Search results for: inherent feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2212

Search results for: inherent feature

532 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data

Authors: Martin Pellon Consunji

Abstract:

Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.

Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms

Procedia PDF Downloads 123
531 A Novel Methodology for Browser Forensics to Retrieve Searched Keywords from Windows 10 Physical Memory Dump

Authors: Dija Sulekha

Abstract:

Nowadays, a good percentage of reported cybercrimes involve the usage of the Internet, directly or indirectly for committing the crime. Usually, Web Browsers leave traces of browsing activities on the host computer’s hard disk, which can be used by investigators to identify internet-based activities of the suspect. But criminals, who involve in some organized crimes, disable browser file generation feature to hide the evidence while doing illegal activities through the Internet. In such cases, even though browser files were not generated in the storage media of the system, traces of recent and ongoing activities were generated in the Physical Memory of the system. As a result, the analysis of Physical Memory Dump collected from the suspect's machine retrieves lots of forensically crucial information related to the browsing history of the Suspect. This information enables the cyber forensic investigators to concentrate on a few highly relevant selected artefacts while doing the Offline Forensics analysis of storage media. This paper addresses the reconstruction of web browsing activities by conducting live forensics to identify searched terms, downloaded files, visited sites, email headers, email ids, etc. from the physical memory dump collected from Windows 10 Systems. Well-known entry points are available for retrieving all the above artefacts except searched terms. The paper describes a novel methodology to retrieve the searched terms from Windows 10 Physical Memory. The searched terms retrieved in this way can be used for doing advanced file and keyword search in the storage media files reconstructed from the file system recovery in offline forensics.

Keywords: browser forensics, digital forensics, live Forensics, physical memory forensics

Procedia PDF Downloads 116
530 Analysis of Turkish Government Cultural Portal for Supporting Gastronomy Tourism

Authors: Hilmi Rafet Yüncü

Abstract:

Today Internet has very important role to promote products and services all over the world. Companies and destinations in tourism industry use Internet to sell and to promote their core products to directly potential tourists. Internet technologies have redefined the relationships between tourists, tourism companies, and travel agents. The new relationship allows for accessing and tapping tourism information and services. Internet technologies ensure new opportunities to available for the tourism industry, including travel accommodation, and tourist destination organizations. Websites are important devices to the marketing of a destination. Most people make a research about the destination before arriving via internet. Governments have a considerable role in the process of marketing tourism destinations. Governments make policies and regulations; furthermore, they help to market destinations to potential tourists. Governments have a comprehensive overview of the sector to see changes in tourism market and design better policies, programs and marketing plans. At the same time, governments support developing of alternative tourism in the country with regulations and marketing tools. The aim of this study is to analyse of an Internet website of governmental tourism portal in Turkey to determine effectiveness about gastronomy tourism. The Turkish government has established a culture portal for foreign and local tourists. The Portal provides local and general information about tourism attractions of cities and Turkey. There are 81 official cities in Turkey and all these cities are conducted to analyse to determine how effective marketing is done by Turkish Government in the manner of gastronomy tourism. A content analysis will be conducted to Internet website of the portal with food content, recipes and gastronomic feature of cities.

Keywords: culture portal, gastronomy tourism, government, Turkey

Procedia PDF Downloads 343
529 Robust Inference with a Skew T Distribution

Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici

Abstract:

There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.

Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness

Procedia PDF Downloads 397
528 Insight into the Visual Attentional Correlates Underpinning Autistic-Like Traits in Fragile X and Down Syndrome

Authors: Jennifer M. Glennon, Hana D'Souza, Luke Mason, Annette Karmiloff-Smith, Michael S. C. Thomas

Abstract:

Genetic syndrome groups that feature high rates of autism comorbidity, like Down syndrome (DS) and fragile X syndrome (FXS), have been presented as useful models for understanding risk and protective factors involved in the emergence of autistic traits. Yet despite reaching clinical thresholds, these ‘syndromic’ forms of autism appear to differ in important ways from the idiopathic or ‘non-syndromic’ autism phenotype. To uncover the true nature of these comorbidities, it is necessary to extend definitions of autism to include the cognitive characteristics of the disorder and to then apply this broadened conceptualisation to the study of syndromic autism profiles. The current study employs a variety of well-established eye-tracking paradigms to assess visual attentional performance in children with DS and FXS who reach thresholds for autism on the Social Communication Questionnaire. It investigates whether autism profiles in these children are accompanied by visual orienting difficulties (‘sticky attention’), decreased social attention, and enhanced visual search performance, all of which are characteristic of the idiopathic autism phenotype. Data is collected from children with DS and FXS aged between 6 and 10 years, in addition to two control groups matched on age and intellectual ability (i.e., children with idiopathic autism and neurotypical controls). Cross-sectional developmental trajectory analyses are conducted to enable visuo-attentional profile comparisons. Significant differences in the visuo-attentional processes underpinning autism presentations in children with FXS and DS are hypothesised, supporting notions of syndrome specificity. The study provides insight into the complex heterogeneity associated with syndromic autism presentations and autism per se, with clinical implications for the utility of autism intervention programmes in DS and FXS populations.

Keywords: autism, down syndrome, fragile X syndrome, eye tracking

Procedia PDF Downloads 239
527 Bad Juju: The Translation of the African Zombi to Nigerian and Western Screens

Authors: Randall Gray Underwood

Abstract:

Within the past few decades, zombie cinema has evolved from a niche outgrowth of the horror genre into one of the most widely-discussed and thoroughly-analyzed subgenres of film. Rising to international popularity during the 1970s and 1980s following the release of George Romero’s landmark classic, Night of the Living Dead (1968), and its much-imitated sequel, Dawn of the Dead (1978), the zombie genre returned to global screens in full force at the turn of the century following earth-shattering events such as the 9/11 terrorist attacks, America’s subsequent war in the Middle East, environmental pandemics, and the emergence of a divided and disconnected global populace in the age of social media. Indeed, the presence of the zombie in all manner of art and entertainment—movies, literature, television, video games, comic books, and more—has become nothing short of pervasive, engendering a plethora of scholarly writings, books, opinion pieces, and video essays from all manner of academics, cultural commentators, critics, and casual fans, with each espousing their own theories regarding the zombie’s allegorical and symbolic value within global fiction. Consequently, the walking dead of recent years have been variously positioned as fictive manifestations of human fears of societal collapse, environmental contagion, sexually-transmitted disease, primal regression, dwindling population rates, global terrorism, and the foreign “Other”. Less commonly analyzed within film scholarship, however, is the connection between the zombie’s folkloric roots and native African/Haitian spiritual practice; specifically, how this connection impacts the zombie’s presentation in African films by native storytellers versus in similar narratives told from a western perspective. This work will examine the unlikely connections and contrasts inherent the portrayal of the traditional African/Haitian zombie (or zombi, in Haitian French) in the Nollywood film Witchdoctor of the Livingdead (1985, Charles Abi Enonchong) versus its depiction in the early Hollywood films White Zombie (1932, Victor Halperin) and I Walked with a Zombie (1943, Jacques Tourneur), through analysis of each cinemas’ use of the zombie as a visual metaphor for subjugation/slavery, as well as differences in their representation of the the spiritual folklore from which the figure of the zombie originates. Select films from the post-Night of the Living Dead zombie cinema landscape will also warrant brief discussion in relation to Witchdoctor of the Livingdead.

Keywords: Nollywood, Zombie cinema, Horror cinema, Classical Hollywood

Procedia PDF Downloads 60
526 Stress and Rhythm in the Educated Nigerian Accent of English

Authors: Nkereke M. Essien

Abstract:

The intention of this paper is to examine stress in the Educated Nigerian Accent of English (ENAE) with the aim of analyzing stress and rhythmic patterns of Nigerian English. Our aim also is to isolate differences and similarities in the stress patterns studied and also know what forms the accent of these Educated Nigerian English (ENE) which marks them off from other groups or English’s of the world, to ascertain and characterize it and to provide documented evidence for its existence. Nigerian stress and rhythmic patterns are significantly different from the British English stress and rhythmic patterns consequently, the educated Nigerian English (ENE) features more stressed syllables than the native speakers’ varieties. The excessive stressed of syllables causes a contiguous “Ss” in the rhythmic flow of ENE, and this brings about a “jerky rhythm’ which distorts communication. To ascertain this claim, ten (10) Nigerian speakers who are educated in the English Language were selected by a stratified Random Sampling technique from two Federal Universities in Nigeria. This classification belongs to the education to the educated class or standard variety. Their performance was compared to that of a Briton (control). The Metrical system of analysis was used. The respondents were made to read some words and utterance which was recorded and analyzed perceptually, statistically and acoustically using the one-way Analysis of Variance (ANOVA). The Turky-Kramer Post Hoc test, the Wilcoxon Matched Pairs Signed Ranks test, and the Praat analysis software were used in the analysis. It was revealed from our findings that the Educated Nigerian English speakers feature more stressed syllables in their productions by spending more time in pronouncing stressed syllables and sometimes lesser time in pronouncing the unstressed syllables. Their overall tempo was faster. The ENE speakers used tone to mark prominence while the native speaker used stress to mark pronounce, typified by the control. We concluded that the stress pattern of the ENE speakers was significantly different from the native speaker’s variety represented by the control’s performance.

Keywords: accent, Nigerian English, rhythm, stress

Procedia PDF Downloads 240
525 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation

Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher

Abstract:

Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.

Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment

Procedia PDF Downloads 118
524 Factor Structure of the Korean Version of Multidimensional Experiential Avoidance Questionnaire (MEAQ)

Authors: Juyeon Lee, Sungeun You

Abstract:

Experiential avoidance is one’s tendency to avoid painful internal experience, unwanted adverse thoughts, emotions, and physical sensations. The Multidimensional Experiential Avoidance Questionnaire (MEAQ) is a measure of experiential avoidance, and the original scale consisted of 62 items with six subfactors including behavioral avoidance, distress aversion, procrastination, distraction/suppression, repression/denial, and distress endurance. The purpose of this study was to examine the factor structure of the MEAQ in a Korean sample. Three hundred community adults and university students aged 18 to 35 participated in an online survey assessing experiential avoidance (MEAQ and Acceptance and Action Questionnaire-II; AAQ-II), depression (Patient Health Questionnaire-9; PHQ-9), anxiety (Generalized Anxiety Disoder-7; GAD-7), negative affect (Positive and Negative Affect Scale; PANAS), neuroticism (Big Five Inventory; BFI), and quality of life (Satisfaction with Life Scale; SWLS). Factor analysis with principal axis with direct oblimin rotation was conducted to examine subfactors of the MEAQ. Results indicated that the six-factor structure of the original scale was adequate. Eight items out of 62 items were removed due to insufficient factor loading. These items included 3 items of behavior avoidance (e.g., “When I am hurting, I would do anything to feel better”), 2 items of repression/denial (e.g., “I work hard to keep out upsetting feelings”), and 3 items of distress aversion (e.g., “I prefer to stick to what I am comfortable with, rather than try new activities”). The MEAQ was positively associated with the AAQ-II (r = .47, p < .001), PHQ-9 (r = .37, p < .001), GAD-7 (r = .34, p < .001), PANAS (r = .35, p < .001), and neuroticism (r = .24, p < .001), and negatively correlated with the SWLS (r = -.38, p < .001). Internal consistency was good for the MEAQ total (Cronbach’s α = .90) as well as all six subfactors (Cronbach’s α = .83 to .87). The findings of the study support the multidimensional feature of experiential avoidance and validity of the MEAQ in a sample of Korean adults.

Keywords: avoidance, experiential avoidance, factor structure, MEAQ

Procedia PDF Downloads 365
523 Cross Carpeting in Nigerian Politics: Some Legal and Moral Issues Generated

Authors: Agbana Olaseinde Julius, Opadere Olaolu Stephen

Abstract:

The concept of cross carpeting is as old as politics itself. Basically, it entails an individual leaving a political party/group, to join another. The reasons for which cross carpeting is embarked upon are diverse: ideological differences; ethnic and/or religious differences; access to actual or perceived better political opportunities; liberty of association; rancor; etc. The current democratic dispensation in Nigeria has experienced renewed and rather alarming rate of cross carpeting, for reasons including those enumerated above and others. Right to cross carpet is inherent in a democratic setting as well as the political stakeholder; so does it also comprise of the constitutional right of ‘freedom of association’. However, the current species of cross carpeting in Nigeria requires scrutiny, in view of some potential legal and moral challenges it poses for both the present and the future. Cross carpeting is considered both legal and constitutional, but the current spate raises the question of expediency, particularly in a nascent democracy. It is considered to have a propensity of negatively impacting political stability in a polity with fragile nerves. Importantly too, cross carpeting is considered a potential damage to the psyche of posterity with regards to a warped disposition to promises, honour and integrity. The perceived peculiar dimension of cross carpeting in Nigeria raises questions on the quality of leadership presently obtainable in the country, vis-à-vis greed, self-centeredness, disregard for the concern and interest of avowed followers/fans, entrenchment of distrust, etc. Thus, the study made use of primary and secondary sources of information. The primary sources included the Constitutions of the Federal Republic of Nigeria 1999 (as amended); judicial decisions; and the Electoral Act, 2010 (as Amended). The secondary sources comprised of information from books, journals, newspapers, magazines and Internet documents. Data obtained from these sources were subjected to content analysis. Findings of this study show that though the act of cross carpeting may not be in breach of any Statute or Law, it however, in most cases, breaches the morals of expediency. The morality thereof is far from justifiable, and should be condemned in the interest of the present and posterity. There is a great and urgent need to embark on a re-entrenchment of the culture of political ideology in the Nigerian polity, as obtainable in developed democracies. In conclusion, the need to exercise the right of cross carpeting with caution cannot be overemphasized. Membership of a political group/party should be backed by commitment to well defined ideologies and values. Commitment to them should be regarded akin to that found in the family, which is not easily or flippantly jettisoned.

Keywords: cross-carpeting, Nigeria, legal, moral issues, politics

Procedia PDF Downloads 447
522 Deciphering Specific Host-Selective Toxin Interaction of Cassiicolin with Lipid Membranes and its Cytotoxicity on Rubber Leaves

Authors: Kien Xuan Ngo

Abstract:

Cassiicolin (Cas), a toxin produced by Corynespora cassiicola, is responsible for corynespora leaf fall (CLF) disease in rubber trees. Currently, the molecular mechanism of the cytotoxicity of Cas isoforms (i.e., Cas1, Cas2) on rubber leaves and its host selectivity have not been fully elucidated. This study analyzed the binding of Cas1 and Cas2 to membranes consisting of different plant lipids and their membrane-disruption activities. Using high-speed atomic force microscopy and confocal microscopy, this study reveals that the binding and disruption activities of Cas1 and Cas2 on lipid membranes are strongly dependent on the specific plant lipids. The negative phospholipids, glycerolipids, and sterols are more susceptible to membrane damage caused by Cas1 and Cas2 than neutral phospholipids and betaine lipids. In summary, This study unveils that (i) Cas1 and Cas2 directly damage and cause necrosis in the leaves of specific rubber clones; (ii) Cas1 and Cas2 can form biofilm-like structures on specific lipid membranes (negative phospholipids, glycerolipids, and sterols). The biofilm-like formation of Cas toxin plays an important role in selective disruption on lipid membranes; (iii) Vulnerability of the specific cytoplasmic membranes to the selective Cas toxin is the most remarkable feature of cytotoxicity of Cas toxin on plant cells. Finally, researcher’s exploration is crucial to understand the basic molecular mechanism underlying the host-selective toxic interaction of Cas toxin with cytoplasmic membranes in plant cells.

Keywords: cassiicolin, corynespora leaf fall disease, high-speed AFM, giant liposome vesicles

Procedia PDF Downloads 123
521 'Explainable Artificial Intelligence' and Reasons for Judicial Decisions: Why Justifications and Not Just Explanations May Be Required

Authors: Jacquelyn Burkell, Jane Bailey

Abstract:

Artificial intelligence (AI) solutions deployed within the justice system face the critical task of providing acceptable explanations for decisions or actions. These explanations must satisfy the joint criteria of public and professional accountability, taking into account the perspectives and requirements of multiple stakeholders, including judges, lawyers, parties, witnesses, and the general public. This research project analyzes and integrates two existing literature on explanations in order to propose guidelines for explainable AI in the justice system. Specifically, we review three bodies of literature: (i) explanations of the purpose and function of 'explainable AI'; (ii) the relevant case law, judicial commentary and legal literature focused on the form and function of reasons for judicial decisions; and (iii) the literature focused on the psychological and sociological functions of these reasons for judicial decisions from the perspective of the public. Our research suggests that while judicial ‘reasons’ (arguably accurate descriptions of the decision-making process and factors) do serve similar explanatory functions as those identified in the literature on 'explainable AI', they also serve an important ‘justification’ function (post hoc constructions that justify the decision that was reached). Further, members of the public are also looking for both justification and explanation in reasons for judicial decisions, and that the absence of either feature is likely to contribute to diminished public confidence in the legal system. Therefore, artificially automated judicial decision-making systems that simply attempt to document the process of decision-making are unlikely in many cases to be useful to and accepted within the justice system. Instead, these systems should focus on the post-hoc articulation of principles and precedents that support the decision or action, especially in cases where legal subjects’ fundamental rights and liberties are at stake.

Keywords: explainable AI, judicial reasons, public accountability, explanation, justification

Procedia PDF Downloads 126
520 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 164
519 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images

Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy

Abstract:

Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.

Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms

Procedia PDF Downloads 380
518 Comparative in silico and in vitro Study of N-(1-Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent

Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal

Abstract:

Doxorubicin, also known as adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemias, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhoea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, anti-inflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilino-ethyl)benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 µM where as for doxorubicin is 7.2 µ.

Keywords: Doxorubicin, auto dock, in silco, in vitro

Procedia PDF Downloads 419
517 Quality Analysis of Vegetables Through Image Processing

Authors: Abdul Khalique Baloch, Ali Okatan

Abstract:

The quality analysis of food and vegetable from image is hot topic now a day, where researchers make them better then pervious findings through different technique and methods. In this research we have review the literature, and find gape from them, and suggest better proposed approach, design the algorithm, developed a software to measure the quality from images, where accuracy of image show better results, and compare the results with Perouse work done so for. The Application we uses an open-source dataset and python language with tensor flow lite framework. In this research we focus to sort food and vegetable from image, in the images, the application can sorts and make them grading after process the images, it could create less errors them human base sorting errors by manual grading. Digital pictures datasets were created. The collected images arranged by classes. The classification accuracy of the system was about 94%. As fruits and vegetables play main role in day-to-day life, the quality of fruits and vegetables is necessary in evaluating agricultural produce, the customer always buy good quality fruits and vegetables. This document is about quality detection of fruit and vegetables using images. Most of customers suffering due to unhealthy foods and vegetables by suppliers, so there is no proper quality measurement level followed by hotel managements. it have developed software to measure the quality of the fruits and vegetables by using images, it will tell you how is your fruits and vegetables are fresh or rotten. Some algorithms reviewed in this thesis including digital images, ResNet, VGG16, CNN and Transfer Learning grading feature extraction. This application used an open source dataset of images and language used python, and designs a framework of system.

Keywords: deep learning, computer vision, image processing, rotten fruit detection, fruits quality criteria, vegetables quality criteria

Procedia PDF Downloads 70
516 Insect Manure (Frass) as a Complementary Fertilizer to Enhance Soil Mineralization Function: Application to Cranberry and Field Crops

Authors: Joël Passicousset, David Gilbert, Chloé Chervier-Legourd, Emmanuel Caron-Garant, Didier Labarre

Abstract:

Living soil agriculture tries to reconciliate food production while improving soil health, soil biodiversity, soil fertility and more generally attenuating the inherent environmental drawbacks induced by modern agriculture. Using appropriate organic materials as soil amendments has a role to play in the aim of increasing the soil organic matter, improving soil fertility, sequestering carbon, and diminishing the dependence on both mineral fertilizer and pesticides. Insect farming consists in producing insects that can be used as a rich-in-protein and entomo-based food. Usually, detritivores are chosen, thus they can be fed with food wastes, which contributes to circular economy while producing low-carbon food. This process also produces frass, made of insect feces, exuvial material, and non-digested fibrous material, that have valuable fertilizer and biostimulation properties. But frass, used as a sole fertilizer on a crop may be not completely adequate for plants’ needs. This is why this project considers black soldier fly (termed BSF, one of the three main insect species grown commercially) frass as a complementary fertilizer, both in organic and in conventional contexts. Three kinds of experiments are made to understand the behaviour of fertilizer treatments based on frass incorporation. Lab-scale mineralization experiments suggest that BSF frass alone mineralizes more slowly than chicken manure alone (CM), but at a ratio of 90% CM-10% BSF frass, the mineralization rate of the mixture is higher than both frass and CM individually. For example, in the 7 days following the fertilization with same nitrogen amount introduced among treatments, around 80% of the nitrogen content supplied through 90% CM-10% BSF frass fertilization is present in the soil under mineral forms, compared to roughly 60% for commercial CM fertilization and 45% with BSF-frass. This suggests that BSF frass contains a more recalcitrant form of organic nitrogen than CM, but also that BSF frass has a highly active microbiota that can increase CM mineralization rate. Consequently, when progressive mineralization is needed, pure BSF-frass may be a consistent option from an agronomic aspect whereas, for specific crops that require spikes of readily available nitrogen sources (like cranberry), fast release 90CM-10BSF frass biofertilizer are more appropriate. Field experiments on cranberry suggests that, indeed, 90CM-10BSF frass is a potent candidate for organic cranberry production, as currently, organic growers rely solely on CM, whose mineralization kinetics are known to imperfectly match plant’s needs, which is known to be a major reason that sustains the current yield gap between conventional and organic cranberry sectors.

Keywords: soil mineralization, biofertilizer, BSF-frass, chicken manure, soil functions, nitrogen, soil microbiota

Procedia PDF Downloads 70
515 Features of the Functional and Spatial Organization of Railway Hubs as a Part of the Urban Nodal Area

Authors: Khayrullina Yulia Sergeevna, Tokareva Goulsine Shavkatovna

Abstract:

The article analyzes the modern major railway hubs as a main part of the Urban Nodal Area (UNA). The term was introduced into the theory of urban planning at the end of the XX century. Tokareva G.S. jointly with Gutnov A.E. investigated the structure-forming elements of the city. UNA is the basic unit, the "cell" of the city structure. Specialization is depending on the position in the frame or the fabric of the city. This is related to feature of its organization. Spatial and functional features of UNA proposed to investigate in this paper. The base object for researching are railway hubs as connective nodes of inner and extern-city communications. Research used a stratified sampling type with the selection of typical objects. Research is being conducted on the 14 railway hubs of the native and foreign experience of the largest cities with a population over 1 million people located in one and close to the Russian climate zones. Features of the organization identified in the complex research of functional and spatial characteristics based on the hypothesis of the existence of dual characteristics of the organization of urban nodes. According to the analysis, there is using the approximation method that enable general conclusions of a representative selection of the entire population of railway hubs and it development’s area. Results of the research show specific ratio of functional and spatial organization of UNA based on railway hubs. Based on it there proposed typology of spaces and urban nodal areas. Identification of spatial diversity and functional organization’s features of the greatest railway hubs and it development’s area gives an indication of the different evolutionary stages of formation approaches. It help to identify new patterns for the complex and effective design as a prediction of the native hub’s development direction.

Keywords: urban nodal area, railway hubs, features of structural, functional organization

Procedia PDF Downloads 387
514 A Comparative Study on the Phenolics Composition and Antioxidant Properties of Water Yam Landraces in Kerala, India

Authors: Anumol Jose, Sajana Nazar, M. R. Vishnu, M. Anilkumar

Abstract:

Water yam is an underutilized tropical tuber crop and a rich source of polyphenol compounds and acylated anthocyanins. There is an inverse relationship between the risk of chronic human diseases and the consumption of polyphenolic rich diet. Dioscorea alata is a plant species with several undocumented landraces. In this study, several landraces of water yam with distinct morphological features were collected from all over kerala. Distinct variation in morphological feature among landraces was tuber colour and only those landraces which expressed consistent morphological characters for constitutively two growing seasons were included in the study. Plants were categorized according to the L*a*b* colour attributes of tuber extracts. There were five categories, red, pink, orange, yellow and white. Total phenol, flavanoid and anthocyanin content of the tuber extracts were measured spectroscopically and correlated with antioxidant properties determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method and ferric reducing antioxidant power assay. Landraces showed statistically significant difference in all the parameters studied and strong correlation were observed between total phenol and antioxidant activity. Out of the five categories orange coloured tubers showed relatively high phenol and flavanoid content.Colour variations of tuber extracts correlated with anthocyanin quantity and polymeric nature of anthocyanins. This study helps to identify and categorize landraces of D.alata with potential health benefits and commercial applications. Distinct colour characteristics of tuber could be useful in the field of natural colorants. This study also aimed to document and preserve landraces of water yams for further study and research in this area.

Keywords: the antioxidant property, anthocyanins, polyphenols, water yam

Procedia PDF Downloads 131
513 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning

Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule

Abstract:

Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.

Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE

Procedia PDF Downloads 72
512 Signal Transduction in a Myenteric Ganglion

Authors: I. M. Salama, R. N. Miftahof

Abstract:

A functional element of the myenteric nervous plexus is a morphologically distinct ganglion. Composed of sensory, inter- and motor neurons and arranged via synapses in neuronal circuits, their task is to decipher and integrate spike coded information within the plexus into regulatory output signals. The stability of signal processing in response to a wide range of internal/external perturbations depends on the plasticity of individual neurons. Any aberrations in this inherent property may lead to instability with the development of a dynamics chaos and can be manifested as pathological conditions, such as intestinal dysrhythmia, irritable bowel syndrome. The aim of this study is to investigate patterns of signal transduction within a two-neuronal chain - a ganglion - under normal physiological and structurally altered states. The ganglion contains the primary sensory (AH-type) and motor (S-type) neurons linked through a cholinergic dendro somatic synapse. The neurons have distinguished electrophysiological characteristics including levels of the resting and threshold membrane potentials and spiking activity. These are results of ionic channel dynamics namely: Na+, K+, Ca++- activated K+, Ca++ and Cl-. Mechanical stretches of various intensities and frequencies are applied at the receptive field of the AH-neuron generate a cascade of electrochemical events along the chain. At low frequencies, ν < 0.3 Hz, neurons demonstrate strong connectivity and coherent firing. The AH-neuron shows phasic bursting with spike frequency adaptation while the S-neuron responds with tonic bursts. At high frequency, ν > 0.5 Hz, the pattern of electrical activity changes to rebound and mixed mode bursting, respectively, indicating ganglionic loss of plasticity and adaptability. A simultaneous increase in neuronal conductivity for Na+, K+ and Ca++ ions results in tonic mixed spiking of the sensory neuron and class 2 excitability of the motor neuron. Although the signal transduction along the chain remains stable the synchrony in firing pattern is not maintained and the number of discharges of the S-type neuron is significantly reduced. A concomitant increase in Ca++- activated K+ and a decrease in K+ in conductivities re-establishes weak connectivity between the two neurons and converts their firing pattern to a bistable mode. It is thus demonstrated that neuronal plasticity and adaptability have a stabilizing effect on the dynamics of signal processing in the ganglion. Functional modulations of neuronal ion channel permeability, achieved in vivo and in vitro pharmacologically, can improve connectivity between neurons. These findings are consistent with experimental electrophysiological recordings from myenteric ganglia in intestinal dysrhythmia and suggest possible pathophysiological mechanisms.

Keywords: neuronal chain, signal transduction, plasticity, stability

Procedia PDF Downloads 392
511 Exploring the Role of Phosphorylation on the β-lactamase Activity of OXA24/40

Authors: Dharshika Rajalingam, Jeffery W. Peng

Abstract:

Acinetobacter baumannii is a challenging threat to global health, recognized as a multidrug-resistant pathogen. -lactamase is one of the principal resistant mechanisms developed by A. baumannii to survive against -lactam antibiotics. OXA24/40 is one of the types of -lactamases, a well-documented carbapenem hydrolyzing class D -lactamases (CHDL). It was revealed that OXA24/40 showed resistivity against doripenem, one of the carbapenems, by two different mechanisms as hydrolysis and -lactonization. Furthermore, it undergoes genetic mutations to broaden the -lactamase activity to survive against antibiotic environments. One of the crucial characterizations of prokaryotes to develop adaptation is post-translational modification (PTM), mainly phosphorylation. However, the PTM of OXA24/40 is an unknown feature, and the impact of PTM on antibiotic resistivity is yet to be explored. We approached these hypotheses using NMR and MS techniques and found that the OXA24/40 could be phosphorylated in vitro. The Ser81 at the active STFK motif of OXA24/40 of catalytic pocket was identified as the site of phosphorylation using 1D 31P NMR experiment, whereas S81 is required to form an acyl-enzyme complex between enzyme and -lactam antibiotics. The activity of completely phosphorylated OXA24/40 wild type against doripenem revealed that the phosphorylation of active Ser inactivates the -lactamases activity of OXA24/40. The 1D 1H CPMG NMR-based activity assay of phosphorylated OXA24/40 against doripenem confirmed that both deactivating mechanisms are inhibited by phosphorylation. Carbamylated Lysine at the active STFK motif is one of the critical features of CHDL required for the acylation and deacylation reactions of the enzyme. The 1D 13C NMR experiment confirmed that the K84 of phosphorylated OXA24/40 is de-carbamylated. Phosphorylation of OXA24/40 affects both active S81 and carbamylated K84 of OXA24 that are required for the resistivity of -lactamase. So, phosphorylation could be one of the reasons for the genetic mutation of OXA24/40 for the development of antibiotic resistivity. Further research can lead to an understanding of the effect of phosphorylation on the clinical mutants of the OXA24-like -lactamase family on the broadening of -lactamase activity.

Keywords: OXA24/40, phosphorylation, clinical mutants, resistivity

Procedia PDF Downloads 79
510 Usability Evaluation of a Self-Report Mobile App for COVID-19 Symptoms: Supporting Health Monitoring in the Work Context

Authors: Kevin Montanez, Patricia Garcia

Abstract:

The confinement and restrictions adopted to avoid an exponential spread of the COVID-19 have negatively impacted the Peruvian economy. In this context, Industries offering essential products could continue operating, but they have to follow safety protocols and implement strategies to ensure employee health. In view of the increasing internet access and mobile phone ownership, “Alerta Temprana”, a mobile app, was developed to self-report COVID-19 symptoms in the work context. In this study, the usability of the mobile app “Alerta Temprana” was evaluated from the perspective of health monitors and workers. In addition to reporting the metrics related to the usability of the application, the utility of the system is also evaluated from the monitors' perspective. In this descriptive study, the participants used the mobile app for two months. Afterwards, System Usability Scale (SUS) questionnaire was answered by the workers and monitors. A Usefulness questionnaire with open questions was also used for the monitors. The data related to the use of the application was collected during one month. Furthermore, descriptive statistics and bivariate analysis were used. The workers rated the application as good (70.39). In the case of the monitors, usability was excellent (83.0). The most important feature for the monitors were the emails generated by the application. The average interaction per user was 30 seconds and a total of 6172 self-reports were sent. Finally, a statistically significant association was found between the acceptability scale and the work area. The results of this study suggest that Alerta Temprana has the potential to be used for surveillance and health monitoring in any context of face-to-face modality. Participants reported a high degree of ease of use. However, from the perspective of workers, SUS cannot diagnose usability issues and we suggest we use another standard usability questionnaire to improve "Alerta Temprana" for future use.

Keywords: public health in informatics, mobile app, usability, self-report

Procedia PDF Downloads 117
509 Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts

Authors: Shuxin Li, Peihao Song, Haixiao Hu, Dongfeng Cao

Abstract:

The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination.

Keywords: cohesive elements, composite laminates, delamination, local and global bucking, field-bolt repair

Procedia PDF Downloads 120
508 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 130
507 Analysis of Unconditional Conservatism and Earnings Quality before and after the IFRS Adoption

Authors: Monica Santi, Evita Puspitasari

Abstract:

International Financial Reporting Standard (IFRS) has developed the principle based accounting standard. Based on this, IASB then eliminated the conservatism concept within accounting framework. Conservatism concept represents a prudent reaction to uncertainty to try to ensure that uncertainties and risk inherent in business situations are adequately considered. The conservatism concept has two ingredients: conditional conservatism or ex-post (news depending prudence) and unconditional conservatism or ex-ante (news-independent prudence). IFRS in substance disregards the unconditional conservatism because the unconditional conservatism can cause the understatement assets or overstated liabilities, and eventually the financial statement would be irrelevance since the information does not represent the real fact. Therefore, the IASB eliminate the conservatism concept. However, it does not decrease the practice of unconditional conservatism in the financial statement reporting. Therefore, we expected the earnings quality would be affected because of this situation, even though the IFRS implementation was expected to increase the earnings quality. The objective of this study was to provide empirical findings about the unconditional conservatism and the earnings quality before and after the IFRS adoption. The earnings per accrual measure were used as the proxy for the unconditional conservatism. If the earnings per accrual were negative (positive), it meant the company was classified as the conservative (not conservative). The earnings quality was defined as the ability of the earnings in reflecting the future earnings by considering the earnings persistence and stability. We used the earnings response coefficient (ERC) as the proxy for the earnings quality. ERC measured the extant of a security’s abnormal market return in response to the unexpected component of reporting earning of the firm issuing that security. The higher ERC indicated the higher earnings quality. The manufacturing companies listed in the Indonesian Stock Exchange (IDX) were used as the sample companies, and the 2009-2010 period was used to represent the condition before the IFRS adoption, and 2011-2013 was used to represent the condition after the IFRS adoption. Data was analyzed using the Mann-Whitney test and regression analysis. We used the firm size as the control variable with the consideration the firm size would affect the earnings quality of the company. This study had proved that the unconditional conservatism had not changed, either before and after the IFRS adoption period. However, we found the different findings for the earnings quality. The earnings quality had decreased after the IFRS adoption period. This empirical results implied that the earnings quality before the IFRS adoption was higher. This study also had found that the unconditional conservatism positively influenced the earnings quality insignificantly. The findings implied that the implementation of the IFRS had not decreased the unconditional conservatism practice and has not altered the earnings quality of the manufacturing company. Further, we found that the unconditional conservatism did not affect the earnings quality. Eventhough the empirical result shows that the unconditional conservatism gave positive influence to the earnings quality, but the influence was not significant. Thus, we concluded that the implementation of the IFRS did not increase the earnings quality.

Keywords: earnings quality, earnings response coefficient, IFRS Adoption, unconditional conservatism

Procedia PDF Downloads 258
506 The Effects of Alpha-Lipoic Acid Supplementation on Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Authors: Hamid Abbasi, Neda Jourabchi, Ranasadat Abedi, Kiarash Tajernarenj, Mehdi Farhoudi, Sarvin Sanaie

Abstract:

Background: Alpha lipoic acid (ALA), fat- and water-soluble, coenzyme with sulfuret content, has received considerable attention for its potential therapeutic role in diabetes, cardiovascular diseases, cancers, and central nervous disease. This investigation aims to evaluate the probable protective effects of ALA in stroke patients. Methods: Based on Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, This meta-analysis was performed. The PICO criteria for this meta-analysis were as follows: Population/Patients (P: stroke patients); Intervention (I: ALA); Comparison (C: control); Outcome (O: blood glucose, lipid profile, oxidative stress, inflammatory factors).In addition, Studies that were excluded from the analysis consisted of in vitro, in vivo, and ex vivo studies, case reports, quasi-experimental studies. Scopus, PubMed, Web of Science, EMBASE databases were searched until August 2023. Results: Of 496 records that were screened in the title/abstract stage, 9 studies were included in this meta-analysis. The sample sizes in the included studies vary between 28 and 90. The result of risk of bias was performed via risk of bias (RoB) in randomized-controlled trials (RCTs) based on the second version of the Cochrane RoB assessment tool. 8 studies had a definitely high risk of bias. Discussion: To the best of our knowledge, The present meta-analysis is the first study addressing the effectiveness of ALA supplementation in enhancing post-stroke metabolic markers, including lipid profile, oxidative stress, and inflammatory indices. It is imperative to acknowledge certain potential limitations inherent in this study. First of all, type of treatment (oral or intravenous infusion) could alter the bioavailability of ALA. Our study had restricted evidence regarding the impact of ALA supplementation on included outcomes. Therefore, further research is warranted to develop into the effects of ALA specifically on inflammation and oxidative stress. Funding: The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 72825). Registration: This study was registered in the International prospective register of systematic reviews (PROSPERO ID: CR42023461612).

Keywords: alpha-lipoic acid, lipid profile, blood glucose, inflammatory factors, oxidative stress, meta-analysis, post-stroke

Procedia PDF Downloads 63
505 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 96
504 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web

Authors: Aayushi Somani, Siba P. Samal

Abstract:

Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.

Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR

Procedia PDF Downloads 170
503 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors

Procedia PDF Downloads 273