Search results for: linear congruential algorithm
4955 Mechanical Properties and Microstructures of the Directional Solidified Zn-Al-Cu Alloy
Authors: Mehmet Izzettin Yilmazer, Emin Cadirli
Abstract:
Zn-7wt.%Al-2.96wt.%Cu eutectic alloy was directionally solidified upwards with different temperature gradients (from 6.70 K/mm to 10.67 K/mm) at a constant growth rate (16.4 Km/s) and also different growth rate (from 8.3 micron/s to 166 micron/s) at a constant temperature gradient (10.67 K/mm) using a Bridgman–type growth apparatus.The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependency of microstructures on the G and V were determined with linear regression analysis and experimental equations were found as λl=8.953xVexp-0.49, λt=5.942xVexp-0.42 and λl=0.008xGexp-1.23, λt=0.024xGexp-0.93. The measurements of microhardness of directionally solidified samples were obtained by using a microhardness test device. The dependence of microhardness HV on temperature gradient and growth rate were analyzed. The dependency of microhardness on the G and V were also determined with linear regression analysis as HVl=110.66xVexp0.02, HVt=111.94xVexp0.02 and HVl=69.66xGexp0.17, HVt=68.86xGexp0.18. The experimental results show that the microhardness of the directionally solidified Zn-Al-Cu alloy increases with increasing the growth rate. The results obtained in this work were compared with the previous similar experimental results.Keywords: directional solidification, eutectic alloys, microstructure, microhardness
Procedia PDF Downloads 4514954 Experimental Study of Moisture Effect on the Mechanical Behavior of Flax Fiber Reinforcement
Authors: Marwa Abida, Florian Gehring, Jamel Mars, Alexandre Vivet, Fakhreddine Dammak, Mohamed Haddar
Abstract:
The demand for bio-based materials in semi-structural and structural applications is constantly growing to conform to new environmental policies. Among them, Plant Fiber Reinforced Composites (PFRC) are attractive for the scientific community as well as the industrial world. Due to their relatively low densities and low environmental impact, vegetal fibers appear to be suitable as reinforcing materials for polymers. However, the major issue of plant fibers and PFRC in general is their hydrophilic behavior (high affinity to water molecules). Indeed, when absorbed, water causes fiber swelling and a loss of mechanical properties. Thus, the environmental loadings (moisture, temperature, UV) can strongly affect their mechanical properties and therefore play a critical role in the service life of PFRC. In order to analyze the influence of conditioning at relative humidity on the behavior of flax fiber reinforced composites, a preliminary study on flax fabrics has been conducted. The conditioning of the fabrics in different humid atmospheres made it possible to study the influence of the water content on the hygro-mechanical behavior of flax reinforcement through mechanical tensile tests. This work shows that increasing the relative humidity of the atmosphere induces an increase of the water content in the samples. It also brings up the significant influence of water content on the stiffness and elongation at break of the fabric, while no significant change of the breaking load is detected. Non-linear decrease of flax fabric rigidity and increase of its elongation at maximal force with the increase of water content are observed. It is concluded that water molecules act as a softening agent on flax fabrics. Two kinds of typical tensile curves are identified. Most of the tensile curves of samples show one unique linear region where the behavior appears to be linear prior to the first yarn failure. For some samples in which water content is between 2.7 % and 3.7 % (regardless the conditioning atmosphere), the emergence of a two-linear region behavior is pointed out. This phenomenon could be explained by local heterogeneities of water content which could induce premature local plasticity in some regions of the flax fabric sample behavior.Keywords: hygro-mechanical behavior, hygroscopy, flax fabric, relative humidity, mechanical properties
Procedia PDF Downloads 1884953 Designing an Intelligent Voltage Instability System in Power Distribution Systems in the Philippines Using IEEE 14 Bus Test System
Authors: Pocholo Rodriguez, Anne Bernadine Ocampo, Ian Benedict Chan, Janric Micah Gray
Abstract:
The state of an electric power system may be classified as either stable or unstable. The borderline of stability is at any condition for which a slight change in an unfavourable direction of any pertinent quantity will cause instability. Voltage instability in power distribution systems could lead to voltage collapse and thus power blackouts. The researchers will present an intelligent system using back propagation algorithm that can detect voltage instability and output voltage of a power distribution and classify it as stable or unstable. The researchers’ work is the use of parameters involved in voltage instability as input parameters to the neural network for training and testing purposes that can provide faster detection and monitoring of the power distribution system.Keywords: back-propagation algorithm, load instability, neural network, power distribution system
Procedia PDF Downloads 4354952 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher
Abstract:
Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.Keywords: machining stability, machine learning, sensor, optimization
Procedia PDF Downloads 2064951 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations
Procedia PDF Downloads 1474950 Clinical Validation of an Automated Natural Language Processing Algorithm for Finding COVID-19 Symptoms and Complications in Patient Notes
Authors: Karolina Wieczorek, Sophie Wiliams
Abstract:
Introduction: Patient data is often collected in Electronic Health Record Systems (EHR) for purposes such as providing care as well as reporting data. This information can be re-used to validate data models in clinical trials or in epidemiological studies. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. Mentioning a disease in a discharge letter does not necessarily mean that a patient suffers from this disease. Many of them discuss a diagnostic process, different tests, or discuss whether a patient has a certain disease. The COVID-19 dataset in this study used natural language processing (NLP), an automated algorithm which extracts information related to COVID-19 symptoms, complications, and medications prescribed within the hospital. Free-text patient clinical patient notes are rich sources of information which contain patient data not captured in a structured form, hence the use of named entity recognition (NER) to capture additional information. Methods: Patient data (discharge summary letters) were exported and screened by an algorithm to pick up relevant terms related to COVID-19. Manual validation of automated tools is vital to pick up errors in processing and to provide confidence in the output. A list of 124 Systematized Nomenclature of Medicine (SNOMED) Clinical Terms has been provided in Excel with corresponding IDs. Two independent medical student researchers were provided with a dictionary of SNOMED list of terms to refer to when screening the notes. They worked on two separate datasets called "A” and "B”, respectively. Notes were screened to check if the correct term had been picked-up by the algorithm to ensure that negated terms were not picked up. Results: Its implementation in the hospital began on March 31, 2020, and the first EHR-derived extract was generated for use in an audit study on June 04, 2020. The dataset has contributed to large, priority clinical trials (including International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) by bulk upload to REDcap research databases) and local research and audit studies. Successful sharing of EHR-extracted datasets requires communicating the provenance and quality, including completeness and accuracy of this data. The results of the validation of the algorithm were the following: precision (0.907), recall (0.416), and F-score test (0.570). Percentage enhancement with NLP extracted terms compared to regular data extraction alone was low (0.3%) for relatively well-documented data such as previous medical history but higher (16.6%, 29.53%, 30.3%, 45.1%) for complications, presenting illness, chronic procedures, acute procedures respectively. Conclusions: This automated NLP algorithm is shown to be useful in facilitating patient data analysis and has the potential to be used in more large-scale clinical trials to assess potential study exclusion criteria for participants in the development of vaccines.Keywords: automated, algorithm, NLP, COVID-19
Procedia PDF Downloads 1024949 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering
Procedia PDF Downloads 3994948 Lateral Control of Electric Vehicle Based on Fuzzy Logic Control
Authors: Hartani Kada, Merah Abdelkader
Abstract:
Aiming at the high nonlinearities and unmatched uncertainties of the intelligent electric vehicles’ dynamic system, this paper presents a lateral motion control algorithm for intelligent electric vehicles with four in-wheel motors. A fuzzy logic procedure is presented and formulated to realize lateral control in lane change. The vehicle dynamics model and a desired target tracking model were established in this paper. A fuzzy logic controller was designed for integrated active front steering (AFS) and direct yaw moment control (DYC) in order to improve vehicle handling performance and stability, and a fuzzy controller for the automatic steering problem. The simulation results demonstrate the strong robustness and excellent tracking performance of the control algorithm that is proposed.Keywords: fuzzy logic, lateral control, AFS, DYC, electric car technology, longitudinal control, lateral motion
Procedia PDF Downloads 6104947 A Nonlinear Dynamical System with Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model
Procedia PDF Downloads 2544946 Non-Linear Velocity Fields in Turbulent Wave Boundary Layer
Authors: Shamsul Chowdhury
Abstract:
The objective of this paper is to present the detailed analysis of the turbulent wave boundary layer produced by progressive finite-amplitude waves theory. Most of the works have done for the mass transport in the turbulent boundary layer assuming the eddy viscosity is not time varying, where the sediment movement is induced by the mean velocity. Near the ocean bottom, the waves produce a thin turbulent boundary layer, where the flow is highly rotational, and shear stress associated with the fluid motion cannot be neglected. The magnitude and the predominant direction of the sediment transport near the bottom are known to be closely related to the flow in the wave induced boundary layer. The magnitude of water particle velocity at the Crest phase differs from the one of the Trough phases due to the non-linearity of the waves, which plays an important role to determine the sediment movement. The non-linearity of the waves become predominant in the surf zone area, where the sediment movement occurs vigorously. Therefore, in order to describe the flow near the bottom and relationship between the flow and the movement of the sediment, the analysis was done using the non-linear boundary layer equation and the finite amplitude wave theory was applied to represent the velocity fields in the turbulent wave boundary layer. At first, the calculation was done for turbulent wave boundary layer by two-dimensional model where throughout the calculation is non-linear. But Stokes second order wave profile is adopted at the upper boundary. The calculated profile was compared with the experimental data. Finally, the calculation is done based on various modes of the velocity and turbulent energy. The mean velocity is found to differ from condition of the relative depth and the roughness. It is also found that due to non-linearity, the absolute value for velocity and turbulent energy as well as Reynolds stress are asymmetric. The mean velocity of the laminar boundary layer is always positive but in the turbulent boundary layer plays a very complicated role.Keywords: wave boundary, mass transport, mean velocity, shear stress
Procedia PDF Downloads 2624945 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 5614944 Bi-Criteria Vehicle Routing Problem for Possibility Environment
Authors: Bezhan Ghvaberidze
Abstract:
A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory
Procedia PDF Downloads 4854943 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic
Authors: Sedat Yayla, Azhin Abdullah
Abstract:
In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)
Procedia PDF Downloads 2714942 Study of Variation in Linear Growth and Other Parameters of Male Albino Rats on Exposure to Chronic Multiple Stress after Birth
Authors: Potaliya Pushpa, Kataria Sushma, D. S. Chowdhary, Dadhich Abhilasha
Abstract:
Introduction: Stress is a nonspecific response of the body to a stressor or triggering stimulus. Chronic stress exposure contributes to various remarkable alterations o growth and development. Collective effects of stressors lead to several changes which are physical, physiological and behavioral in nature. Objective: To understand on an animal model how various chronic stress affect the somatic body growth as it can be useful for effective stress treatment and prevention of stress related illnesses. Material and Method: By selective fostering only male pup colonies were made and 102 male albino rats were studied. They were divided two groups as Control and Stressed. The experimental groups were exposed to four major types of stress as maternal deprivation, Restraint stress, electric foot shock and noise stress for affecting emotional, physical and physiological activities. Exposure was from birth to 17 week of life. Roentgenographs were taken in two planes as Dorso-ventral and Lateral and then measured for each rat. Various parameters were observed at specific intervals. Parameters recorded were Body weight and for linear growth it was summation of Cranial length, Head rump length and tail length. Behavior changes were also observed. Result: Multiple chronic stresses resulted in loss of approx. 25% of mean body weight. Maximal difference was found on 119th day (i.e. 87.81 gm) between the control and stressed group. Linear growth showed retardation which was found to be significant in stressed group on statistical analysis. Cranial Length and Head-rump Length showed maximum difference after maternal deprivation stress. After maternal deprivation (Day 21) and electric foot shock (Day 101) maximum difference i.e. 0.39 cm and 0.47 cm were found in cranial length of two groups. Electric foot shock had considerable impact on tail length. Noise Stress affected moreover behavior as compact to physical growth. Conclusion: Collective study showed that chronic stress not only resulted in reduced body weight in albino rats but also total linear size of rat thus affecting whole growth and development.Keywords: stress, microscopic anatomy, macroscopic anatomy, chronic multiple stress, birth
Procedia PDF Downloads 2664941 Transition from Linear to Circular Economy in Gypsum in India
Authors: Shanti Swaroop Gupta, Bibekananda Mohapatra, S. K. Chaturvedi, Anand Bohra
Abstract:
For sustainable development in India, there is an urgent need to follow the principles of industrial symbiosis in the industrial processes, under which the scraps, wastes, or by‐products of one industry can become the raw materials for another. This will not only help in reducing the dependence on natural resources but also help in gaining economic advantage to the industry. Gypsum is one such area in India, where the linear economy model of by-product gypsum utilization has resulted in unutilized legacy phosphogypsum stock of 64.65 million tonnes (mt) at phosphoric acid plants in 2020-21. In the future, this unutilized gypsum stock will increase further due to the expected generation of Flue Gas Desulphurization (FGD) gypsum in huge quantities from thermal power plants. Therefore, it is essential to transit from the linear to circular economy in Gypsum in India, which will result in huge environmental as well as ecological benefits. Gypsum is required in many sectors like Construction (Cement industry, gypsum boards, glass fiber reinforced gypsum panels, gypsum plaster, fly ash lime bricks, floor screeds, road construction), agriculture, in the manufacture of Plaster of Paris, pottery, ceramic industry, water treatment processes, manufacture of ammonium sulphate, paints, textiles, etc. The challenges faced in areas of quality, policy, logistics, lack of infrastructure, promotion, etc., for complete utilization of by-product gypsum have been discussed. The untapped potential of by-product gypsum utilization in various sectors like the use of gypsum in agriculture for sodic soil reclamation, utilization of legacy stock in cement industry on mission mode, improvement in quality of by-product gypsum by standardization and usage in building materials industry has been identified. Based on the measures required to tackle the various challenges and utilization of the untapped potential of gypsum, a comprehensive action plan for the transition from linear to the circular economy in gypsum in India has been formulated. The strategies and policy measures required to implement the action plan to achieve a circular economy in Gypsum have been recommended for various government departments. It is estimated that the focused implementation of the proposed action plan would result in a significant decrease in unutilized gypsum legacy stock in the next five years and it would cease to exist by 2027-28 if the proposed action plan is effectively implemented.Keywords: circular economy, FGD gypsum, India, phosphogypsum
Procedia PDF Downloads 2684940 Benders Decomposition Approach to Solve the Hybrid Flow Shop Scheduling Problem
Authors: Ebrahim Asadi-Gangraj
Abstract:
Hybrid flow shop scheduling problem (HFS) contains sequencing in a flow shop where, at any stage, there exist one or more related or unrelated parallel machines. This production system is a common manufacturing environment in many real industries, such as the steel manufacturing, ceramic tile manufacturing, and car assembly industries. In this research, a mixed integer linear programming (MILP) model is presented for the hybrid flow shop scheduling problem, in which, the objective consists of minimizing the maximum completion time (makespan). For this purpose, a Benders Decomposition (BD) method is developed to solve the research problem. The proposed approach is tested on some test problems, small to moderate scale. The experimental results show that the Benders decomposition approach can solve the hybrid flow shop scheduling problem in a reasonable time, especially for small and moderate-size test problems.Keywords: hybrid flow shop, mixed integer linear programming, Benders decomposition, makespan
Procedia PDF Downloads 1894939 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts
Authors: Elham Kiyani
Abstract:
In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization
Procedia PDF Downloads 2164938 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 3694937 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections
Authors: S. Fominow, C. Dobert
Abstract:
The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis
Procedia PDF Downloads 1564936 Event Extraction, Analysis, and Event Linking
Authors: Anam Alam, Rahim Jamaluddin Kanji
Abstract:
With the rapid growth of event in everywhere, event extraction has now become an important matter to retrieve the information from the unstructured data. One of the challenging problems is to extract the event from it. An event is an observable occurrence of interaction among entities. The paper investigates the effectiveness of event extraction capabilities of three software tools that are Wandora, Nitro and SPSS. We performed standard text mining techniques of these tools on the data sets of (i) Afghan War Diaries (AWD collection), (ii) MUC4 and (iii) WebKB. Information retrieval measures such as precision and recall which are computed under extensive set of experiments for Event Extraction. The experimental study analyzes the difference between events extracted by the software and human. This approach helps to construct an algorithm that will be applied for different machine learning methods.Keywords: event extraction, Wandora, nitro, SPSS, event analysis, extraction method, AFG, Afghan War Diaries, MUC4, 4 universities, dataset, algorithm, precision, recall, evaluation
Procedia PDF Downloads 5964935 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3054934 Optimization of Electrocoagulation Process Using Duelist Algorithm
Authors: Totok R. Biyanto, Arif T. Mardianto, M. Farid R. R., Luthfi Machmudi, kandi mulakasti
Abstract:
The main objective of this research is optimizing the electrocoagulation process design as a post-treatment for biologically vinasse effluent process. The first principle model with three independent variables that affect the energy consumption of electrocoagulation process i.e. current density, electrode distance, and time of treatment process are chosen as optimized variables. The process condition parameters were determined with the value of pH, electrical conductivity, and temperature of vinasse about 6.5, 28.5 mS/cm, 52 oC, respectively. Aluminum was chosen as the electrode material of electrocoagulation process. Duelist algorithm was used as optimization technique due to its capability to reach a global optimum. The optimization results show that the optimal process can be reached in the conditions of current density of 2.9976 A/m2, electrode distance of 1.5 cm and electrolysis time of 119 min. The optimized energy consumption during process is 34.02 Wh.Keywords: optimization, vinasse effluent, electrocoagulation, energy consumption
Procedia PDF Downloads 4694933 Path Integrals and Effective Field Theory of Large Scale Structure
Authors: Revant Nayar
Abstract:
In this work, we recast the equations describing large scale structure, and by extension all nonlinear fluids, in the path integral formalism. We first calculate the well known two and three point functions using Schwinger Keldysh formalism used commonly to perturbatively solve path integrals in non- equilibrium systems. Then we include EFT corrections due to pressure, viscosity, and noise as effects on the time-dependent propagator. We are able to express results for arbitrary two and three point correlation functions in LSS in terms of differential operators acting on a triple K master intergral. We also, for the first time, get analytical results for more general initial conditions deviating from the usual power law P∝kⁿ by introducing a mass scale in the initial conditions. This robust field theoretic formalism empowers us with tools from strongly coupled QFT to study the strongly non-linear regime of LSS and turbulent fluid dynamics such as OPE and holographic duals. These could be used to capture fully the strongly non-linear dynamics of fluids and move towards solving the open problem of classical turbulence.Keywords: quantum field theory, cosmology, effective field theory, renormallisation
Procedia PDF Downloads 1354932 A Linear Autoregressive and Non-Linear Regime Switching Approach in Identifying the Structural Breaks Caused by Anti-Speculation Measures: The Case of Hong Kong
Authors: Mengna Hu
Abstract:
This paper examines the impact of an anti-speculation tax policy on the trading activities and home price movements in the housing market in Hong Kong. The study focuses on the secondary residential property market where transactions dominate. The policy intervention substantially raised the transaction cost to speculators as well as genuine homeowners who dispose their homes within a certain period. Through the demonstration of structural breaks, our empirical results show that the rise in transaction cost effectively reduced speculative trading activities. However, it accelerated price increase in the small-sized segment by vastly demotivating existing homeowners from trading up to better homes, causing congestion in the lower-end market where the demand from first-time buyers is still strong. Apart from that, by employing regime switching approach, we further show that the unintended consequences are likely to be persistent due to this policy together with other strengthened cooling measures.Keywords: transaction costs, housing market, structural breaks, regime switching
Procedia PDF Downloads 2634931 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network
Authors: Purva Joshi, Rohit Thanki, Omar Hanif
Abstract:
Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem
Procedia PDF Downloads 2034930 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression
Procedia PDF Downloads 1374929 Spatially Downscaling Land Surface Temperature with a Non-Linear Model
Authors: Kai Liu
Abstract:
Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature
Procedia PDF Downloads 3294928 Generic Model for Timetabling Problems by Integer Linear Programmimg Approach
Authors: Nur Aidya Hanum Aizam, Vikneswary Uvaraja
Abstract:
The agenda of showing the scheduled time for performing certain tasks is known as timetabling. It widely used in many departments such as transportation, education, and production. Some difficulties arise to ensure all tasks happen in the time and place allocated. Therefore, many researchers invented various programming model to solve the scheduling problems from several fields. However, the studies in developing the general integer programming model for many timetabling problems are still questionable. Meanwhile, this thesis describe about creating a general model which solve different types of timetabling problems by considering the basic constraints. Initially, the common basic constraints from five different fields are selected and analyzed. A general basic integer programming model was created and then verified by using the medium set of data obtained randomly which is much similar to realistic data. The mathematical software, AIMMS with CPLEX as a solver has been used to solve the model. The model obtained is significant in solving many timetabling problems easily since it is modifiable to all types of scheduling problems which have same basic constraints.Keywords: AIMMS mathematical software, integer linear programming, scheduling problems, timetabling
Procedia PDF Downloads 4364927 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 1114926 Investigation of the Composition and Structure of Tar by Lignite Pyrolysis Using Thermogravimetry, Gas Chromatography and Mass Spectrum Coupled Instrument System
Authors: Li Feng, Cheng Zhang, Chuanzhou Yuang
Abstract:
Understanding the macromolecular structure of low-rank coal is very important for its gasification and liquefaction. The pyrolysis is one of the methods of analyzing the macromolecular structure of coal. The gaseous products decomposed directly by the raw lignite at 500 °C and indirectly by tar products from raw lignite pyrolysis at 500 °C were investigated and compared by thermogravimetry, gas chromatography and mass spectrum coupled instrument system (TG/GC/MS) in this paper. The results show that 52 kinds of products were found from the raw lignite and 70 kinds of products from the tar. The pyrolysis products directly from the lignite appear more monocyclic aromatic hydrocarbons and less substituent groups or branch chain, compared with the products from the tar. There is less linear chain and double bonds structure in the tar, which can be speculated that linear chain and double bonds structure took part in the generation of condensed rings and other reactions. There are more kinds of phenol and furan in the tar, which indicate that these products may be generated from the secondary reaction. The formation process of phenol, phenol naphthalene, naphthene and furan are discussed.Keywords: composition and structure, lignite, pyrolysis of coal, tar, TG/GC/MS
Procedia PDF Downloads 141