Search results for: care networks
4798 Polypharmacy Overdose: Case Report on Mixed Overdose of Ramipril, Quetiapine, Lercanidipine and Duloxetine
Authors: Chui Ling Teng, R. Matsa
Abstract:
We report a case with combined overdose of Lercanidipine (non-dihydropyridine calcium channel blocker), Quetiapine (Atypical antipsychotic), Ramipril and Duloxetine. A 66-year old male presented to the Emergency Department 12-hours after the ingestion of 1.2g Lercanidipine, 3g Quetiapine, 280mg of Ramipril and 420mg of Duloxetine. He describes lethargic, drowsiness and was unable to pass any urine since overdosed. He was found to be bradycardic, hypotensive and anuric. He had refractory hypotension and anuric despite fluid resuscitation, glucagon therapy and intravenous naloxone. His care was escalated to Intensive care, requiring noradrenaline, adrenaline, vasopressin, and hyperinsulinaemic euglycaemia therapy. He achieved haemodynamic stability and kidney function improved gradually with the support received. The total length of therapy lasted for 30 horus in which individual therapy was weaned down based on the requirement. He was then transferred to medical ward for further psychiatric assessment. This is a the first repored case of mixed overdose with lercanidipine, Quetiapine, Rampmipril and Duloxetine.Keywords: calcium channel blocker, hyperinsulinaemic Euglycaemia therapy, lercanidipine, overdose
Procedia PDF Downloads 3214797 Normalized P-Laplacian: From Stochastic Game to Image Processing
Authors: Abderrahim Elmoataz
Abstract:
More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems
Procedia PDF Downloads 5134796 Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL
Authors: S. H. Kazmi, T. Ahmed, K. Javed, A. Ghani
Abstract:
In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated.Keywords: islanding, under-frequency load shedding, frequency rate of change, static UFLS
Procedia PDF Downloads 4884795 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 554794 Finding the Optimal Meeting Point Based on Travel Plans in Road Networks
Authors: Mohammad H. Ahmadi, Vahid Haghighatdoost
Abstract:
Given a set of source locations for a group of friends, and a set of trip plans for each group member as a sequence of Categories-of-Interests (COIs) (e.g., restaurant), and finally a specific COI as a common destination that all group members will gather together, in Meeting Point Based on Trip Plans (MPTPs) queries our goal is to find a Point-of-Interest (POI) from different COIs, such that the aggregate travel distance for the group is minimized. In this work, we considered two cases for aggregate function as Sum and Max. For solving this query, we propose an efficient pruning technique for shrinking the search space. Our approach contains three steps. In the first step, it prunes the search space around the source locations. In the second step, it prunes the search space around the centroid of source locations. Finally, we compute the intersection of all pruned areas as the final refined search space. We prove that the POIs beyond the refined area cannot be part of optimal answer set. The paper also covers an extensive performance study of the proposed technique.Keywords: meeting point, trip plans, road networks, spatial databases
Procedia PDF Downloads 1864793 Using the Weakest Precondition to Achieve Self-Stabilization in Critical Networks
Authors: Antonio Pizzarello, Oris Friesen
Abstract:
Networks, such as the electric power grid, must demonstrate exemplary performance and integrity. Integrity depends on the quality of both the system design model and the deployed software. Integrity of the deployed software is key, for both the original versions and the many that occur throughout numerous maintenance activity. Current software engineering technology and practice do not produce adequate integrity. Distributed systems utilize networks where each node is an independent computer system. The connections between them is realized via a network that is normally redundantly connected to guarantee the presence of a path between two nodes in the case of failure of some branch. Furthermore, at each node, there is software which may fail. Self-stabilizing protocols are usually present that recognize failure in the network and perform a repair action that will bring the node back to a correct state. These protocols first introduced by E. W. Dijkstra are currently present in almost all Ethernets. Super stabilization protocols capable of reacting to a change in the network topology due to the removal or addition of a branch in the network are less common but are theoretically defined and available. This paper describes how to use the Software Integrity Assessment (SIA) methodology to analyze self-stabilizing software. SIA is based on the UNITY formalism for parallel and distributed programming, which allows the analysis of code for verifying the progress property p leads-to q that describes the progress of all computations starting in a state satisfying p to a state satisfying q via the execution of one or more system modules. As opposed to demonstrably inadequate test and evaluation methods SIA allows the analysis and verification of any network self-stabilizing software as well as any other software that is designed to recover from failure without external intervention of maintenance personnel. The model to be analyzed is obtained by automatic translation of the system code to a transition system that is based on the use of the weakest precondition.Keywords: network, power grid, self-stabilization, software integrity assessment, UNITY, weakest precondition
Procedia PDF Downloads 2264792 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 404791 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 1044790 Comparison of Bactec plus Blood Culture Media to BacT/Alert FAN plus Blood Culture Media for Identification of Bacterial Pathogens in Clinical Samples Containing Antibiotics
Authors: Recep Kesli, Huseyin Bilgin, Ela Tasdogan, Ercan Kurtipek
Abstract:
Aim: The aim of this study was to compare resin based Bactec plus aerobic/anaerobic blood culture bottles (Becton Dickinson, MD, USA) and polymeric beads based BacT/Alert FA/FN plus blood culture bottles (bioMerieux, NC, USA) in terms of microorganisms recovery rates and time to detection (TTD) in the patients receiving antibiotic treatment. Method: Blood culture samples were taken from the patients who admitted to the intensive care unit and received antibiotic treatment. Forty milliliters of blood from patients were equally distributed into four types of bottles: Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus. Bactec Plus and BacT/Alert Plus media were compared to culture recovery rates and TTD. Results: Blood culture samples were collected from 382 patients hospitalized in the intensive care unit and 245 patients who were diagnosed as having bloodstream infections were included in the study. A total of 1528 Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus blood culture bottles analyzed and 176, 144, 154, 126 bacteria or fungi were isolated, respectively. Gram-negative and gram-positive bacteria were significantly more frequently isolated in the resin-based Bactec Plus bottles than in the polymeric beads based BacT/Alert Plus bottles. The Bactec Plus and BacT/Alert Plus media recovery rates were similar for fungi and anaerobic bacteria. The mean TTDs in the Bactec Plus bottles were shorter than those in the BacT/Alert Plus bottles regardless of the microorganisms. Conclusion: The results of this study showed that resin-containing media is a reliable and time-saving tool for patients who are receiving antibiotic treatment due to sepsis in the intensive care unit.Keywords: Bactec Plus, BacT/Alert Plus, blood culture, antibiotic
Procedia PDF Downloads 1464789 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays
Authors: Swati Tyagi, Syed Abbas
Abstract:
Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability
Procedia PDF Downloads 3664788 A 0-1 Goal Programming Approach to Optimize the Layout of Hospital Units: A Case Study in an Emergency Department in Seoul
Authors: Farhood Rismanchian, Seong Hyeon Park, Young Hoon Lee
Abstract:
This paper proposes a method to optimize the layout of an emergency department (ED) based on real executions of care processes by considering several planning objectives simultaneously. Recently, demand for healthcare services has been dramatically increased. As the demand for healthcare services increases, so do the need for new healthcare buildings as well as the need for redesign and renovating existing ones. The importance of implementation of a standard set of engineering facilities planning and design techniques has been already proved in both manufacturing and service industry with many significant functional efficiencies. However, high complexity of care processes remains a major challenge to apply these methods in healthcare environments. Process mining techniques applied in this study to tackle the problem of complexity and to enhance care process analysis. Process related information such as clinical pathways extracted from the information system of an ED. A 0-1 goal programming approach is then proposed to find a single layout that simultaneously satisfies several goals. The proposed model solved by optimization software CPLEX 12. The solution reached using the proposed method has 42.2% improvement in terms of walking distance of normal patients and 47.6% improvement in walking distance of critical patients at minimum cost of relocation. It has been observed that lots of patients must unnecessarily walk long distances during their visit to the emergency department because of an inefficient design. A carefully designed layout can significantly decrease patient walking distance and related complications.Keywords: healthcare operation management, goal programming, facility layout problem, process mining, clinical processes
Procedia PDF Downloads 2974787 Family Treatment Drug Court Cost Analysis: An In-depth Look At The Cost And Savings Of A Southeastern Family Treatment Drug Court
Authors: Ashley R. Logsdon, Becky F. Antle, Cynthia M. Kamer
Abstract:
This study examines the cost and benefits of a family treatment drug court in an urban county in a southeastern state. Additionally, this cost analysis will provide a detailed description of the type and cost of activities to produce the services provided to child welfare families. This study utilized return-on-investment analysis, which uses child welfare practices, disaggregates them into separate activities and estimates costs for these activities including child-level placement data for total cost of care for the child. Direct and indirect costs were considered as well as saving calculations what costs would be associated with child welfare outcomes both short and long term. The costs included were general program costs (salaries, drug screens, transportation, childcare, parent education, program evaluation, visitation, incentives) or personnel costs for other team members (judges, court administrators, child welfare workers, child welfare supervisors, and community mental health provider). The savings that were used in the study were length of time in out of home care, Medicaid costs, substance exposed births, emergency room utilization and jail/probation costs. This study documents an overall savings of between $168,993.30 and $837,993.30. The total savings per family divided by the 40 families who have participated in the program was between $4,224.83 to $20,949.83 per family. The results of this cost benefit analysis are consistent with prior research documenting savings associated with out of home care and jail/probation; however, there are also unique contributions of this study to the literature on cost effectiveness of family treatment drug courts. We will present recommendations for further utilization of family treatment drug courts and how to expand the current model.Keywords: child welfare, cost analysis, family drug court, family treatment drug court
Procedia PDF Downloads 1894786 Thoughts Regarding Interprofessional Work between Nurses and Speech-Language-Hearing Therapists in Cancer Rehabilitation: An Approach for Dysphagia
Authors: Akemi Nasu, Keiko Matsumoto
Abstract:
Rehabilitation for cancer requires setting up individual goals for each patient and an approach that properly fits the stage of cancer when putting into practice. In order to cope with the daily changes in the patients' condition, the establishment of a good cooperative relationship between the nurses and the physiotherapists, occupational therapists, and speech-language-hearing therapists (therapists) becomes essential. This study will focus on the present situation of the cooperation between nurses and therapists, especially the speech-language-hearing therapists, and aim to elucidate what develops there. A semi-structured interview was conducted targeted at a physical therapist having practical experience in working in collaboration with nurses. The contents of the interview were transcribed and converted to data, and the data was encoded and categorized with sequentially increasing degrees of abstraction to conduct a qualitative explorative factor analysis of the data. When providing ethical explanations, particular care was taken to ensure that participants would not be subjected to any disadvantages as a result of participating in the study. In addition, they were also informed that their privacy would be ensured and that they have the right to decline to participate in the study. In addition, they were also informed that the results of the study would be announced publicly at an applicable nursing academic conference. This study has been approved following application to the ethical committee of the university with which the researchers are affiliated. The survey participant is a female speech-language-hearing therapist in her forties. As a result of the analysis, 6 categories were extracted consisting of 'measures to address appetite and aspiration pneumonia prevention', 'limitation of the care a therapist alone could provide', 'the all-inclusive patient- supportive care provided by nurses', 'expand the beneficial cooperation with nurses', 'providing education for nurses on the swallowing function utilizing videofluoroscopic examination of swallowing', 'enhancement of communication including conferences'. In order to improve the team performance, and for the teamwork competency necessary for the provision of safer care, mutual support is essential. As for the cooperation between nurses and therapists, this survey indicates that the maturing of the cooperation between professionals in order to improve nursing professionals' knowledge and enhance communication will lead to an improvement in the quality of the rehabilitation for cancer.Keywords: cancer rehabilitation, nurses, speech-language-hearing therapists, interprofessional work
Procedia PDF Downloads 1344785 Synchronization of Two Mobile Robots
Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez
Abstract:
It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.Keywords: robots, synchronization, bidirectional, coordinate navigation
Procedia PDF Downloads 3594784 Narrative Therapy as a Way of Terrorist Rehabilitation at Mohammad Bin Naif Counselling and Care Center: A Case Study
Authors: Yasser Almazrua
Abstract:
Terrorism is a multidimensional phenomenon that has increased recently. Many countries started combating terrorism through security forces; however, there has been relatively little attention given to rehabilitation programs for people involved in such terrorism acts. In Saudi Arabia, after facing so many terrorist attacks, they started understanding and countering terrorism differently by establishing Mohammad bin Naif Counselling and Care Center in 2006. The center now is considered one of the top experience centers in the world for terrorist rehabilitation and ideology correction. The center offers different programs such as training, educational, social, art and psychological programs. One of the approaches that have been used by psychological experts at the center is Narrative Therapy. It is a therapeutic approach that focuses on the ability of the client to identify their personal life story. The client during therapy works as a storyteller where he or she gets insight, meaning and better understanding of their own lives. Because each client at the center had a story, it can be better fit method for rehabilitation towards healing and personal development. The case describes a 34-years-old man who was involved in some terrorism activities locally by technically and financially supporting a terrorist group related to Al-Qaida. The beneficiary joined Mohammad bin Naif Counseling and Care Center after serving his sentence. Informed of consent has been given to the beneficiary before starting the therapeutic program. Both qualitative and quantitative data on the beneficiary are collected by self-reporting during the initial session, and by using a psychological measurement. The result found that the beneficiary was not insightful about himself, and he had a high level of repression which relatedly moved him to be targeted for recruitment in the terrorist group. With rehabilitation and by using the therapeutic approach, the beneficiary improved on the level of insight, specifically about himself and also about the experience. This case illustrates the importance of considering the effect of Narrative Therapy in terrorist rehabilitation programs.Keywords: narrative therapy, rehabilitation, Saudi Arabia, terrorism
Procedia PDF Downloads 2964783 Nutritional Profile and Food Intake Trends amongst Hospital Dieted Diabetic Eye Disease Patients of India
Authors: Parmeet Kaur, Nighat Yaseen Sofi, Shakti Kumar Gupta, Veena Pandey, Rajvaedhan Azad
Abstract:
Nutritional status and prevailing blood glucose level trends amongst hospitalized patients has been linked to clinical outcome. Therefore, the present study was undertaken to assess hospitalized Diabetic Eye Disease (DED) patients' anthropometric and dietary intake trends. DED patients with type 1 or 2 diabetes > 20 years were enrolled. Actual food intake was determined by weighed food record method. Mifflin St Joer predictive equation multiplied by a combined stress and activity factor of 1.3 was applied to estimate caloric needs. A questionnaire was further administered to obtain reasons of inadequate dietary intake. Results indicated validity of joint analyses of body mass index in combination with waist circumference for clinical risk prediction. Dietary data showed a significant difference (p < 0.0005) between average daily caloric and carbohydrate intake and actual daily caloric and carbohydrate needs. Mean fasting and post-prandial plasma glucose levels were 150.71 ± 72.200 mg/dL and 219.76 ± 97.365 mg/dL, respectively. Improvement in food delivery systems and nutrition educations were indicated for reducing plate waste and to enable better understanding of dietary aspects of diabetes management. A team approach of nurses, physicians and other health care providers is required besides the expertise of dietetics professional. To conclude, findings of the present study will be useful in planning nutritional care process (NCP) for optimizing glucose control as a component of quality medical nutrition therapy (MNT) in hospitalized DED patients.Keywords: nutritional status, diabetic eye disease, nutrition care process, medical nutrition therapy
Procedia PDF Downloads 3554782 Northern Nigeria Vaccine Direct Delivery System
Authors: Evelyn Castle, Adam Thompson
Abstract:
Background: In 2013, the Kano State Primary Health Care Management Board redesigned its Routine immunization supply chain from diffused pull to direct delivery push. It addressed issues around stockouts and reduced time spent by health facility staff collecting, and reporting on vaccine usage. The health care board sought the help of a 3PL for twice-monthly deliveries from its cold store to 484 facilities across 44 local governments. eHA’s Health Delivery Systems group formed a 3PL to serve 326 of these new facilities in partnership with the State. We focused on designing and implementing a technology system throughout. Basic methodologies: GIS Mapping: - Planning the delivery of vaccines to hundreds of health facilities requires detailed route planning for delivery vehicles. Mapping the road networks across Kano and Bauchi with a custom routing tool provided information for the optimization of deliveries. Reducing the number of kilometers driven each round by 20%, - reducing cost and delivery time. Direct Delivery Information System: - Vaccine Direct Deliveries are facilitated through pre-round planning (driven by health facility database, extensive GIS, and inventory workflow rules), manager and driver control panel customizing delivery routines and reporting, progress dashboard, schedules/routes, packing lists, delivery reports, and driver data collection applications. Move: Last Mile Logistics Management System: - MOVE has improved vaccine supply information management to be timely, accurate and actionable. Provides stock management workflow support, alerts management for cold chain exceptions/stock outs, and on-device analytics for health and supply chain staff. Software was built to be offline-first with user-validated interface and experience. Deployed to hundreds of vaccine storage site the improved information tools helps facilitate the process of system redesign and change management. Findings: - Stock-outs reduced from 90% to 33% - Redesigned current health systems and managing vaccine supply for 68% of Kano’s wards. - Near real time reporting and data availability to track stock. - Paperwork burdens of health staff have been dramatically reduced. - Medicine available when the community needs it. - Consistent vaccination dates for children under one to prevent polio, yellow fever, tetanus. - Higher immunization rates = Lower infection rates. - Hundreds of millions of Naira worth of vaccines successfully transported. - Fortnightly service to 326 facilities in 326 wards across 30 Local Government areas. - 6,031 cumulative deliveries. - Over 3.44 million doses transported. - Minimum travel distance covered in a round of delivery is 2000 kms & maximum of 6297 kms. - 153,409 kms travelled by 6 drivers. - 500 facilities in 326 wards. - Data captured and synchronized for the first time. - Data driven decision making now possible. Conclusion: eHA’s Vaccine Direct delivery has met challenges in Kano and Bauchi State and provided a reliable delivery service of vaccinations that ensure t health facilities can run vaccination clinics for children under one. eHA uses innovative technology that delivers vaccines from Northern Nigerian zonal stores straight to healthcare facilities. Helped healthcare workers spend less time managing supplies and more time delivering care, and will be rolled out nationally across Nigeria.Keywords: direct delivery information system, health delivery system, GIS mapping, Northern Nigeria, vaccines
Procedia PDF Downloads 3744781 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks
Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai
Abstract:
To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation
Procedia PDF Downloads 1234780 Novel Low-cost Bubble CPAP as an Alternative Non-invasive Oxygen Therapy for Newborn Infants with Respiratory Distress Syndrome in a Tertiary Level Neonatal Intensive Care Unit in the Philippines: A Single Blind Randomized Controlled Trial
Authors: Navid P Roodaki, Rochelle Abila, Daisy Evangeline Garcia
Abstract:
Background and Objective: Respiratory Distress Syndrome (RDS) among premature infants is a major causes of neonatal death. The use of Continuous Positive Airway Pressure (CPAP) has become a standard of care for preterm newborns with RDS hence cost-effective innovations are needed. This study compared a novel low-cost Bubble CPAP (bCPAP) device to ventilator driven CPAP in the treatment of RDS. Methods: This is a single-blind, randomized controlled trial done on May 2022 to October 2022 in a Level III Neonatal Intensive Care Unit in the Philippines. Preterm newborns (<36 weeks) with RDS were randomized to receive Vayu bCPAP device or Ventilator-derived CPAP. Arterial Blood Gases, Oxygen Saturation, administration of surfactant, and CPAP failure rates were measured. Results: Seventy preterm newborns were included. No differences were observed between the Ventilator driven CPAP and Vayu bCPAP on the PaO2 (97.51mmHg vs 97.37mmHg), So2 (97.08% vs 95.60%) levels, amount of surfactant administered between groups. There were no observed differences in CPAP failure rates between Vayu bPCAP (x̄ 3.23 days) and ventilator-driven CPAP (x̄ 2.98 days). However, a significant difference was noted on the CO2 level (40.32mmHg vs 50.70mmHg), which was higher among those hooked to Ventilator-driven CPAP (p 0.004). Conclusion: This study has shown that the novel low-cost bubble CPAP (Vayu bCPAP) can be used as an efficacious alternate non invasive oxygen therapy among preterm neonates with RDS, although the CO2 levels were higher among those hooked to ventilator driven CPAP, other outcome parameters measured showed that both devices are comparable. Recommendation: A multi-center or national study to account for geographic region, which may alter the outcomes of patients connected to different ventilatory support. Cost comparison between devices is also suggested. A mixed-method research assessing the experiences of health care professionals in assembling and utilizing the gadget is a second consideration.Keywords: bubble CPAP, ventilator-derived CPAP; infant, premature, respiratory distress syndrome
Procedia PDF Downloads 864779 The Impact of an Educational Program on Knowledge, Attitude and Practices of Healthcare Professionals towards Family Presence during Resuscitation in an Emergency Department at a Tertiary Care Setting, in Karachi, Pakistan
Authors: Shaista Meghani, Rozina Karmaliani, Khairulnissa Ajani, Shireen Shahzad, Nadeem Ullah Khan
Abstract:
Background: The concept of Family Presence During Resuscitation (FPDR) is gradually gaining recognition in western countries, however, it is rarely considered in South Asian countries including Pakistan. Over time, patients’ and families’ rights have gained recognition and healthcare has progressed to become more patient-family centered. Objectives: The objective of this study was to evaluate the impact of an educational program on the Knowledge, Attitude, and Practices (KAP) of healthcare professionals (HCPs) towards FPDR in Emergency Department (ED), at a tertiary care setting, in Karachi, Pakistan. Methods: This was a Pre-test and Post-test study design. A convenient universal sampling was done, and all ED nurses and physicians with more than one year of experience were eligible. The intervention included one-hour training sessions for physicians (three sessions) and nurses (eight sessions), The KAP of nurses and physicians were assessed immediately after (post-test I), and two weeks(post-test II) after the intervention using a pretested questionnaire. Results: The findings of the study revealed that the mean scores of knowledge and attitude of HCPs at both time points were statistically significant (p-value=<0.001), however, an insignificant difference was found on practice of FPDR (p-value=>0.05). Conclusion: The study findings recommend that the educational program on FPDR for HCPs needs to be offered on an ongoing basis. Moreover, training modules need to be developed for the staff, and formal guidelines need to be proposed for FPDR, through a multidisciplinary team approach.Keywords: family presence, cardiopulmonary resuscitation, attitude, education, practices, health care professionals
Procedia PDF Downloads 1904778 A Tool to Represent People Approach to the Use of Pharmaceuticals and Related Criticality and Needs: A Territory Experience
Authors: Barbara Pittau, Piergiorgio Palla, Antonio Mastino
Abstract:
Communication is fundamental to health education. The proper use of medicinal products is a crucial aspect of the health of citizens that affects both safety and health care spending. Therefore, encouraging/promoting communication, concerning the importance of proper use of pharmaceuticals, has substantial implications in terms of individual health, health care, and health care system sustainability. In view of these considerations, in the context of two projects, one of which is still in progress, a relational database-backed web application named COLLABORAFARMACISOLA has been designed and developed as a tool to analyze and visualize how people approach the use of medicinal products, with the aim of improving and enhancing communication efficacy. The software application is being used to collect information (anonymously and voluntarily) from the citizens of Sardinia, an Italian region, regarding their knowledge, experiences, and opinions towards pharmaceuticals. This study that was conducted to date on thousand of interviewed people, has focused on different aspects such as: the treatment interruption and the "self-prescription” without medical consultation, the attention paid to reading the leaflets, the awareness of the economic value of the pharmaceuticals, the importance of avoiding the waste of medicinal products and the attitudes towards the use of generics. To this purpose, our software application provides a set of ad hoc parsing routines, to store information into the structure of a relational database and to process and visualize it through a set of interactive tools aimed to emphasize the findings and the insights obtained. The results of our preliminary analysis show the efficacy of the awareness plan and, at the same time, the criticality and the needs of the territory under examination. The ultimate goal of our study is to provide a contribution to the community by improving communication that can result in a benefit for public health in a context strictly connected to the reality of the territory.Keywords: communication, pharmaceuticals, public health, relational database, tool, web application
Procedia PDF Downloads 1384777 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection
Authors: Mohsen Hasirian, Amir Shahab Shahabi
Abstract:
Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks
Procedia PDF Downloads 414776 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 894775 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 944774 The Recommended Summary Plan for Emergency Care and Treatment (ReSPECT) Process: An Audit of Its Utilisation on a UK Tertiary Specialist Intensive Care Unit
Authors: Gokulan Vethanayakam, Daniel Aston
Abstract:
Introduction: The ReSPECT process supports healthcare professionals when making patient-centered decisions in the event of an emergency. It has been widely adopted by the NHS in England and allows patients to express thoughts and wishes about treatments and outcomes that they consider acceptable. It includes (but is not limited to) cardiopulmonary resuscitation decisions. ReSPECT conversations should ideally occur prior to ICU admission and should be documented in the eight sections of the nationally-standardised ReSPECT form. This audit evaluated the use of ReSPECT on a busy cardiothoracic ICU in an NHS Trust where established policies advocating its use exist. Methods: This audit was a retrospective review of ReSPECT forms for a sample of high-risk patients admitted to ICU at the Royal Papworth Hospital between January 2021 and March 2022. Patients all received one of the following interventions: Veno-Venous Extra-Corporeal Membrane Oxygenation (VV-ECMO) for severe respiratory failure (retrieved via the national ECMO service); cardiac or pulmonary transplantation-related surgical procedures (including organ transplants and Ventricular Assist Device (VAD) implantation); or elective non-transplant cardiac surgery. The quality of documentation on ReSPECT forms was evaluated using national standards and a graded ranking tool devised by the authors which was used to assess narrative aspects of the forms. Quality was ranked as A (excellent) to D (poor). Results: Of 230 patients (74 VV-ECMO, 104 transplant, 52 elective non-transplant surgery), 43 (18.7%) had a ReSPECT form and only one (0.43%) patient had a ReSPECT form completed prior to ICU admission. Of the 43 forms completed, 38 (88.4%) were completed due to the commencement of End of Life (EoL) care. No non-transplant surgical patients included in the audit had a ReSPECT form. There was documentation of balance of care (section 4a), CPR status (section 4c), capacity assessment (section 5), and patient involvement in completing the form (section 6a) on all 43 forms. Of the 34 patients assessed as lacking capacity to make decisions, only 22 (64.7%) had reasons documented. Other sections were variably completed; 29 (67.4%) forms had relevant background information included to a good standard (section 2a). Clinical guidance for the patient (section 4b) was given in 25 (58.1%), of which 11 stated the rationale that underpinned it. Seven forms (16.3%) contained information in an inappropriate section. In a comparison of ReSPECT forms completed ahead of an EoL trigger with those completed when EoL care began, there was a higher number of entries in section 3 (considering patient’s values/fears) that were assessed at grades A-B in the former group (p = 0.014), suggesting higher quality. Similarly, forms from the transplant group contained higher quality information in section 3 than those from the VV-ECMO group (p = 0.0005). Conclusions: Utilisation of the ReSPECT process in high-risk patients is yet to be well-adopted in this trust. Teams who meet patients before hospital admission for transplant or high-risk surgery should be encouraged to engage with the ReSPECT process at this point in the patient's journey. VV-ECMO retrieval teams should consider ReSPECT conversations with patients’ relatives at the time of retrieval.Keywords: audit, critical care, end of life, ICU, ReSPECT, resuscitation
Procedia PDF Downloads 664773 Causes of Death in Neuromuscular Disease Patients: 15-Year Experience in a Tertiary Care Hospital
Authors: Po-Ching Chou, Wen-Chen Liang, I. Chen Chen, Jong-Hau Hsu, Yuh-Jyh Jong
Abstract:
Background:Cardiopulmonary complications seem to cause high morbidity and mortality in patients with neuromuscular diseases (NMD) but so far there is no domestic data reported in Taiwan. We, therefore attempted to analyze the factors to cause the death in NMD patients from our cohort. Methods:From 1998 to 2013, we retrospectively collected the information of the NMD patients treated and followed up in Kaohsiung Medical University Hospital. Forty-two patients with NMD who expired during these fifteen years were enrolled. The medical records of these patients were reviewed and the causes of death and the associated affecting factors were analyzed. Results:Eighteen patients with NMD (mean age=13.3, SD=12.4) with complete medical record and detailed information were finally included in this study, including spinal muscular atrophy (SMA) (n=9, 7/9: type 1), Duchenne muscular dystrophy (n=6), congenital muscular dystrophy (n=1), carnitine acyl-carnitine translocase (CACT) deficiency (n=1) and spinal muscular atrophy with respiratory distress (SMARD)(n=1). The place of death was in ICU (n=11, 61%), emergency room (n=3, 16.6%) or home (n=4, 22.2%). For SMA type 1 patients, most of them (71.4%, 5/7) died in emergency room or home and the other two expired during an ICU admission. The causes of death included acute respiratory failure due to pneumonia (n=13, 72.2 %), ventilator failure or dislocation (n=2, 11.1%), suffocation/choking (n=2, 11.1%), and heart failure with hypertrophic cardiomyopathy (n=1, 5.55%). Among the 15 patients died of respiratory failure or choking, 73.3% of the patients (n=11) received no ventilator care at home. 80% of the patients (n=12) received no cough assist at home. The patient died of cardiomyopathy received no medications for heart failure until the last admission. Conclusion: Respiratory failure and choking are the leading causes of death in NMD patients. Appropriate respiratory support and airway clearance play the critical role to reduce the mortality.Keywords: neuromuscular disease, cause of death, tertiary care hospital, medical sciences
Procedia PDF Downloads 5334772 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)
Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat
Abstract:
The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring
Procedia PDF Downloads 3994771 Experiences and Perceptions of Parents Raising Children with Autism
Authors: Tamene Keneni, Tibebu Yohannes
Abstract:
The prevalence of autism spectrum disorder (ASD) in general and autism in particular is on the rise globally, and the need for evidence-based intervention and care for children with autism has grown, too. However, evidence on autism is scanty in developing countries, including Ethiopia. With the aim to help fill the gap and paucity in research into the issue, the main purpose of this study is to explore, better understand, and document the experiences and perceptions of parents of children with autism. To this end, we used a qualitative survey to collect data from a convenient sample of parents raising a child with autism. The data collected were subjected to qualitative analysis that yielded several themes and subthemes, including late diagnosis, parents’ reactions to diagnosis, sources of information during and after diagnosis, differing reactions to having a child with autism from siblings, extended family members, and the larger community, attribution of autism to several causes by the community, lack of recognition and open discussion of autism and lack of appropriated public educational and health care services for children with autism and their parents. The themes and subthemes identified were discussed in light of existing literature, and implications for practice were drawn.Keywords: ASD, autism, children with autism, raising children with autism
Procedia PDF Downloads 1714770 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 1284769 A Study on Vulnerability of Alahsa Governorate to Generate Urban Heat Islands
Authors: Ilham S. M. Elsayed
Abstract:
The purpose of this study is to investigate Alahsa Governorate status and its vulnerability to generate urban heat islands. Alahsa Governorate is a famous oasis in the Arabic Peninsula including several oil centers. Extensive literature review was done to collect previous relative data on the urban heat island of Alahsa Governorate. Data used for the purpose of this research were collected from authorized bodies who control weather station networks over Alahsa Governorate, Eastern Province, Saudi Arabia. Although, the number of weather station networks within the region is very limited and the analysis using GIS software and its techniques is difficult and limited, the data analyzed confirm an increase in temperature for more than 2 °C from 2004 to 2014. Such increase is considerable whenever human health and comfort are the concern. The increase of temperature within one decade confirms the availability of urban heat islands. The study concludes that, Alahsa Governorate is vulnerable to create urban heat islands and more attention should be drawn to strategic planning of the governorate that is developing with a high pace and considerable increasing levels of urbanization.Keywords: Alahsa Governorate, population density, Urban Heat Island, weather station
Procedia PDF Downloads 254