Search results for: geophysical database referenced navigation
509 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 316508 The Safety Profile of Vilazodone: A Study on Post-Marketing Surveillance
Authors: Humraaz Kaja, Kofi Mensah, Frasia Oosthuizen
Abstract:
Background and Aim: Vilazodone was approved in 2011 as an antidepressant to treat the major depressive disorder. As a relatively new drug, it is not clear if all adverse effects have been identified. The aim of this study was to review the adverse effects reported to the WHO Programme for International Drug Monitoring (PIDM) in order to add to the knowledge about the safety profile and adverse effects caused by vilazodone. Method: Data on adverse effects reported for vilazodone was obtained from the database VigiAccess managed by PIDM. Data was extracted from VigiAccess using Excel® and analyzed using descriptive statistics. The data collected was compared to the patient information leaflet (PIL) of Viibryd® and the FDA documents to determine adverse drug reactions reported post-marketing. Results: A total of 9708 adverse events had been recorded on VigiAccess, of which 6054 were not recorded on the PIL and the FDA approval document. Most of the reports were received from the Americas and were for adult women aged 45-64 years (24%, n=1059). The highest number of adverse events reported were for psychiatric events (19%; n=1889), followed by gastro-intestinal effects (18%; n=1839). Specific psychiatric disorders recorded included anxiety (316), depression (208), hallucination (168) and agitation (142). The systematic review confirmed several psychiatric adverse effects associated with the use of vilazodone. The findings of this study suggested that these common psychiatric adverse effects associated with the use of vilazodone were not known during the time of FDA approval of the drug and is not currently recorded in the patient information leaflet (PIL). Conclusions: In summary, this study found several adverse drug reactions not recorded in documents emanating from clinical trials pre-marketing. This highlights the importance of continued post-marketing surveillance of a drug, as well as the need for further studies on the psychiatric adverse events associated with vilazodone in order to improve the safety profile.Keywords: adverse drug reactions, pharmacovigilance, post-marketing surveillance, vilazodone
Procedia PDF Downloads 115507 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley
Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara
Abstract:
The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.Keywords: landslide, intensity-duration, rainfall threshold, TRMM, slope, inventory, early warning system
Procedia PDF Downloads 273506 High-Risk Gene Variant Profiling Models Ethnic Disparities in Diabetes Vulnerability
Authors: Jianhua Zhang, Weiping Chen, Guanjie Chen, Jason Flannick, Emma Fikse, Glenda Smerin, Yanqin Yang, Yulong Li, John A. Hanover, William F. Simonds
Abstract:
Ethnic disparities in many diseases are well recognized and reflect the consequences of genetic, behavior, and environmental factors. However, direct scientific evidence connecting the ethnic genetic variations and the disease disparities has been elusive, which may have led to the ethnic inequalities in large scale genetic studies. Through the genome-wide analysis of data representing 185,934 subjects, including 14,955 from our own studies of the African America Diabetes Mellitus, we discovered sets of genetic variants either unique to or conserved in all ethnicities. We further developed a quantitative gene function-based high-risk variant index (hrVI) of 20,428 genes to establish profiles that strongly correlate with the subjects' self-identified ethnicities. With respect to the ability to detect human essential and pathogenic genes, the hrVI analysis method is both comparable with and complementary to the well-known genetic analysis methods, pLI and VIRlof. Application of the ethnicity-specific hrVI analysis to the type 2 diabetes mellitus (T2DM) national repository, containing 20,791 cases and 24,440 controls, identified 114 candidate T2DM-associated genes, 8.8-fold greater than that of ethnicity-blind analysis. All the genes identified are defined as either pathogenic or likely-pathogenic in ClinVar database, with 33.3% diabetes-associated and 54.4% obesity-associated genes. These results demonstrate the utility of hrVI analysis and provide the first genetic evidence by clustering patterns of how genetic variations among ethnicities may impede the discovery of diabetes and foreseeably other disease-associated genes.Keywords: diabetes-associated genes, ethnic health disparities, high-risk variant index, hrVI, T2DM
Procedia PDF Downloads 137505 The Risk of Post-stroke Pneumonia and Its One-Year Disability in Taiwan
Authors: Hui-Chi Huang, Su-Ju Yang, Ching-Wei Lin, Jui-Yao Tsai, Liang-Yiang
Abstract:
Background: Evidence exists that pneumonia is a frequently encountered complication after stroke which is associated with a higher rate of mortality and increased long-term disability Purpose: To determine the predictors associated with the risk of one-year disability in acute stroke. Methods: Data for this longitudinal follow-up study were extracted from a tertiary referral medical center’s stroke registry database in Northern Taipei. Eligible patients with acute stroke admitted to the hospital and completed a one-year follow up were recruited for analysis. Favorable outcome was defined as a modified Rankin Scale score ≤ 2. SAS version 9.2 was used for the multivariable regression analyses to examine the factors correlated with the one-year disability in stroke patients. Results: From January 2012 to December 2013, a total of 1373 (mean age: 70.49±15.4 years, 913(66.5%) males) consecutively administered acute stroke patients were recruited. Overall, the rate of one-year disability was 37.20%(404/1086) in those without post-stroke pneumonia. It increased to 82.93 %(238/287) in patients developed post-stroke pneumonia. Factors associated with increased risk of disability were age ≧ 75(OR= 4.845, p<.0001), female /gender (OR=1.568, p =.0062), previous stroke (OR= 1.868, p = <. 0001) ,dementia (OR= 2.872, p =.0047), ventilator use (OR= 4.653, p <. 0001),age ≧ 75 /pneumonia (OR=1.236, p <. 0001) , ICU admission (OR=3.314, p <.0001) , nasogastric tube insertion (OR= 4.28, p <.0001), speech therapy (OR= 1.79, p =.0142), urinary tract infection (OR= 1.865, p =.0018), estimated glomerular filtration rate (eGFR > 60 )(OR= 0.525, p= .0029), Admission NIHSS >11 (OR= 2.101, p = .0099), Length of hospitalization > 30(d) (OR= 5.182, p <.0001). Conclusion: Older age, severe neurological deficit, complications, rehabilitation intervention, length of hospitalization >30(d), and cognitive impairment were significantly associated with Post-stroke functional impairment, especially those with post-stroke pneumonia. These findings could open new avenues in the management of stroke patients.Keywords: stroke, risk, pneumonia, disability
Procedia PDF Downloads 231504 Analysis of Extracellular Vesicles Interactomes of two Isoforms of Tau Protein via SHSY-5Y Cell Lines
Authors: Mohammad Aladwan
Abstract:
Alzheimer’s disease (AD) is a widespread dementing illness with a complex and poorly understood etiology. An important role in improving our understanding of the AD process is the modeling of disease-associated changes in tau protein phosphorylation, a protein known to mediate events essential to the onset and progression of AD. A main feature of AD is the abnormal phosphorylation of tau protein and the presence of neurofibrillary tangles. In order to evaluate the respective roles of the microtubule-binding region (MTBR) and alternatively spliced exons in the N-terminal projection domains in AD, we have constructed SHSY-5Y cell lines that stably overexpress four different species of tau protein (4R2N, 4R0N, N(E-2), N(E+2)). Since the toxicity and spreading of tau lesions in AD depends on the interactions of tau with other proteins, we have performed a proteomic analysis of exosome-fraction interactomes for cell lysates and media samples that were isolated from SHSY-5Y cell lines. Functional analysis of tau interactomes based on gene ontology (GO) terms was performed using the String 10.5 database program. The highest number of exosomes proteomes and tau associated proteins were found with 4R2N isoform (2771 and 159) in cell lysate and they have a high strength of connectivity (78%) between proteins, while N(E-2) isoform in the media proteomes has the highest number of proteins and tau associated protein (1829 and 205). Moreover, known AD markers were significantly enriched in secreted interactomes relative to lysate interactomes in the SHSY-5Y cells of tau isoforms lacking exons 2 and 3 in the N-terminal. The lack of exon 2 (E-2) from tau protein can be mediated by tau secretion and spreading to different cells. Enriched functions in the secreted E-2 interactome include signaling and developmental pathways that have been linked to a) tau misprocessing and lesion development and b) tau secretion and which, therefore, could play novel roles in AD pathogenesis.Keywords: Alzheimer's disease, dementia, tau protein, neurodegenration disease
Procedia PDF Downloads 100503 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan
Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao
Abstract:
Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer
Procedia PDF Downloads 288502 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes
Authors: M. S. Matlala, I. Ignatious
Abstract:
Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS
Procedia PDF Downloads 134501 The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway
Authors: Agustyas Tjiptaningrum, Intanri Kurniati, Fadilah Fadilah, Linda Erlina, Tiwuk Susantiningsih
Abstract:
Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19.Keywords: antiinflammation, COVID-19, cytokine storm, NF-κβ, M. cajuputi
Procedia PDF Downloads 87500 Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam
Authors: Nguyen Tien Thanh, Günter Meon
Abstract:
Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels.Keywords: interpolation, precipitation, trend, vietnam
Procedia PDF Downloads 275499 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines
Procedia PDF Downloads 103498 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves
Authors: Hanifeh Imanian, Morteza Kolahdoozan
Abstract:
The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.Keywords: dispersion, marine environment, mathematical-statistical relationship, oil spill
Procedia PDF Downloads 233497 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs
Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro
Abstract:
The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback
Procedia PDF Downloads 68496 Ensuring Safe Operation by Providing an End-To-End Field Monitoring and Incident Management Approach for Autonomous Vehicle Based on ML/Dl SW Stack
Authors: Lucas Bublitz, Michael Herdrich
Abstract:
By achieving the first commercialization approval in San Francisco the Autonomous Driving (AD) industry proves the technology maturity of the SAE L4 AD systems and the corresponding software and hardware stack. This milestone reflects the upcoming phase in the industry, where the focus is now about scaling and supervising larger autonomous vehicle (AV) fleets in different operation areas. This requires an operation framework, which organizes and assigns responsibilities to the relevant AV technology and operation stakeholders from the AV system provider, the Remote Intervention Operator, the MaaS provider and regulatory & approval authority. This holistic operation framework consists of technological, processual, and organizational activities to ensure safe operation for fully automated vehicles. Regarding the supervision of large autonomous vehicle fleets, a major focus is on the continuous field monitoring. The field monitoring approach must reflect the safety and security criticality of incidents in the field during driving operation. This includes an automatic containment approach, with the overall goal to avoid safety critical incidents and reduce downtime by a malfunction of the AD software stack. An End-to-end (E2E) field monitoring approach detects critical faults in the field, uses a knowledge-based approach for evaluating the safety criticality and supports the automatic containment of these E/E faults. Applying such an approach will ensure the scalability of AV fleets, which is determined by the handling of incidents in the field and the continuous regulatory compliance of the technology after enhancing the Operational Design Domain (ODD) or the function scope by Functions on Demand (FoD) over the entire digital product lifecycle.Keywords: field monitoring, incident management, multicompliance management for AI in AD, root cause analysis, database approach
Procedia PDF Downloads 75495 The Untold Story of the Importance of ‘Insignia Imprinted’ for the Heritage Clay Roof Tiles in Malaysia
Authors: M. S. Sulaiman, N. Hassan, M. A. Aziz, M. S. A. Haron, J. H. A. Halim
Abstract:
The classic profile of heritage clay roof tiles gives unique characteristics and timeless style to the almost historical building. It is not only designed to meet basic construction needs, offering great performance and durability but also highlights unnoticed stamp impressions, known as ‘insignia imprinted.’ It seems that the insignia imprinted is not significant to all stakeholders, especially in preserving heritage clay roof tiles in Malaysia. They are not even realized the existence and importance of that element, where it represents the cognitive and social character of that particular era. It creates a sense of belongings for the manufacturers regarding their most elementary features, such as a fortress, crown, fauna and etc. This research aims to identify and analyze the late stamp marks on heritage interlocking clay roof tiles in a government heritage building in Malaysia. The methodology used is literature reviews (desktop study), observation on sites, and interviews. Initial findings from the preliminary observation on-site in Peninsular Malaysia show some evidence that the stamp marks appear on the front and back sides of the tile that indicates the year, manufacturer, code numbers, and logos. Almost more than 30 samples of different types of stamp marks were found and collected. Some of which had been described Guichard & Carvin Cie Marsielle St Andre France, Pierre Sacoman St Henry Marsielle, Tuileries Aixoises Les Milles B.D.R France, The Calicut Tile Co Feroke, And B. Pinto & Co Mangalore dated 1865, 1919 and 1936. In view of this abundance of materials, it will lead to the establishment of a comprehensive database consisting of detailed specifications and material performance for future conservation works and maintenance purposes that will sustain for future references.Keywords: clay roof tiles, insignia imprinted, interlocking, stamp mark
Procedia PDF Downloads 71494 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 380493 Computational Screening of Secretory Proteins with Brain-Specific Expression in Glioblastoma Multiforme
Authors: Sumera, Sanila Amber, Fatima Javed Mirza, Amjad Ali, Saadia Zahid
Abstract:
Glioblastoma multiforme (GBM) is a widely spread and fatal primary brain tumor with an increased risk of relapse in spite of aggressive treatment. The current procedures for GBM diagnosis include invasive procedures i.e. resection or biopsy, to acquire tumor mass. Implementation of negligibly invasive tests as a potential diagnostic technique and biofluid-based monitoring of GBM stresses on discovering biomarkers in CSF and blood. Therefore, we performed a comprehensive in silico analysis to identify potential circulating biomarkers for GBM. Initially, six gene and protein databases were utilized to mine brain-specific proteins. The resulting proteins were filtered using a channel of five tools to predict the secretory proteins. Subsequently, the expression profile of the secreted proteins was verified in the brain and blood using two databases. Additional verification of the resulting proteins was done using Plasma Proteome Database (PPD) to confirm their presence in blood. The final set of proteins was searched in literature for their relationship with GBM, keeping a special emphasis on secretome proteome. 2145 proteins were firstly mined as brain-specific, out of which 69 proteins were identified as secretory in nature. Verification of expression profile in brain and blood eliminated 58 proteins from the 69 proteins, providing a final list of 11 proteins. Further verification of these 11 proteins further eliminated 2 proteins, giving a final set of nine secretory proteins i.e. OPCML, NPTX1, LGI1, CNTN2, LY6H, SLIT1, CREG2, GDF1 and SERPINI1. Out of these 9 proteins, 7 were found to be linked to GBM, whereas 2 proteins are not investigated in GBM so far. We propose that these secretory proteins can serve as potential circulating biomarker signatures of GBM and will facilitate the development of minimally invasive diagnostic methods and novel therapeutic interventions for GBM.Keywords: glioblastoma multiforme, secretory proteins, brain secretome, biomarkers
Procedia PDF Downloads 152492 Alpha Lipoic Acid: An Antioxidant for Infertility
Authors: Chiara Di Tucci, Giulia Galati, Giulia Mattei, Valentina Bonanni, Oriana Capri, Renzo D'Amelio, Ludovico Muzii, Pierluigi Benedetti Panici
Abstract:
Objective: Infertility is an increasingly frequent health condition, which may depend on female or male factors. Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, affects the reproductive lifespan of men and women. In this review, we examine if alpha lipoic acid (ALA), among the oral supplements currently in use, has an evidence-based beneficial role in the context of female and male infertility. Methods: We performed a search from English literature using the PubMed database with the following keywords: 'female infertility', 'male infertility', 'semen', 'sperm', 'sub-fertile man', 'alpha-lipoic acid', ' alpha lipoic acid', 'lipoid acid', 'endometriosis', 'chronic pelvic pain', 'follicular fluid' and 'oocytes'. We included clinical trials, multicentric studies, and reviews. The total number of references found after automatically and manually excluding duplicates was 180. After the primary and secondary screening, 28 articles were selected. Results: The available literature demonstrates the positive effects of ALA in multiple processes, from oocyte maturation (0.87 ± 0.9% of oocyte in MII vs 0.81 ± 3.9%; p < .05) to fertilization, embryo development (57.7% vs 75.7% grade 1 embryo; p < .05) and reproductive outcomes. Its regular administration both in sub-fertile women and men has been shown to reduce pelvic pain in endometriosis (p < .05), regularize menstrual flow and metabolic disorders (p < .01), and improve sperm quality (p < .001). Conclusions: ALA represents a promising new molecule in the field of couple infertility. More clinical studies are needed in order to enhance its use in clinical practice.Keywords: alpha lipoic acid, endometriosis, infertility, male factor, polycystic ovary syndrome
Procedia PDF Downloads 86491 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 391490 Factors Determining Intention to Pursue Genetic Testing for People in Taiwan
Authors: Ju-Chun Chien
Abstract:
The Ottawa Charter for Health Promotion proposed that the role of health services should shift the focus from cure to prevention. Nowadays, besides having physical examinations, people could also conduct genetic tests to provide important information for diagnosing, treating, and/or preventing illnesses. However, because of the incompletion of the Chinese Genetic Database, people in Taiwan were still unfamiliar with genetic testing. The purposes of the present study were to: (1) Figure out people’s attitudes towards genetic testing. (2) Examine factors that influence people’s intention to pursue genetic testing by means of the Health Belief Model (HBM). A pilot study was conducted on 249 Taiwanese in 2017 to test the feasibility of the self-developed instrument. The reliability and construct validity of scores on the self-developed questionnaire revealed that this HBM-based questionnaire with 40 items was a well-developed instrument. A total of 542 participants were recruited and the valid participants were 535 (99%) between the ages of 20 and 86. Descriptive statistics, one-way ANOVA, two-way contingency table analysis, Pearson’s correlation, and stepwise multiple regression analysis were used in this study. The main results were that only 32 participants (6%) had already undergone genetic testing; moreover, their attitude towards genetic testing was more positive than those who did not have the experience. Compared with people who never underwent genetic tests, those who had gone for genetic testing had higher self-efficacy, greater intention to pursue genetic testing, had academic majors in health-related fields, had chronic and genetic diseases, possessed Catastrophic Illness Cards, and all of them had heard about genetic testing. The variables that best predicted people’s intention to pursue genetic testing were cues to action, self-efficacy, and perceived benefits (the three variables all correlated with one another positively at high magnitudes). To sum up, the HBM could be effective in designing and identifying the needs and priorities of the target population to pursue genetic testing.Keywords: genetic testing, knowledge of GT, people in Taiwan, the health belief model
Procedia PDF Downloads 308489 Bioinformatics Approach to Support Genetic Research in Autism in Mali
Authors: M. Kouyate, M. Sangare, S. Samake, S. Keita, H. G. Kim, D. H. Geschwind
Abstract:
Background & Objectives: Human genetic studies can be expensive, even unaffordable, in developing countries, partly due to the sequencing costs. Our aim is to pilot the use of bioinformatics tools to guide scientifically valid, locally relevant, and economically sound autism genetic research in Mali. Methods: The following databases, NCBI, HGMD, and LSDB, were used to identify hot point mutations. Phenotype, transmission pattern, theoretical protein expression in the brain, the impact of the mutation on the 3D structure of the protein) were used to prioritize selected autism genes. We used the protein database, Modeller, and clustal W. Results: We found Mef2c (Gly27Ala/Leu38Gln), Pten (Thr131IIle), Prodh (Leu289Met), Nme1 (Ser120Gly), and Dhcr7 (Pro227Thr/Glu224Lys). These mutations were associated with endonucleases BseRI, NspI, PfrJS2IV, BspGI, BsaBI, and SpoDI, respectively. Gly27Ala/Leu38Gln mutations impacted the 3D structure of the Mef2c protein. Mef2c protein sequences across species showed a high percentage of similarity with a highly conserved MADS domain. Discussion: Mef2c, Pten, Prodh, Nme1, and Dhcr 7 gene mutation frequencies in the Malian population will be very informative. PCR coupled with restriction enzyme digestion can be used to screen the targeted gene mutations. Sanger sequencing will be used for confirmation only. This will cut down considerably the sequencing cost for gene-to-gene mutation screening. The knowledge of the 3D structure and potential impact of the mutations on Mef2c protein informed the protein family and altered function (ex. Leu38Gln). Conclusion & Future Work: Bio-informatics will positively impact autism research in Mali. Our approach can be applied to another neuropsychiatric disorder.Keywords: bioinformatics, endonucleases, autism, Sanger sequencing, point mutations
Procedia PDF Downloads 83488 Smart Wheel Chair: A Design to Accommodate Vital Sign Monitoring
Authors: Stephanie Nihan, Jayson M. Fadrigalan, Pyay P. San, Steven M. Santos, Weihui Li
Abstract:
People of all ages who use wheelchairs are left with the inconvenience of not having an easy way to take their vital signs. Typically, patients are required to visit the hospital in order to take the vital signs. VitalGO is a wheel chair system that equipped with medical devices to take vital signs and then transmit data to a mobile application for convenient, long term health monitoring. The vital signs include oxygen saturation, heart rate, and blood pressure, breathing rate and body temperature. Oxygen saturation and heart rate are monitored through pulse oximeter. Blood pressure is taken through a radar sensor. Breathing rate is derived through thoracic impedance while body temperature is measured through an infrared thermometer. The application receives data through bluetooth and stores in a database for review in a simple graphical interface. The application will have the ability to display this data over various time intervals such as a day, week, month, 3 months, 6 months and a year. The final system for the mobile app can also provide an interface for both the user and their physician(s) to record notes or keep record of daily symptoms that a patient might be having. The user’s doctor will be granted access by the user to view the patient information for assistance with a more accurate diagnosis. Also, this wheelchair accessory conveniently includes a foldable table/desk as somewhere to place an electronic device that may be used to access the app. The foldable table will overall contribute to the wheelchair user’s increased comfort and will give them somewhere to place food, a book, or any other form of entertainment that would normally be hard to juggle on their lap.Keywords: wheel chair, vital sign, mobile application, telemedicine
Procedia PDF Downloads 331487 The Impact of PM-Based Regulations on the Concentration and Sources of Fine Organic Carbon in the Los Angeles Basin from 2005 to 2015
Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Sina Taghvaee, Constantinos Sioutas
Abstract:
A significant portion of PM₂.₅ mass concentration is carbonaceous matter (CM), which majorly exists in the form of organic carbon (OC). Ambient OC originates from a multitude of sources and plays an important role in global climate effects, visibility degradation, and human health. In this study, positive matrix factorization (PMF) was utilized to identify and quantify the long-term contribution of PM₂.₅ sources to total OC mass concentration in central Los Angeles (CELA) and Riverside (i.e., receptor site), using the chemical speciation network (CSN) database between 2005 and 2015, a period during which several state and local regulations on tailpipe emissions were implemented in the area. Our PMF resolved five different factors, including tailpipe emissions, non-tailpipe emissions, biomass burning, secondary organic aerosol (SOA), and local industrial activities for both sampling sites. The contribution of vehicular exhaust emissions to the OC mass concentrations significantly decreased from 3.5 µg/m³ in 2005 to 1.5 µg/m³ in 2015 (by about 58%) at CELA, and from 3.3 µg/m³ in 2005 to 1.2 µg/m³ in 2015 (by nearly 62%) at Riverside. Additionally, SOA contribution to the total OC mass, showing higher levels at the receptor site, increased from 23% in 2005 to 33% and 29% in 2010 and 2015, respectively, in Riverside, whereas the corresponding contribution at the CELA site was 16%, 21% and 19% during the same period. The biomass burning maintained an almost constant relative contribution over the whole period. Moreover, while the adopted regulations and policies were very effective at reducing the contribution of tailpipe emissions, they have led to an overall increase in the fractional contributions of non-tailpipe emissions to total OC in CELA (about 14%, 28%, and 28% in 2005, 2010 and 2015, respectively) and Riverside (22%, 27% and 26% in 2005, 2010 and 2015), underscoring the necessity to develop equally effective mitigation policies targeting non-tailpipe PM emissions.Keywords: PM₂.₅, organic carbon, Los Angeles megacity, PMF, source apportionment, non-tailpipe emissions
Procedia PDF Downloads 198486 The Internet and Transformation of Epistemic Communities: An Exploratory Review of Communication Research between 2002 and 2022
Authors: Dayei Oh, Feeza Vasudeva, Narges Azizi Fard
Abstract:
Drawing on the Foucauldian conception of episteme, epistemic communities refer to a community in which members share common frames of epistemic reference, delineating the proper construction of social realities for their members. One of the most cited definitions of epistemic communities is a group of professionals possessing acknowledged expertise and proficiency in a specific field, influencing policymaking and governance. More recently, the advancement of the Internet has changed the way society produces, disseminates, and consumes knowledge. Against this backdrop, this literature review explores the ways in which online epistemic communities are studied in communication scholarship between 2002 and 2022. Examining 92 peer-reviewed journal articles from the Web of Science database, three research objectives have been addressed: (1) geographical contexts, platforms, and methods that are studied in communication research, (2) different types of epistemic communities, and (3) prevailing themes and concepts that are related to the research of the chosen epistemic communities. This research demonstrates increasing scholarly attention towards the lay public as prominent online epistemic communities along with more conventional epistemic communities such as academia and journalists, hinting at how the Internet provides epistemic capacities for negotiating the boundaries of epistemic authority and competencies between experts and lay people. Through qualitative reading of these papers, the findings show that communication research tends to approach epistemic communities of the political left and right asymmetrically: The right-wing epistemic communities are studied in connection with mis/disinformation, conspiracy theories, populist rejection of authoritative epistemologies, whereas the left-wing communities are studied as emancipatory epistemic struggles and activism against Western, colonial, white, and male-centric knowledge systems. This points to a grave need for communication and multidisciplinary scholarship to investigate such uncharted characters of right- and left-wing epistemic communities.Keywords: communication research, internet, knowledge, online epistemic communities
Procedia PDF Downloads 51485 Detecting Indigenous Languages: A System for Maya Text Profiling and Machine Learning Classification Techniques
Authors: Alejandro Molina-Villegas, Silvia Fernández-Sabido, Eduardo Mendoza-Vargas, Fátima Miranda-Pestaña
Abstract:
The automatic detection of indigenous languages in digital texts is essential to promote their inclusion in digital media. Underrepresented languages, such as Maya, are often excluded from language detection tools like Google’s language-detection library, LANGDETECT. This study addresses these limitations by developing a hybrid language detection solution that accurately distinguishes Maya (YUA) from Spanish (ES). Two strategies are employed: the first focuses on creating a profile for the Maya language within the LANGDETECT library, while the second involves training a Naive Bayes classification model with two categories, YUA and ES. The process includes comprehensive data preprocessing steps, such as cleaning, normalization, tokenization, and n-gram counting, applied to text samples collected from various sources, including articles from La Jornada Maya, a major newspaper in Mexico and the only media outlet that includes a Maya section. After the training phase, a portion of the data is used to create the YUA profile within LANGDETECT, which achieves an accuracy rate above 95% in identifying the Maya language during testing. Additionally, the Naive Bayes classifier, trained and tested on the same database, achieves an accuracy close to 98% in distinguishing between Maya and Spanish, with further validation through F1 score, recall, and logarithmic scoring, without signs of overfitting. This strategy, which combines the LANGDETECT profile with a Naive Bayes model, highlights an adaptable framework that can be extended to other underrepresented languages in future research. This fills a gap in Natural Language Processing and supports the preservation and revitalization of these languages.Keywords: indigenous languages, language detection, Maya language, Naive Bayes classifier, natural language processing, low-resource languages
Procedia PDF Downloads 16484 Combination between Intrusion Systems and Honeypots
Authors: Majed Sanan, Mohammad Rammal, Wassim Rammal
Abstract:
Today, security is a major concern. Intrusion Detection, Prevention Systems and Honeypot can be used to moderate attacks. Many researchers have proposed to use many IDSs ((Intrusion Detection System) time to time. Some of these IDS’s combine their features of two or more IDSs which are called Hybrid Intrusion Detection Systems. Most of the researchers combine the features of Signature based detection methodology and Anomaly based detection methodology. For a signature based IDS, if an attacker attacks slowly and in organized way, the attack may go undetected through the IDS, as signatures include factors based on duration of the events but the actions of attacker do not match. Sometimes, for an unknown attack there is no signature updated or an attacker attack in the mean time when the database is updating. Thus, signature-based IDS fail to detect unknown attacks. Anomaly based IDS suffer from many false-positive readings. So there is a need to hybridize those IDS which can overcome the shortcomings of each other. In this paper we propose a new approach to IDS (Intrusion Detection System) which is more efficient than the traditional IDS (Intrusion Detection System). The IDS is based on Honeypot Technology and Anomaly based Detection Methodology. We have designed Architecture for the IDS in a packet tracer and then implemented it in real time. We have discussed experimental results performed: both the Honeypot and Anomaly based IDS have some shortcomings but if we hybridized these two technologies, the newly proposed Hybrid Intrusion Detection System (HIDS) is capable enough to overcome these shortcomings with much enhanced performance. In this paper, we present a modified Hybrid Intrusion Detection System (HIDS) that combines the positive features of two different detection methodologies - Honeypot methodology and anomaly based intrusion detection methodology. In the experiment, we ran both the Intrusion Detection System individually first and then together and recorded the data from time to time. From the data we can conclude that the resulting IDS are much better in detecting intrusions from the existing IDSs.Keywords: security, intrusion detection, intrusion prevention, honeypot, anomaly-based detection, signature-based detection, cloud computing, kfsensor
Procedia PDF Downloads 382483 Study of the Hydrochemical Composition of Canal, Collector-Drainage and Ground Waters of Kura-Araz Plain and Modeling by GIS Method
Authors: Gurbanova Lamiya
Abstract:
The Republic of Azerbaijan is considered a region with limited water resources, as up to 70% of surface water is formed outside the country's borders, and most of its territory is an arid (dry) climate zone. It is located at the lower limit of transboundary flows, which is the weakest source of natural water resources in the South Caucasus. It is essential to correctly assess the quality of natural, collector-drainage and groundwater of the area and their suitability for irrigation in order to properly carry out land reclamation measures, provide the normal water-salt regime, and prevent repeated salinization. Through the 141-km-long main Mil-Mugan collector, groundwater, household waste, and floodwaters generated during floods and landslides are poured into the Caspian Sea. The hydrochemical composition of the samples taken from the Sabir irrigation canal passing through the center of the Kura-Araz plain, the Main Mil-Mugan Collector, and the groundwater of the region, which we chose as our research object, were studied and the obtained results were compared by periods. A model is proposed that allows for a complete visualization of the primary materials collected for the study area. The practical use of the established digital model provides all possibilities. The practical use of the established digital model provides all possibilities. An extensive database was created with the ArcGis 10.8 package, using publicly available LandSat satellite images as primary data in addition to ground surveys to build the model. The principles of the construction of the geographic information system of modern GIS technology were developed, the boundary and initial condition of the research area were evaluated, and forecasts and recommendations were given.Keywords: irrigation channel, groundwater, collector, meliorative measures
Procedia PDF Downloads 72482 Clinical Outcomes After Radiological Management of Varicoceles
Authors: Eric Lai, Sarah Lorger, David Eisinger, Richard Waugh
Abstract:
Introduction: Percutaneous embolization of varicoceles has shown similar outcomes to surgery. However, there are advantages of radiological intervention as patients are not exposed to general anaesthesia, experience a quicker recovery and face a lower risk of major complications. Radiological interventions are also preferable after a failed surgical approach. We evaluate clinical outcomes of percutaneous embolization at a tertiary hospital in Sydney, Australia. Methods: Retrospective case series without a control group from a single site (Royal Prince Alfred Hospital, Sydney, Australia). A data search was performed on the interventional radiology database with the word “varicocele” between February 2017 and March 2022. 62 patients were identified. Each patient file was reviewed and included in the study if they met the inclusion criteria. Results: A total of 56 patients were included. 6 patients were excluded as they did not receive intervention after the initial diagnostic venography. Technical success was 100%. Complications were seen in 3 patients (5.3%). The complications included post-procedural pain and fever, venous perforation with no clinical adverse outcome, and a mild allergic reaction to contrast. Recurrence occurred in 3 patients (5.6%), all of whom received a successful second procedure. DISCUSSION: This study demonstrates comparable rates of technical success, complication rate and recurrence to other studies in the literature. When compared to surgical outcomes, the results were also similar. The main limitation is multiple patients lack long-term follow-up beyond 1 year, resulting in potential underestimation of the recurrence rate. Conclusion: Percutaneous embolization of varicocele is a safe alternative to surgical intervention.Keywords: varicocele, interventional radiology, urology, radiology
Procedia PDF Downloads 71481 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers
Authors: Linda Boussaid, Farid Brahim Belaribi
Abstract:
The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixturesKeywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers
Procedia PDF Downloads 91480 English for Academic and Specific Purposes: A Corpus-Informed Approach to Designing Vocabulary Teaching Materials
Authors: Said Ahmed Zohairy
Abstract:
Significant shifts in the theory and practice of teaching vocabulary affect teachers’ decisions about learning materials’ design. Relevant literature supports teaching specialised, authentic, and multi-word lexical items rather than focusing on single-word vocabulary lists. Corpora, collections of texts stored in a database, presents a reliable source of teaching and learning materials. Although corpus-informed studies provided guidance for teachers to identify useful language chunks and phraseological units, there is a scarcity in the literature discussing the use of corpora in teaching English for academic and specific purposes (EASP). The aim of this study is to improve teaching practices and provide a description of the pedagogical choices and procedures of an EASP tutor in an attempt to offer guidance for novice corpus users. It draws on the researcher’s experience of utilising corpus linguistic tools to design vocabulary learning activities without focusing on students’ learning outcomes. Hence, it adopts a self-study research methodology which is based on five methodological components suggested by other self-study researchers. The findings of the study noted that designing specialised and corpus-informed vocabulary learning activities could be challenging for teachers, as they require technical knowledge of how to navigate corpora and utilise corpus analysis tools. Findings also include a description of the researcher’s approach to building and analysing a specialised corpus for the benefit of novice corpus users; they should be able to start their own journey of designing corpus-based activities.Keywords: corpora, corpus linguistics, corpus-informed, English for academic and specific purposes, agribusiness, vocabulary, phraseological units, materials design
Procedia PDF Downloads 24