differently. Second, it identifies the distinctiveness of the mix of techniques, methods, and practices, including the special individualized and personalized one-on-one approach at JLC.

Keywords: education, neuro-diverse students, program effectiveness, Jones learning center

Procedia PDF Downloads 74
15207 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515
15206 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Authors: Debjit Ray

Abstract:

Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.

Keywords: genomics, pathogens, genome assembly, superbugs

Procedia PDF Downloads 197
15205 Condition Based Assessment of Power Transformer with Modern Techniques

Authors: Piush Verma, Y. R. Sood

Abstract:

This paper provides the information on the diagnostics techniques for condition monitoring of power transformer (PT). This paper deals with the practical importance of the transformer diagnostic in the Electrical Engineering field. The life of the transformer depends upon its insulation i.e paper and oil. The major testing techniques applies on transformer oil and paper i.e dissolved gas analysis, furfural analysis, radio interface, acoustic emission, infra-red emission, frequency response analysis, power factor, polarization spectrum, magnetizing currents, turn and winding ratio. A review has been made on the modern development of this practical technology.

Keywords: temperature, condition monitoring, diagnostics methods, paper analysis techniques, oil analysis techniques

Procedia PDF Downloads 433
15204 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences

Procedia PDF Downloads 402
15203 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 85
15202 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 337
15201 Integrating Distributed Architectures in Highly Modular Reinforcement Learning Libraries

Authors: Albert Bou, Sebastian Dittert, Gianni de Fabritiis

Abstract:

Advancing reinforcement learning (RL) requires tools that are flexible enough to easily prototype new methods while avoiding impractically slow experimental turnaround times. To match the first requirement, the most popular RL libraries advocate for highly modular agent composability, which facilitates experimentation and development. To solve challenging environments within reasonable time frames, scaling RL to large sampling and computing resources has proved a successful strategy. However, this capability has been so far difficult to combine with modularity. In this work, we explore design choices to allow agent composability both at a local and distributed level of execution. We propose a versatile approach that allows the definition of RL agents at different scales through independent, reusable components. We demonstrate experimentally that our design choices allow us to reproduce classical benchmarks, explore multiple distributed architectures, and solve novel and complex environments while giving full control to the user in the agent definition and training scheme definition. We believe this work can provide useful insights to the next generation of RL libraries.

Keywords: deep reinforcement learning, Python, PyTorch, distributed training, modularity, library

Procedia PDF Downloads 83
15200 Multidisciplinary Approach to Mio-Plio-Quaternary Aquifer Study in the Zarzis Region (Southeastern Tunisia)

Authors: Ghada Ben Brahim, Aicha El Rabia, Mohamed Hedi Inoubli

Abstract:

Climate change has exacerbated disparities in the distribution of water resources in Tunisia, resulting in significant degradation in quantity and quality over the past five decades. The Mio-Plio-Quaternary aquifer, the primary water source in the Zarzis region, is subject to climatic, geographical, and geological challenges, as well as human stress. The region is experiencing uneven distribution and growing threats from groundwater salinity and saltwater intrusion. Addressing this challenge is critical for the arid region’s socioeconomic development, and effective water resource management is required to combat climate change and reduce water deficits. This study uses a multidisciplinary approach to determine the groundwater potential of this aquifer, involving geophysics and hydrogeology data analysis. We used advanced techniques such as 3D Euler deconvolution and power spectrum analysis to generate detailed anomaly maps and estimate the depths of density sources, identifying significant Bouguer anomalies trending E-W, NW-SE, and NE-SW. Various techniques, such as wavelength filtering, upward continuation, and horizontal and vertical derivatives, were used to improve the gravity data, resulting in consistent results for anomaly shapes and amplitudes. The Euler deconvolution method revealed two prominent surface faults, trending NE-SW and NW-SE, that have a significant impact on the distribution of sedimentary facies and water quality within the Mio-Plio-Quaternary aquifer. Additionally, depth maxima greater than 1400 m to the North indicate the presence of a Cretaceous paleo-fault. Geoelectrical models and resistivity pseudo-sections were used to interpret the distribution of electrical facies in the Mio-Plio-Quaternary aquifer, highlighting lateral variation and depositional environment type. AI optimises the analysis and interpretation of exploration data, which is important to long-term management and water security. Machine learning algorithms and deep learning models analyse large datasets to provide precise interpretations of subsurface conditions, such as aquifer salinisation. However, AI has limitations, such as the requirement for large datasets, the risk of overfitting, and integration issues with traditional geological methods.

Keywords: mio-plio-quaternary aquifer, Southeastern Tunisia, geophysical methods, hydrogeological analysis, artificial intelligence

Procedia PDF Downloads 14
15199 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method

Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter

Abstract:

This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.

Keywords: aging, eye tracking, implicit learning, visual statistical learning

Procedia PDF Downloads 77
15198 The Link Between Knowledge Management, Organizational Learning and Collective Competence

Authors: Amira Khelil, Habib Affes

Abstract:

The XXIst century is characterized by promoting teamwork as one of the main drivers of firms` performance. Collective competence is becoming crucial in developing and maintaining a firm’s competitive advantage, as well as its contributions to organizational innovation. In other words, the improvement of collective competence for a firm is no longer a choice, but rather an obligation. Learning capabilities of a firm in the context of knowledge management are assumed to be the main drivers of collective competence. Although there are some efforts to consider these concepts together; they are mostly discussed separately in the management theory. Thus, this paper aims to offer a holistic approach for development collective competence on the basis of Knowledge Management and Organizational Learning Capabilities. A theoretical model that defines a relationship between knowledge management, organizational learning and collective competence is presented at the end of this paper.

Keywords: collective competence, exploitation learning, exploration learning, knowledge management, organizational learning capabilities

Procedia PDF Downloads 507
15197 A Protocol for Usability of Teaching to Students with Learning Difficulties at University: An Italian Research

Authors: Tamara Zappaterra

Abstract:

The Learning Difficulties have an evolutionary nature. The international research has focused its analysis on the characteristics of Learning Difficulties in childhood, but we are still far from a thorough understanding of the nature of such disorders in adolescence and adulthood. Such issues become even more urgent in the university context. Spelling, meaning, and appropriate use of the specific vocabulary of the various disciplines represent an additional challenge for the dyslexic student. This paper explores the characteristics of Learning Difficulties in adulthood and the impact with the university teaching. It presents the results of an interdisciplinary project (educational, medical and engineering area) at University of Florence. The purpose of project is to design of a protocol for usability of teaching and individual study at university level. The project, after a first reconnaissance of user needs that have been reached with the participation of the very same protagonists, is at the stage of guidelines drafting for inclusion and education, to be used by teachers, students and administrative staff. The methodologies used are a questionnaire built on purpose and a series of focus groups with users. For collecting data during the focus groups it was decided to use a method typical of the Quality Function Deployment, a tool originally used for quality management, whose versatility makes it easy to use in a number of different context. The paper presents furthermore the findings of the project, the most significant elements of the guidelines for teaching, i.e. the section for teachers, whose aim is to implement a Learning Difficulties-friendly teaching, even at the university level, in compliance with italian Law 170/2010. The Guidelines for the didactic and inclusion of Learning Difficulties students of the University of Florence are articulated around a global and systemic plan of action, meant to accompany and protect the students during their study career, even before enrolling at the University, with different declination: the logistical, relational, educational, and didactic levels have been considered. These guidelines in Italy received the endorsement of the CNUDD. It is a systemic intervention plan for Learning Difficulties students, which roused and keeps rousing the interest of all the university system, with a radical consideration on academic teaching. Since while we try to provide the best Learning Difficulties-friendly didactic in compliance with the rules, no one can be exempted from a wider consideration on the nature and the quality of university teaching offered to all students.

Keywords: didactic tools, learning difficulties, special and inclusive education, university teaching

Procedia PDF Downloads 283
15196 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 150
15195 Schooling Culture in Egyptian Public Schools: Reform in Professional Development for Equity and hope in Education

Authors: Nora El-Bilawia

Abstract:

This paper discovers the challenges and/or opportunities to implementing multiple intelligence (MI) practices in English as foreign language (EFL) classrooms at Egyptian public schools as part of the government’s educational reform plan. It is found that Egyptian EFL teachers value the use of MI’s ways of teaching as means for active and higher order thinking. However, teachers believed they were underprivileged, as the government did not provide appropriate trainings, tools, or means to integrate MI in their daily lessons. They also conferred challenges they face due to some Egyptian schooling cultural practices. At the end of this chapter, a proposed need for a paradigm shift in the schooling culture in Egypt to implement practical changes in schools to promote hope in education such as the use of MI teaching tools. This study promotes cross-cultural understanding of educational opportunities and efforts for equal learning outcomes around the globe.

Keywords: professional development, schooling culture, acculturation, equitable education

Procedia PDF Downloads 101
15194 Principal Component Analysis in Drug-Excipient Interactions

Authors: Farzad Khajavi

Abstract:

Studies about the interaction between active pharmaceutical ingredients (API) and excipients are so important in the pre-formulation stage of development of all dosage forms. Analytical techniques such as differential scanning calorimetry (DSC), Thermal gravimetry (TG), and Furrier transform infrared spectroscopy (FTIR) are commonly used tools for investigating regarding compatibility and incompatibility of APIs with excipients. Sometimes the interpretation of data obtained from these techniques is difficult because of severe overlapping of API spectrum with excipients in their mixtures. Principal component analysis (PCA) as a powerful factor analytical method is used in these situations to resolve data matrices acquired from these analytical techniques. Binary mixtures of API and interested excipients are considered and produced. Peaks of FTIR, DSC, or TG of pure API and excipient and their mixtures at different mole ratios will construct the rows of the data matrix. By applying PCA on the data matrix, the number of principal components (PCs) is determined so that it contains the total variance of the data matrix. By plotting PCs or factors obtained from the score of the matrix in two-dimensional spaces if the pure API and its mixture with the excipient at the high amount of API and the 1:1mixture form a separate cluster and the other cluster comprise of the pure excipient and its blend with the API at the high amount of excipient. This confirms the existence of compatibility between API and the interested excipient. Otherwise, the incompatibility will overcome a mixture of API and excipient.

Keywords: API, compatibility, DSC, TG, interactions

Procedia PDF Downloads 132