Search results for: Mohammad Arifur Rahman
68 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications
Authors: Fawad Ali, Mohammad Albakri
Abstract:
The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization
Procedia PDF Downloads 2167 Unravelling the Relationship Between Maternal and Fetal ACE2 Gene Polymorphism and Preeclampsia Risk
Authors: Sonia Tamanna, Akramul Hassan, Mohammad Shakil Mahmood, Farzana Ansari, Gowhar Rashid, Mir Fahim Faisal, M. Zakir Hossain Howlader
Abstract:
Background: Preeclampsia (PE), a pregnancy-specific hypertensive disorder, significantly impacts maternal and fetal health. It is particularly prevalent in underdeveloped countries and is linked to preterm delivery and fetal growth. The renin-angiotensin system (RAS) plays a crucial role in ensuring a successful pregnancy outcome, with Angiotensin-Converting Enzyme 2 (ACE2) being a key component. ACE2 converts ANG II to Ang-(1-7), offering protection against ANG II-induced stress and inflammation while regulating blood pressure and osmotic balance during pregnancy. The reduced maternal plasma angiotensin-converting enzyme 2 (ACE2) seen in preeclampsia might contribute to its pathogenesis. However, there has been a dearth of comprehensive research into the association between ACE2 gene polymorphism and preeclampsia. In the South Asian population, hypertension is strongly linked to two SNPs: rs2285666 and rs879922. This genotype was therefore considered, and the possible association of maternal and fetal ACE2 gene polymorphism with preeclampsia within the Bangladeshi population was evaluated. Method: DNA was extracted from peripheral white blood cells (WBCs) using the organic method, and SNP genotyping was done via PCR-RFLP. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using logistic regression to determine relative risk. Result: A comprehensive case-control study was conducted on 51 PE patients and their infants, along with 56 control subjects and their infants. Maternal single nuvleotide polymorphisms (SNP) (rs2285666) analysis revealed a strong association between the TT genotype and preeclampsia, with a four-fold increased risk in mothers (P=0.024, OR=4.00, 95% CI=1.36-11.37) compared to their ancestral genotype CC. However, the CT genotype (rs2285666) showed no significant difference (P=0.46, OR=1.54, 95% CI=0.57-4.14). Notably, no significant correlation was found in infants, regardless of their gender. For rs879922, no significant association was observed in both mothers and infants. This pioneering study suggests that mothers carrying the ACE2 gene variant rs2285666 (TT allele) may be at higher risk for preeclampsia, potentially influencing hypertension characteristics, whereas rs879922 does not appear to be associated with developing preeclampsia. Conclusion: This study sheds light on the role of ACE2 gene polymorphism, particularly the rs2285666 TT allele, in maternal susceptibility to preeclampsia. However, rs879922 does not appear to be linked to the risk of PE. This research contributes to our understanding of the genetic underpinnings of preeclampsia, offering insights into potential avenues for prevention and management.Keywords: ACE2, PCR-RFLP, preeclampsia, single nuvleotide polymorphisms (SNPs)
Procedia PDF Downloads 6166 British Female Muslim Converts: An Investigation into Their De-Conversions from Islam
Authors: Mona Alyedreessy
Abstract:
This study, which is based on a qualitative study sample of thirty-four British converts from different ages, ethnicities, social classes, areas and religious backgrounds in London, investigates the common challenges, problems and abuse in the name of Islam that many British female Muslim converts experienced during their time as Muslims, which caused them to leave the faith. It is an important study, as it creates an awareness of the weaknesses found in western Muslim societies and in various Islamic educational programs that causes people to leave Islam and contribute towards its negative reputation in the media. The women in this study shared common problems regarding gender and racial discrimination, identity development, feminism, marriage, parenting, Muslim culture, isolation, extremism, belonging and practising Islam in both Muslim and non-Muslim societies with differing sacrifices and consequences that caused them to de-convert. The study argues that many of the personal, religious and social problems female Muslim converts experience are due to a lack of knowledge about Islam and their rights as Muslim women, which often results in them being vulnerable and influenced by the opinions, attitudes and actions of uneducated, abusive, non-practising and extremist Muslims. For example, it was found that young female converts in particular were often taken advantage of and manipulated into believing that many negative actions displayed by patriarchal Muslim husbands were a part of Islam. This created much confusion, especially when their husbands used specific Quran texts and Hadiths to justify their abuse, authority and attitudes that made them miserable. As a result and based on the positive experiences of some converts, the study found that obtaining a broad Islamic education that started with an intimate study of the Prophet Muhammad’s biography alongside being guided by the teachings of western Muslim scholars contributed greatly towards a more enjoyable conversion journey, as women were able to identify and avoid problematic Muslims and abuse in the name of Islam. This in turn helped to create a healthier family unit and Muslim society. Those who enjoyed being Muslims were able to create a balanced western Muslim identity by negotiating and applying their own morals and western values to their understanding of The Prophet’s biography and The Quran and integrated Islamic values into their own secular western environments that were free from foreign cultural practices. The outcomes of the study also highlight some effective modern approaches to da’wah based on the teachings of The Prophet Mohammad and other prophets for young Arab and Asian Muslims who marry, study and live among non-Muslims and converts.Keywords: abuse, apostasy, converts, Muslims
Procedia PDF Downloads 23265 The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)
Authors: Seyed Ali Mohammad, Modarres Sanavy, Hamed Keshavarz, Ali Mokhtassi-Bidgoli
Abstract:
One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils.Keywords: fresh yield, peppermint, synthetic nitrogen, vermicompost, water stress
Procedia PDF Downloads 21764 To Compare the Visual Outcome, Safety and Efficacy of Phacoemulsification and Small-Incision Cataract Surgery (SICS) at CEITC, Bangladesh
Authors: Rajib Husain, Munirujzaman Osmani, Mohammad Shamsal Islam
Abstract:
Purpose: To compare the safety, efficacy and visual outcome of phacoemulsification vs. manual small-incision cataract surgery (SICS) for the treatment of cataract in Bangladesh. Objectives: 1. To assess the Visual outcome after cataract surgery 2. To understand the post-operative complications and early rehabilitation 3. To identified which surgical procedure more attractive to the patients 4. To identify which surgical procedure is occurred fewer complications. 5. To find out the socio-economic and demographic characteristics of study patients Setting: Chittagong Eye Infirmary and Training Complex, Chittagong, Bangladesh. Design: Retrospective, randomised comparison of 300 patients with visually significant cataracts. Method: The present study was designed as a retrospective hospital-based research. The sample size was 300 and study period was from July, 2012 to July, 2013 and assigned randomly to receive either phacoemulsification or manual small-incision cataract surgery (SICS). Preoperative and post-operative data were collected through a well designed collection format. Three follow-up were done; i) during discharge ii) 1-3 weeks & iii) 4-11 weeks post operatively. All preoperative and surgical complications, uncorrected and best-corrected visual acuity (BCVA) and astigmatism were taken into consideration for comparison of outcome Result: Nearly 95% patients were more than 40 years of age. About 52% patients were female, and 48% were male. 52% (N=157) patients came to operate their first eye where 48% (N=143) patients were visited again to operate their second eye. Postoperatively, five eyes (3.33%) developed corneal oedema with >10 Descemets folds, and six eyes (4%) had corneal oedema with <10 Descemets folds for Phacoemulsification surgeries. For SICS surgeries, seven eyes (4.66%) developed corneal oedema with >10 Descemets folds and eight eyes (5.33%) had corneal oedema with < 10 descemets folds. However, both the uncorrected and corrected (4-11 weeks) visual acuities were better in the eyes that had phacoemulsification (p=0.02 and p=0.03), and there was less astigmatism (p=0.001) at 4-11 weeks in the eye that had phacoemulsification. Best-corrected visual acuity (BCVA) of final follow-up 95% (N=253) had a good outcome, borderline 3.10% (N=40) and poor outcome was 1.6% (N=7). The individual surgeon outcome were closer, 95% (BCVA) in SICS and 96% (BCVA) in Phacoemulsification at 4-11 weeks follow-up respectively. Conclusion: outcome of cataract surgery both Phacoemulsification and SICS in CEITC was more satisfactory according to who norms. Both Phacoemulsification and manual small-incision cataract surgery (SICS) shows excellent visual outcomes with low complication rates and good rehabilitation. Phacoemulsification is significantly faster, and modern technology based surgical procedure for cataract treatment.Keywords: phacoemulsification, SICS, cataract, Bangladesh, visual outcome of SICS
Procedia PDF Downloads 34963 Investigation of FOXM1 Gene Expression in Breast Cancer and Its Relationship with Mir-216B-5P Expression Level
Authors: Ramin Mehdiabadi, Neda Menbari, Mohammad Nazir Menbari
Abstract:
As a pressing public health concern, breast cancer stands as the predominant oncological diagnosis and principal cause of cancer-related mortality among women globally, accounting for 11.7% of new cancer incidences and 6.9% of cancer-related deaths. The annual figures indicate that approximately 230,480 women are diagnosed with breast cancer in the United States alone, with 39,520 succumbing to the disease. While developed economies have reported a deceleration in both incidence and mortality rates across various forms of cancer, including breast cancer, emerging and low-income economies manifest a contrary escalation, largely attributable to lifestyle-mediated risk factors such as tobacco usage, physical inactivity, and high caloric intake. Breast cancer is distinctly characterized by molecular heterogeneity, manifesting in specific subtypes delineated by biomarkers—Estrogen Receptors (ER), Progesterone Receptors (PR), and Human Epidermal Growth Factor Receptor 2 (HER2). These subtypes, comprising Luminal A, Luminal B, HER2-enriched, triple-negative/basal-like, and normal-like, necessitate nuanced, subtype-specific therapeutic regimens, thereby challenging the applicability of generalized treatment protocols. Within this molecular complexity, the transcription factor Forkhead Box M1 (FoxM1) has garnered attention as a significant driver of cellular proliferation, tumorigenesis, metastatic progression, and treatment resistance in a spectrum of human malignancies, including breast cancer. Concurrently, microRNAs (miRs), specifically miR-216b-5p, have been identified as post-transcriptional gene expression regulators and potential tumor suppressors. The overarching objective of this academic investigation is to explicate the multifaceted interrelationship between FoxM1 and miR-216b-5p across the disparate molecular subtypes of breast cancer. Employing a methodologically rigorous, interdisciplinary research design that incorporates cutting-edge molecular biology techniques, sophisticated bioinformatics analytics, and exhaustive meta-analyses of extant clinical data, this scholarly endeavor aims to unveil novel biomarker-specific therapeutic pathways. By doing so, this research is positioned to make a seminal contribution to the advancement of personalized, efficacious, and minimally toxic treatment paradigms, thus profoundly impacting the global efforts to ameliorate the burden of breast cancer.Keywords: breast cancer, fox m1, microRNAs, mir-216b-5p, gene expression
Procedia PDF Downloads 7862 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation
Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering
Abstract:
Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature
Procedia PDF Downloads 16061 Advantages of Computer Navigation in Knee Arthroplasty
Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich
Abstract:
Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.Keywords: knee joint, arthroplasty, computer navigation, advantages
Procedia PDF Downloads 9060 Evaluation of Antidiabetic Activity of a Combination Extract of Nigella Sativa & Cinnamomum Cassia in Streptozotocin Induced Type-I Diabetic Rats
Authors: Ginpreet Kaur, Mohammad Yasir Usmani, Mohammed Kamil Khan
Abstract:
Diabetes mellitus is a disease with a high global burden and results in significant morbidity and mortality. In India, the number of people suffering with diabetes is expected to rise from 19 to 57 million in 2025. At present, interest in herbal remedies is growing to reduce the side effects associated with conventional dosage form like oral hypoglycemic agents and insulin for the treatment of diabetes mellitus. Our aim was to investigate the antidiabetic activities of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats. Thus, the present study was undertaken to screen postprandial glucose excursion potential through α- glucosidase inhibitory activity (In Vitro) and effect of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats (In Vivo). In addition changes in body weight, plasma glucose, lipid profile and kidney profile were also determined. The IC50 values for both extract and Acarbose was calculated by extrapolation method. Combinatorial extract of N. sativa & C. cassia at different dosages (100 and 200 mg/kg orally) and Metformin (50 mg/kg orally) as the standard drug was administered for 28 days and then biochemical estimation, body weights and OGTT (Oral glucose tolerance test) were determined. Histopathological studies were also performed on kidney and pancreatic tissue. In In-Vitro the combinatorial extract shows much more inhibiting effect than the individual extracts. The results reveals that combinatorial extract of N. sativa & C. cassia has shown significant decrease in plasma glucose (p<0.0001), total cholesterol and LDL levels when compared with the STZ group The decreasing level of BUN and creatinine revealed the protection of N. sativa & C. cassia extracts against nephropathy associated with diabetes. Combination of N. sativa & C. cassia significantly improved glucose tolerance to exogenously administered glucose (2 g/kg) after 60, 90 and 120 min interval on OGTT in high dose streptozotocin induced diabetic rats compared with the untreated control group. Histopathological studies shown that treatment with N. sativa & C. cassia extract alone and in combination restored pancreatic tissue integrity and was able to regenerate the STZ damaged pancreatic β cells. Thus, the present study reveals that combination of N. sativa & C. cassia extract has significant α- glucosidase inhibitory activity and thus has great potential as a new source for diabetes treatment.Keywords: lipid levels, OGTT, diabetes, herbs, glucosidase
Procedia PDF Downloads 43259 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model
Authors: Mohammad Zamani, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.Keywords: circular vertical, spillway, numerical model, boundary conditions
Procedia PDF Downloads 8658 Risk Based Inspection and Proactive Maintenance for Civil and Structural Assets in Oil and Gas Plants
Authors: Mohammad Nazri Mustafa, Sh Norliza Sy Salim, Pedram Hatami Abdullah
Abstract:
Civil and structural assets normally have an average of more than 30 years of design life. Adding to this advantage, the assets are normally subjected to slow degradation process. Due to the fact that repair and strengthening work for these assets are normally not dependent on plant shut down, the maintenance and integrity restoration of these assets are mostly done based on “as required” and “run to failure” basis. However unlike other industries, the exposure in oil and gas environment is harsher as the result of corrosive soil and groundwater, chemical spill, frequent wetting and drying, icing and de-icing, steam and heat, etc. Due to this type of exposure and the increasing level of structural defects and rectification in line with the increasing age of plants, assets integrity assessment requires a more defined scope and procedures that needs to be based on risk and assets criticality. This leads to the establishment of risk based inspection and proactive maintenance procedure for civil and structural assets. To date there is hardly any procedure and guideline as far as integrity assessment and systematic inspection and maintenance of civil and structural assets (onshore) are concerned. Group Technical Solutions has developed a procedure and guideline that takes into consideration credible failure scenario, assets risk and criticality from process safety and structural engineering perspective, structural importance, modeling and analysis among others. Detailed inspection that includes destructive and non-destructive tests (DT & NDT) and structural monitoring is also being performed to quantify defects, assess severity and impact on integrity as well as identify the timeline for integrity restoration. Each defect and its credible failure scenario is assessed against the risk on people, environment, reputation and production loss. This technical paper is intended to share on the established procedure and guideline and their execution in oil & gas plants. In line with the overall roadmap, the procedure and guideline will form part of specialized solutions to increase production and to meet the “Operational Excellence” target while extending service life of civil and structural assets. As the result of implementation, the management of civil and structural assets is now more systematically done and the “fire-fighting” mode of maintenance is being gradually phased out and replaced by a proactive and preventive approach. This technical paper will also set the criteria and pose the challenge to the industry for innovative repair and strengthening methods for civil & structural assets in oil & gas environment, in line with safety, constructability and continuous modification and revamp of plant facilities to meet production demand.Keywords: assets criticality, credible failure scenario, proactive and preventive maintenance, risk based inspection
Procedia PDF Downloads 40557 Exploring Tweeters’ Concerns and Opinions about FIFA Arab Cup 2021: An Investigation Study
Authors: Md. Rafiul Biswas, Uzair Shah, Mohammad Alkayal, Zubair Shah, Othman Althawadi, Kamila Swart
Abstract:
Background: Social media platforms play a significant role in the mediated consumption of sport, especially so for sport mega-event. The characteristics of Twitter data (e.g., user mentions, retweets, likes, #hashtag) accumulate the users in one ground and spread information widely and quickly. Analysis of Twitter data can reflect the public attitudes, behavior, and sentiment toward a specific event on a larger scale than traditional surveys. Qatar is going to be the first Arab country to host the mega sports event FIFA World Cup 2022 (Q22). Qatar has hosted the FIFA Arab Cup 2021 (FAC21) to serve as a preparation for the mega-event. Objectives: This study investigates public sentiments and experiences about FAC21 and provides an insight to enhance the public experiences for the upcoming Q22. Method: FCA21-related tweets were downloaded using Twitter Academic research API between 01 October 2021 to 18 February 2022. Tweets were divided into three different periods: before T1 (01 Oct 2021 to 29 Nov 2021), during T2 (30 Nov 2021 -18 Dec 2021), and after the FAC21 T3 (19 Dec 2021-18 Feb 2022). The collected tweets were preprocessed in several steps to prepare for analysis; (1) removed duplicate and retweets, (2) removed emojis, punctuation, and stop words (3) normalized tweets using word lemmatization. Then, rule-based classification was applied to remove irrelevant tweets. Next, the twitter-XLM-roBERTa-base model from Huggingface was applied to identify the sentiment in the tweets. Further, state-of-the-art BertTopic modeling will be applied to identify trending topics over different periods. Results: We downloaded 8,669,875 Tweets posted by 2728220 unique users in different languages. Of those, 819,813 unique English tweets were selected in this study. After splitting into three periods, 541630, 138876, and 139307 were from T1, T2, and T3, respectively. Most of the sentiments were neutral, around 60% in different periods. However, the rate of negative sentiment (23%) was high compared to positive sentiment (18%). The analysis indicates negative concerns about FAC21. Therefore, we will apply BerTopic to identify public concerns. This study will permit the investigation of people’s expectations before FAC21 (e.g., stadium, transportation, accommodation, visa, tickets, travel, and other facilities) and ascertain whether these were met. Moreover, it will highlight public expectations and concerns. The findings of this study can assist the event organizers in enhancing implementation plans for Q22. Furthermore, this study can support policymakers with aligning strategies and plans to leverage outstanding outcomes.Keywords: FIFA Arab Cup, FIFA, Twitter, machine learning
Procedia PDF Downloads 10156 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design
Authors: Mohammad Bagher Anvari, Arman Shojaei
Abstract:
Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.Keywords: incremental launching, bridge construction, finite element model, optimization
Procedia PDF Downloads 10455 God, The Master Programmer: The Relationship Between God and Computers
Authors: Mohammad Sabbagh
Abstract:
Anyone who reads the Torah or the Quran learns that GOD created everything that is around us, seen and unseen, in six days. Within HIS plan of creation, HE placed for us a key proof of HIS existence which is essentially computers and the ability to program them. Digital computer programming began with binary instructions, which eventually evolved to what is known as high-level programming languages. Any programmer in our modern time can attest that you are essentially giving the computer commands by words and when the program is compiled, whatever is processed as output is limited to what the computer was given as an ability and furthermore as an instruction. So one can deduce that GOD created everything around us with HIS words, programming everything around in six days, just like how we can program a virtual world on the computer. GOD did mention in the Quran that one day where GOD’s throne is, is 1000 years of what we count; therefore, one might understand that GOD spoke non-stop for 6000 years of what we count, and gave everything it’s the function, attributes, class, methods and interactions. Similar to what we do in object-oriented programming. Of course, GOD has the higher example, and what HE created is much more than OOP. So when GOD said that everything is already predetermined, it is because any input, whether physical, spiritual or by thought, is outputted by any of HIS creatures, the answer has already been programmed. Any path, any thought, any idea has already been laid out with a reaction to any decision an inputter makes. Exalted is GOD!. GOD refers to HIMSELF as The Fastest Accountant in The Quran; the Arabic word that was used is close to processor or calculator. If you create a 3D simulation of a supernova explosion to understand how GOD produces certain elements and fuses protons together to spread more of HIS blessings around HIS skies; in 2022 you are going to require one of the strongest, fastest, most capable supercomputers of the world that has a theoretical speed of 50 petaFLOPS to accomplish that. In other words, the ability to perform one quadrillion (1015) floating-point operations per second. A number a human cannot even fathom. To put in more of a perspective, GOD is calculating when the computer is going through those 50 petaFLOPS calculations per second and HE is also calculating all the physics of every atom and what is smaller than that in all the actual explosion, and it’s all in truth. When GOD said HE created the world in truth, one of the meanings a person can understand is that when certain things occur around you, whether how a car crashes or how a tree grows; there is a science and a way to understand it, and whatever programming or science you deduce from whatever event you observed, it can relate to other similar events. That is why GOD might have said in The Quran that it is the people of knowledge, scholars, or scientist that fears GOD the most! One thing that is essential for us to keep up with what the computer is doing and for us to track our progress along with any errors is we incorporate logging mechanisms and backups. GOD in The Quran said that ‘WE used to copy what you used to do’. Essentially as the world is running, think of it as an interactive movie that is being played out in front of you, in a full-immersive non-virtual reality setting. GOD is recording it, from every angle to every thought, to every action. This brings the idea of how scary the Day of Judgment will be when one might realize that it’s going to be a fully immersive video when we would be getting and reading our book.Keywords: programming, the Quran, object orientation, computers and humans, GOD
Procedia PDF Downloads 10754 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres
Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif
Abstract:
With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite
Procedia PDF Downloads 25553 Capacity of Cold-Formed Steel Warping-Restrained Members Subjected to Combined Axial Compressive Load and Bending
Authors: Maryam Hasanali, Syed Mohammad Mojtabaei, Iman Hajirasouliha, G. Charles Clifton, James B. P. Lim
Abstract:
Cold-formed steel (CFS) elements are increasingly being used as main load-bearing components in the modern construction industry, including low- to mid-rise buildings. In typical multi-storey buildings, CFS structural members act as beam-column elements since they are exposed to combined axial compression and bending actions, both in moment-resisting frames and stud wall systems. Current design specifications, including the American Iron and Steel Institute (AISI S100) and the Australian/New Zealand Standard (AS/NZS 4600), neglect the beneficial effects of warping-restrained boundary conditions in the design of beam-column elements. Furthermore, while a non-linear relationship governs the interaction of axial compression and bending, the combined effect of these actions is taken into account through a simplified linear expression combining pure axial and flexural strengths. This paper aims to evaluate the reliability of the well-known Direct Strength Method (DSM) as well as design proposals found in the literature to provide a better understanding of the efficiency of the code-prescribed linear interaction equation in the strength predictions of CFS beam columns and the effects of warping-restrained boundary conditions on their behavior. To this end, the experimentally validated finite element (FE) models of CFS elements under compression and bending were developed in ABAQUS software, which accounts for both non-linear material properties and geometric imperfections. The validated models were then used for a comprehensive parametric study containing 270 FE models, covering a wide range of key design parameters, such as length (i.e., 0.5, 1.5, and 3 m), thickness (i.e., 1, 2, and 4 mm) and cross-sectional dimensions under ten different load eccentricity levels. The results of this parametric study demonstrated that using the DSM led to the most conservative strength predictions for beam-column members by up to 55%, depending on the element’s length and thickness. This can be sourced by the errors associated with (i) the absence of warping-restrained boundary condition effects, (ii) equations for the calculations of buckling loads, and (iii) the linear interaction equation. While the influence of warping restraint is generally less than 6%, the code suggested interaction equation led to an average error of 4% to 22%, based on the element lengths. This paper highlights the need to provide more reliable design solutions for CFS beam-column elements for practical design purposes.Keywords: beam-columns, cold-formed steel, finite element model, interaction equation, warping-restrained boundary conditions
Procedia PDF Downloads 10552 Prediction of Outcome after Endovascular Thrombectomy for Anterior and Posterior Ischemic Stroke: ASPECTS on CT
Authors: Angela T. H. Kwan, Wenjun Liang, Jack Wellington, Mohammad Mofatteh, Thanh N. Nguyen, Pingzhong Fu, Juanmei Chen, Zile Yan, Weijuan Wu, Yongting Zhou, Shuiquan Yang, Sijie Zhou, Yimin Chen
Abstract:
Background: Endovascular Therapy (EVT)—in the form of mechanical thrombectomy—following intravenous thrombolysis is the standard gold treatment for patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO). It is well established that an ASPECTS ≥ 7 is associated with an increased likelihood of positive post-EVT outcomes, as compared to an ASPECTS < 7. There is also prognostic utility in coupling posterior circulation ASPECTS (pc-ASPECTS) with magnetic resonance imaging for evaluating the post-EVT functional outcome. However, the value of pc-ASPECTS applied to CT must be explored further to determine its usefulness in predicting functional outcomes following EVT. Objective: In this study, we aimed to determine whether pc-ASPECTS on CT can predict post-EVT functional outcomes among patients with AIS due to LVO. Methods: A total of 247 consecutive patients aged 18 and over receiving EVT for LVO-related AIS were recruited into a prospective database. The data were retrospectively analyzed between March 2019 to February 2022 from two comprehensive tertiary care stroke centers: Foshan Sanshui District People’s Hospital and First People's Hospital of Foshan in China. Patient parameters included EVT within 24hrs of symptom onset, premorbid modified Rankin Scale (mRS) ≤ 2, presence of distal and terminal cerebral blood vessel occlusion, and subsequent 24–72-hour post-stroke onset CT scan. Univariate comparisons were performed using the Fisher exact test or χ2 test for categorical variables and the Mann–Whitney U test for continuous variables. A p-value of ≤ 0.05 was statistically significant. Results: A total of 247 patients met the inclusion criteria; however, 3 were excluded due to the absence of post-CTs and 8 for pre-EVT ASPECTS < 7. Overall, 236 individuals were examined: 196 anterior circulation ischemic strokes and 40 posterior strokes of basilar artery occlusion. We found that both baseline post- and pc-ASPECTS ≥ 7 serve as strong positive markers of favorable outcomes at 90 days post-EVT. Moreover, lower rates of inpatient mortality/hospice discharge, 90-day mortality, and 90-day poor outcome were observed. Moreover, patients in the post-ASPECTS ≥ 7 anterior circulation group had shorter door-to-recanalization time (DRT), puncture-to-recanalization time (PRT), and last known normal-to-puncture-time (LKNPT). Conclusion: Patients of anterior and posterior circulation ischemic strokes with baseline post- and pc-ASPECTS ≥ 7 may benefit from EVT.Keywords: endovascular therapy, thrombectomy, large vessel occlusion, cerebral ischemic stroke, ASPECTS
Procedia PDF Downloads 11351 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 9550 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance
Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty
Abstract:
One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.Keywords: fouling, monitoring, QCM, water quality
Procedia PDF Downloads 21249 Integration of Icf Walls as Diurnal Solar Thermal Storage with Microchannel Solar Assisted Heat Pump for Space Heating and Domestic Hot Water Production
Authors: Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
In Canada, more than 32% of the total energy demand is related to the building sector. Therefore, there is a great opportunity for Greenhouse Gases (GHG) reduction by integrating solar collectors to provide building heating load and domestic hot water (DHW). Despite the cold winter weather, Canada has a good number of sunny and clear days that can be considered for diurnal solar thermal energy storage. Due to the energy mismatch between building heating load and solar irradiation availability, relatively big storage tanks are usually needed to store solar thermal energy during the daytime and then use it at night. On the other hand, water tanks occupy huge space, especially in big cities, space is relatively expensive. This project investigates the possibility of using a specific building construction material (ICF – Insulated Concrete Form) as diurnal solar thermal energy storage that is integrated with a heat pump and microchannel solar thermal collector (MCST). Not much literature has studied the application of building pre-existing walls as active solar thermal energy storage as a feasible and industrialized solution for the solar thermal mismatch. By using ICF walls that are integrated into the building envelope, instead of big storage tanks, excess solar energy can be stored in the concrete of the ICF wall that consists of EPS insulation layers on both sides to store the thermal energy. In this study, two solar-based systems are designed and simulated inTransient Systems Simulation Program(TRNSYS)to compare ICF wall thermal storage benefits over the system without ICF walls. In this study, the heating load and DHW of a Canadian single-family house located in London, Ontario, are provided by solar-based systems. The proposed system integrates the MCST collector, a water-to-water HP, a preheat tank, the main tank, fan coils (to deliver the building heating load), and ICF walls. During the day, excess solar energy is stored in the ICF walls (charging cycle). Thermal energy can be restored from the ICF walls when the preheat tank temperature drops below the ICF wall (discharging process) to increase the COP of the heat pump. The evaporator of the heat pump is taking is coupled with the preheat tank. The provided warm water by the heat pump is stored in the second tank. Fan coil units are in contact with the tank to provide a building heating load. DHW is also delivered is provided from the main tank. It is investigated that the system with ICF walls with an average solar fraction of 82%- 88% can cover the whole heating demand+DHW of nine months and has a 10-15% higher average solar fraction than the system without ICF walls. Sensitivity analysis for different parameters influencing the solar fraction is discussed in detail.Keywords: net-zero building, renewable energy, solar thermal storage, microchannel solar thermal collector
Procedia PDF Downloads 12148 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 8047 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems
Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour
Abstract:
The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output
Procedia PDF Downloads 32246 The Four Elements of Zoroastrianism and Sustainable Ecosystems with an Ecological Approach
Authors: Esmat Momeni, Shabnam Basari, Mohammad Beheshtinia
Abstract:
The purpose of this study is to provide a symbolic explanation of the four elements in Zoroastrianism and sustainable ecosystems with an ecological approach. The research method is fundamental and deductive content analysis. Data collection has been done through library and documentary methods and through reading books and related articles. The population and sample of the present study are Yazd city and Iran country after discovering symbolic concepts derived from the theoretical foundations of Zoroastrianism in four elements of water, air, soil, fire and conformity with Iranian architecture with the ecological approach in Yazd city, the sustainable ecosystem it is explained by the system of nature. The validity and reliability of the results are based on the trust and confidence of the research literature. Research findings show that Yazd was one of the bases of Zoroastrianism in Iran. Many believe that the first person to discuss the elements of nature and respect Zoroastrians is the Prophet of this religion. Keeping the environment clean and pure by paying attention to and respecting these four elements. The water element is a symbol of existence in Zoroastrianism, so the people of Yazd used the aqueduct and designed a pool in front of the building. The soil element is a symbol of the raw material of human creation in the Zoroastrian religion, the most readily available material in the desert areas of Yazd, used as bricks and adobes, creating one of the most magnificent roof coverings is the dome. The wind element represents the invisible force of the soul in Creation in Zoroastrianism, the most important application of wind in the windy, which is a highly efficient cooling system. The element of fire, which is always a symbol of purity in Zoroastrianism, is located in a special place in Yazd's Ataskadeh (altar/ temple), where the most important religious prayers are held in and against the fire. Consequently, indigenous knowledge and attention to indigenous architecture is a part of the national capital of each nation that encompasses their beliefs, values, methods, and knowledge. According to studies on the four elements of Zoroastrianism, the link between these four elements are that due to the hot and dry fire at the beginning, it is the fire that begins to follow the nature of the movement in the stillness of the earth, and arises from the heat of the fire and because of vigor and its decreases, cold (wind) emerges, and from cold, humidity and wetness. And by examining books and resources on Yazd's architectural design with an ecological approach to the values of the four elements Zoroastrianism has been inspired, it can be concluded that in order to have environmentally friendly architecture, it is essential to use sustainable architectural principles, to link religious and sacrament culture and ecology through architecture.Keywords: ecology, architecture, quadruple elements of air, soil, water, fire, Zoroastrian religion, sustainable ecosystem, Iran, Yazd city
Procedia PDF Downloads 11745 Shear Strength Envelope Characteristics of LimeTreated Clays
Authors: Mohammad Moridzadeh, Gholamreza Mesri
Abstract:
The effectiveness of lime treatment of soils has been commonly evaluated in terms of improved workability and increased undrained unconfined compressive strength in connection to road and airfield construction. The most common method of strength measurement has been the unconfined compression test. However, if the objective of lime treatment is to improve long-term stability of first-time or reactivated landslides in stiff clays and shales, permanent changes in the size and shape of clay particles must be realized to increase drained frictional resistance. Lime-soil interactions that may produce less platy and larger soil particles begin and continue with time under the highly alkaline pH environment. In this research, pH measurements are used to monitor chemical environment and progress of reactions. Atterberg limits are measured to identify changes in particle size and shape indirectly. Also, fully softened and residual strength measurements are used to examine an improvement in frictional resistance due to lime-soil interactions. The main variables are soil plasticity and mineralogy, lime content, water content, and curing period. Lime effect on frictional resistance is examined using samples of clays with different mineralogy and characteristics which may react with lime to various extents. Drained direct shear tests on reconstituted lime-treated clay specimens with various properties have been performed to measure fully softened shear strength. To measure residual shear strength, drained multiple reversal direct shear tests on precut specimens were conducted. This way, soil particles are oriented along the direction of shearing to the maximum possible extent and provide minimum frictional resistance. This is applicable to reactivated and part of first-time landslides. The Brenna clay, which is the highly plastic lacustrine clay of Lake Agassiz causing slope instability along the banks of the Red River, is one of the soil samples used in this study. The Brenna Formation characterized as a uniform, soft to firm, dark grey, glaciolacustrine clay with little or no visible stratification, is full of slickensided surfaces. The major source of sediment for the Brenna Formation was the highly plastic montmorillonitic Pierre Shale bedrock. The other soil used in this study is one of the main sources of slope instability in Harris County Flood Control District (HCFCD), i.e. the Beaumont clay. The shear strengths of untreated and treated clays were obtained under various normal pressures to evaluate the shear envelope nonlinearity.Keywords: Brenna clay, friction resistance, lime treatment, residual
Procedia PDF Downloads 15944 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers
Authors: Mohammad Hassan Ziraksaz
Abstract:
Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer
Procedia PDF Downloads 16143 Process Safety Management Digitalization via SHEQTool based on Occupational Safety and Health Administration and Center for Chemical Process Safety, a Case Study in Petrochemical Companies
Authors: Saeed Nazari, Masoom Nazari, Ali Hejazi, Siamak Sanoobari Ghazi Jahani, Mohammad Dehghani, Javad Vakili
Abstract:
More than ever, digitization is an imperative for businesses to keep their competitive advantages, foster innovation and reduce paperwork. To design and successfully implement digital transformation initiatives within process safety management system, employees need to be equipped with the right tool, frameworks, and best practices. we developed a unique full stack application so-called SHEQTool which is entirely dynamic based on our extensive expertise, experience, and client feedback to help business processes particularly operations safety management. We use our best knowledge and scientific methodologies published by CCPS and OSHA Guidelines to streamline operations and integrated them into task management within Petrochemical Companies. We digitalize their main process safety management system elements and their sub elements such as hazard identification and risk management, training and communication, inspection and audit, critical changes management, contractor management, permit to work, pre-start-up safety review, incident reporting and investigation, emergency response plan, personal protective equipment, occupational health, and action management in a fully customizable manner with no programming needs for users. We review the feedback from main actors within petrochemical plant which highlights improving their business performance and productivity as well as keep tracking their functions’ key performance indicators (KPIs) because it; 1) saves time, resources, and costs of all paperwork on our businesses (by Digitalization); 2) reduces errors and improve performance within management system by covering most of daily software needs of the organization and reduce complexity and associated costs of numerous tools and their required training (One Tool Approach); 3) focuses on management systems and integrate functions and put them into traceable task management (RASCI and Flowcharting); 4) helps the entire enterprise be resilient to any change of your processes, technologies, assets with minimum costs (through Organizational Resilience); 5) reduces significantly incidents and errors via world class safety management programs and elements (by Simplification); 6) gives the companies a systematic, traceable, risk based, process based, and science based integrated management system (via proper Methodologies); 7) helps business processes complies with ISO 9001, ISO 14001, ISO 45001, ISO 31000, best practices as well as legal regulations by PDCA approach (Compliance).Keywords: process, safety, digitalization, management, risk, incident, SHEQTool, OSHA, CCPS
Procedia PDF Downloads 6942 Assessing the Impact of Physical Inactivity on Dialysis Adequacy and Functional Health in Peritoneal Dialysis Patients
Authors: Mohammad Ali Tabibi, Farzad Nazemi, Nasrin Salimian
Abstract:
Background: Peritoneal dialysis (PD) is a prevalent renal replacement therapy for patients with end-stage renal disease. Despite its benefits, PD patients often experience reduced physical activity and physical function, which can negatively impact dialysis adequacy and overall health outcomes. Despite the known benefits of maintaining physical activity in chronic disease management, the specific interplay between physical inactivity, physical function, and dialysis adequacy in PD patients remains underexplored. Understanding this relationship is essential for developing targeted interventions to enhance patient care and outcomes in this vulnerable population. This study aims to assess the impact of physical inactivity on dialysis adequacy and functional health in PD patients. Methods: This cross-sectional study included 135 peritoneal dialysis patients from multiple dialysis centers. Physical inactivity was measured using the International Physical Activity Questionnaire (IPAQ), while physical function was assessed using the Short Physical Performance Battery (SPPB). Dialysis adequacy was evaluated using the Kt/V ratio. Additional variables such as demographic data, comorbidities, and laboratory parameters were collected to control for potential confounders. Statistical analyses were performed to determine the relationships between physical inactivity, physical function, and dialysis adequacy. Results: The study cohort comprised 70 males and 65 females with a mean age of 55.4 ± 13.2 years. A significant proportion of the patients (65%) were categorized as physically inactive based on IPAQ scores. Inactive patients demonstrated significantly lower SPPB scores (mean 6.2 ± 2.1) compared to their more active counterparts (mean 8.5 ± 1.8, p < 0.001). Dialysis adequacy, as measured by Kt/V, was found to be suboptimal (Kt/V < 1.7) in 48% of the patients. There was a significant positive correlation between physical function scores and Kt/V values (r = 0.45, p < 0.01), indicating that better physical function is associated with higher dialysis adequacy. Also, there was a significant negative correlation between physical inactivity and physical function (r = -0.55, p < 0.01). Additionally, physically inactive patients had lower Kt/V ratios compared to their active counterparts (1.3 ± 0.3 vs. 1.8 ± 0.4, p < 0.05). Multivariate regression analysis revealed that physical inactivity was an independent predictor of reduced dialysis adequacy (β = -0.32, p < 0.01) and poorer physical function (β = -0.41, p < 0.01) after adjusting for age, sex, comorbidities, and dialysis vintage. Conclusion: This study underscores the critical role of physical activity and physical function in maintaining adequate dialysis in peritoneal dialysis patients. These findings highlight the need for targeted interventions to promote physical activity in this population to improve their overall health outcomes. Future research should focus on developing and evaluating exercise programs tailored for PD patients to enhance their physical function and dialysis adequacy. The findings suggest that interventions aimed at increasing physical activity and improving physical function may enhance dialysis adequacy and overall health outcomes in this population. Further research is warranted to explore the mechanisms underlying these associations and to develop targeted strategies for enhancing patient care.Keywords: inactivity, physical function, peritoneal dialysis, dialysis adequacy
Procedia PDF Downloads 3641 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.Keywords: antibacterial, bioglass, drug delivery system, sol- gel
Procedia PDF Downloads 6240 Spatial Accessibility Analysis of Kabul City Public Transport
Authors: Mohammad Idrees Yusofzai, Hirobata Yasuhiro, Matsuo Kojiro
Abstract:
Kabul is the capital of Afghanistan. It is the focal point of educational, industrial, etc. of Afghanistan. Additionally, the population of Kabul has grown recently and will increase because of return of refugees and shifting of people from other province to Kabul city. However, this increase in population, the issues of urban congestion and other related problems of urban transportation in Kabul city arises. One of the problems is public transport (large buses) service and needs to be modified and enhanced especially large bus routes that are operating in each zone of the 22 zone of Kabul City. To achieve the above mentioned goal of improving public transport, Spatial Accessibility Analysis is one of the important attributes to assess the effectiveness of transportation system and urban transport policy of a city, because accessibility indicator as an alternative tool to support public policy that aims the reinforcement of sustainable urban space. The case study of this research compares the present model (present bus route) and the modified model of public transport. Furthermore, present model, the bus routes in most of the zones are active, however, with having low frequency and unpublished schedule, and accessibility result is analyzed in four cases, based on the variables of accessibility. Whereas in modified model all zones in Kabul is taken into consideration with having specified origin and high frequency. Indeed the number of frequencies is kept high; however, this number is based on the number of buses Millie Bus Enterprise Authority (MBEA) owns. The same approach of cases is applied in modified model to figure out the best accessibility for the modified model. Indeed, the modified model is having a positive impact in congestion level in Kabul city. Besides, analyses of person trip and trip distribution have been also analyzed because how people move in the study area by each mode of transportation. So, the general aims of this research are to assess the present movement of people, identify zones in need of public transport and assess equity level of accessibility in Kabul city. The framework of methodology used in this research is based on gravity analysis model of accessibility; besides, generalized cost (time) of travel and travel mode is calculated. The main data come from person trip survey, socio-economic characteristics, demographic data by Japan International Cooperation Agency, 2008, study of Kabul city and also from the previous researches on travel pattern and the remaining data regarding present bus line and routes have been from MBEA. In conclusion, this research explores zones where public transport accessibility level is high and where it is low. It was found that both models the downtown area or central zones of Kabul city is having high level accessibility. Besides, the present model is the most unfavorable compared with the modified model based on the accessibility analysis.Keywords: accessibility, bus generalized cost, gravity model, public transportation network
Procedia PDF Downloads 19639 Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior
Authors: Mohammad Ehsani, Iman Zarei, Soudabeh Moazemigoudarzi
Abstract:
The aim of this study is to determine Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior. According to many researchers nature-based recreation activities play a significant role in the tourism industry and have provided myriad opportunities for the protection of natural areas. It is essential to investigate individuals' behavior during such activities to avoid further damage to precious and dwindling natural resources. This study develops a robust model that provides a comprehensive understanding of the formation of pro-environmental behavioral intentions among climbers of Mount Damavand National Park in Iran. To this end, we combined the theory of planned behavior (TPB), value-belief-norm theory (VBN), and a hierarchical model of leisure constraints to predict individuals’ pro-environmental hiking behavior during outdoor recreation. It was used structural equation modeling to test the theoretical framework. A sample of 787 climbers was analyzed. Among the theory of planned behavior variables, perceived behavioral control showed the strongest association with behavioral intention (β = .57). This relationship indicates that if people feel they can have fewer negative impacts on national resources while hiking, it will result in more environmentally acceptable behavior. Subjective norms had a moderate positive impact on behavioral intention, indicating the importance of other people on the individual's behavior. Attitude had a small positive effect on intention. Ecological worldview positively influenced attitude and personal belief. Personal belief (awareness of consequences and ascribed responsibility) showed a positive association with TPB variables. Although the data showed a high average score in awareness of consequences (mean = 4.219 out of 5), evidence from Damavand Mount shows that there are many environmental issues that need addressing (e.g., vast amounts of garbage). National park managers need to make sure that their solutions result in awareness about proenvironmental behavior (PEB). Findings showed that negative relationship between constraints and all TPB predictors. Providing proper restrooms and parking spaces in campgrounds, strategies controlling limiting capacity and solutions for removing waste from high altitudes are helpful to decrease the negative impact of structural constraints. In order to address intrapersonal constraints, managers should provide opportunities to interest individuals in environmental activities, such as environmental celebrations or making documentaries about environmental issues. Moreover, promoting a culture of environmental protection in the Damavand Mount area would reduce interpersonal constraints. Overall, the proposed model improved the explanatory power of the TPB by predicting 64.7% of intention compared to the original TPB that accounted for 63.8% of the variance in intention.Keywords: theory of planned behavior, pro-environmental behavior, national park, constraints
Procedia PDF Downloads 95