Search results for: injury risk level
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17929

Search results for: injury risk level

1069 Assessing the Spatial Distribution of Urban Parks Using Remote Sensing and Geographic Information Systems Techniques

Authors: Hira Jabbar, Tanzeel-Ur Rehman

Abstract:

Urban parks and open spaces play a significant role in improving physical and mental health of the citizens, strengthen the societies and make the cities more attractive places to live and work. As the world’s cities continue to grow, continuing to value green space in cities is vital but is also a challenge, particularly in developing countries where there is pressure for space, resources, and development. Offering equal opportunity of accessibility to parks is one of the important issues of park distribution. The distribution of parks should allow all inhabitants to have close proximity to their residence. Remote sensing and Geographic information systems (GIS) can provide decision makers with enormous opportunities to improve the planning and management of Park facilities. This study exhibits the capability of GIS and RS techniques to provide baseline knowledge about the distribution of parks, level of accessibility and to help in identification of potential areas for such facilities. For this purpose Landsat OLI imagery for year 2016 was acquired from USGS Earth Explorer. Preprocessing models were applied using Erdas Imagine 2014v for the atmospheric correction and NDVI model was developed and applied to quantify the land use/land cover classes including built up, barren land, water, and vegetation. The parks amongst total public green spaces were selected based on their signature in remote sensing image and distribution. Percentages of total green and parks green were calculated for each town of Lahore City and results were then synchronized with the recommended standards. ANGSt model was applied to calculate the accessibility from parks. Service area analysis was performed using Network Analyst tool. Serviceability of these parks has been evaluated by employing statistical indices like service area, service population and park area per capita. Findings of the study may contribute in helping the town planners for understanding the distribution of parks, demands for new parks and potential areas which are deprived of parks. The purpose of present study is to provide necessary information to planners, policy makers and scientific researchers in the process of decision making for the management and improvement of urban parks.

Keywords: accessible natural green space standards (ANGSt), geographic information systems (GIS), remote sensing (RS), United States geological survey (USGS)

Procedia PDF Downloads 341
1068 Strategic Metals and Rare Earth Elements Exploration of Lithium Cesium Tantalum Type Pegmatites: A Case Study from Northwest Himalayas

Authors: Auzair Mehmood, Mohammad Arif

Abstract:

The LCT (Li, Cs and Ta rich)-type pegmatites, genetically related to peraluminous S-type granites, are being mined for strategic metals (SMs) and rare earth elements (REEs) around the world. This study investigates the SMs and REEs potentials of pegmatites that are spatially associated with an S-type granitic suite of the Himalayan sequence, specifically Mansehra Granitic Complex (MGC), northwest Pakistan. Geochemical signatures of the pegmatites and some of their mineral extracts were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS) technique to explore and generate potential prospects (if any) for SMs and REEs. In general, the REE patterns of the studied whole-rock pegmatite samples show tetrad effect and possess low total REE abundances, strong positive Europium (Eu) anomalies, weak negative Cesium (Cs) anomalies and relative enrichment in heavy REE. Similar features have been observed on the REE patterns of the feldspar extracts. However, the REE patterns of the muscovite extracts reflect preferential enrichment and possess negative Eu anomalies. The trace element evaluation further suggests that the MGC pegmatites have undergone low levels of fractionation. Various trace elements concentrations (and their ratios) including Ta versus Cs, K/Rb (Potassium/Rubidium) versus Rb and Th/U (Thorium/Uranium) versus K/Cs, were used to analyze the economically viable mineral potential of the studied rocks. On most of the plots, concentrations fall below the dividing line and confer either barren or low-level mineralization potential of the studied rocks for both SMs and REEs. The results demonstrate paucity of the MGC pegmatites with respect to Ta-Nb (Tantalum-Niobium) mineralization, which is in sharp contrast to many Pan-African S-type granites around the world. The MGC pegmatites are classified as muscovite pegmatites based on their K/Rb versus Cs relationship. This classification is consistent with the occurrence of rare accessory minerals like garnet, biotite, tourmaline, and beryl. Furthermore, the classification corroborates with an earlier sorting of the MCG pegmatites into muscovite-bearing, biotite-bearing, and subordinate muscovite-biotite types. These types of pegmatites lack any significant SMs and REEs mineralization potentials. Field relations, such as close spatial association with parent granitic rocks and absence of internal zonation structure, also reflect the barren character and hence lack of any potential prospects of the MGC pegmatites.

Keywords: exploration, fractionation, Himalayas, pegmatites, rare earth elements

Procedia PDF Downloads 204
1067 Effect of 8-OH-DPAT on the Behavioral Indicators of Stress and on the Number of Astrocytes after Exposure to Chronic Stress

Authors: Ivette Gonzalez-Rivera, Diana B. Paz-Trejo, Oscar Galicia-Castillo, David N. Velazquez-Martinez, Hugo Sanchez-Castillo

Abstract:

Prolonged exposure to stress can cause disorders related with dysfunction in the prefrontal cortex such as generalized anxiety and depression. These disorders involve alterations in neurotransmitter systems; the serotonergic system—a target of the drugs that are commonly used as a treatment to these disorders—is one of them. Recent studies suggest that 5-HT1A receptors play a pivotal role in the serotonergic system regulation and in stress responses. In the same way, there is increasing evidence that astrocytes are involved in the pathophysiology of stress. The aim of this study was to examine the effects of 8-OH-DPAT, a selective agonist of 5-HT1A receptors, in the behavioral signs of anxiety and anhedonia as well as in the number of astrocytes in the medial prefrontal cortex (mPFC) after exposure to chronic stress. They used 50 male Wistar rats of 250-350 grams housed in standard laboratory conditions and treated in accordance with the ethical standards of use and care of laboratory animals. A protocol of chronic unpredictable stress was used for 10 consecutive days during which the presentation of stressors such as motion restriction, water deprivation, wet bed, among others, were used. 40 rats were subjected to the stress protocol and then were divided into 4 groups of 10 rats each, which were administered 8-OH-DPAT (Tocris, USA) intraperitoneally with saline as vehicle in doses 0.0, 0.3, 1.0 and 2.0 mg/kg respectively. Another 10 rats were not subjected to the stress protocol or the drug. Subsequently, all the rats were measured in an open field test, a forced swimming test, sucrose consume, and a cero maze test. At the end of this procedure, the animals were sacrificed, the brain was removed and the tissue of the mPFC (Bregma: 4.20, 3.70, 2.70, 2.20) was processed in immunofluorescence staining for astrocytes (Anti-GFAP antibody - astrocyte maker, ABCAM). Statistically significant differences were found in the behavioral tests of all groups, showing that the stress group with saline administration had more indicators of anxiety and anhedonia than the control group and the groups with administration of 8-OH-DPAT. Also, a dose dependent effect of 8-OH-DPAT was found on the number of astrocytes in the mPFC. The results show that 8-OH-DPAT can modulate the effect of stress in both behavioral and anatomical level. Also they indicate that 5-HT1A receptors and astrocytes play an important role in the stress response and may modulate the therapeutic effect of serotonergic drugs, so they should be explored as a fundamental part in the treatment of symptoms of stress and in the understanding of the mechanisms of stress responses.

Keywords: anxiety, prefrontal cortex, serotonergic system, stress

Procedia PDF Downloads 326
1066 Characterization of Mycoplasma Pneumoniae Causing Exacerbation of Asthma: A Prototypical Finding from Sri Lanka

Authors: Lakmini Wijesooriya, Vicki Chalker, Jessica Day, Priyantha Perera, N. P. Sunil-Chandra

Abstract:

M. pneumoniae has been identified as an etiology for exacerbation of asthma (EQA), although viruses play a major role in EOA. M. pneumoniae infection is treated empirically with macrolides, and its antibiotic sensitivity is not detected routinely. Characterization of the organism by genotyping and determination of macrolide resistance is important epidemiologically as it guides the empiric antibiotic treatment. To date, there is no such characterization of M. pneumoniae performed in Sri Lanka. The present study describes the characterization of M. pneumoniae detected from a child with EOA following a screening of 100 children with EOA. Of the hundred children with EOA, M. pneumoniae was identified only in one child by Real-Time polymerase chain reaction (PCR) test for identifying the community-acquired respiratory distress syndrome (CARDS) toxin nucleotide sequences. The M. pneumoniae identified from this patient underwent detection of macrolide resistance via conventional PCR, amplifying and sequencing the region of the 23S rDNA gene that contains single nucleotide polymorphisms that confer resistance. Genotyping of the isolate was performed via nested Multilocus Sequence Typing (MLST) in which eight (8) housekeeping genes (ppa, pgm, gyrB, gmk, glyA, atpA, arcC, and adk) were amplified via nested PCR followed by gene sequencing and analysis. As per MLST analysis, the M. pneumoniae was identified as sequence type 14 (ST14), and no mutations that confer resistance were detected. Resistance to macrolides in M. pneumoniae is an increasing problem globally. Establishing surveillance systems is the key to informing local prescriptions. In the absence of local surveillance data, antibiotics are started empirically. If the relevant microbiological samples are not obtained before antibiotic therapy, as in most occasions in children, the course of antibiotic is completed without a microbiological diagnosis. This happens more frequently in therapy for M. pneumoniae which is treated with a macrolide in most patients. Hence, it is important to understand the macrolide sensitivity of M. pneumoniae in the setting. The M. pneumoniae detected in the present study was macrolide sensitive. Further studies are needed to examine a larger dataset in Sri Lanka to determine macrolide resistance levels to inform the use of macrolides in children with EOA. The MLST type varies in different geographical settings, and it also provides a clue to the existence of macrolide resistance. The present study enhances the database of the global distribution of different genotypes of M. pneumoniae as this is the first such characterization performed with the increased number of samples to determine macrolide resistance level in Sri Lanka. M. pneumoniae detected from a child with exacerbation of asthma in Sri Lanka was characterized as ST14 by MLST and no mutations that confer resistance were detected.

Keywords: mycoplasma pneumoniae, Sri Lanka, characterization, macrolide resistance

Procedia PDF Downloads 186
1065 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery

Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina

Abstract:

In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.

Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries

Procedia PDF Downloads 162
1064 Development of Allergenic and Melliferous Floral Pollen Spectrum Using Scanning Electron Microscopy

Authors: Mehwish Jamil Noor

Abstract:

Morphological features of pollen (sculpturing) were useful for identification of different floral taxa. In this study 49 pollen grains, types belonging to 25 families were studied using Scanning Electron Microscope. Shape and sculpturing of pollen ranging from Psilate, scabrate to reticulate, bireticulate and echinolophate. Honey pollen was identified using morphological features, number and arrangement of pore and colpi, size and shape. It presents the first attempt from Pakistan involving extraction of pollen from honey, its identification and taxonomic analysis. Among pollen studied diversity in shape and sculpturing has been observed ranging from Psilate, scabrate to reticulate to bireticulate and echinolophate condition. Pollen has been identified with the help of morphological feature, number and arrangement of pore and colpi, size and shape, reference slides, light microscopic data and previous literature have been consulted for pollen identification. Pollen of closely related species resemble each other therefore pollen identification of airborne and honey pollen is not possible till species level. Survey of flora was carried in parallel to keep the record about the allergenic and melliferous preference of specific sites through surveys and interviews. Their pollination season and geographical distribution were recorded. Two hundred and five including wild and cultivated taxa were identified belonging to sixty-seven families. Major bee attracting wild shrub and trees includes Justicia adhatoda, Acacia nilotica, Ziziphus jujuba, Taraxicum officinalis, Artemisia dubia, Casuarina sp., Ulmus sp., Broussonetia papyrifera, Cupressus sp. or Pinus roxburghii etc. Cultivated crops like Pennisetum typhoides, Nigella sativa, Triticum sativum along with fruit trees of Pyrus, Prunus, Eryobotria, Citrus etc. are popular melliferous floras. Exotic/ introduced species like Eucalyptus or Parthenium hysterophorus, are also frequently visited by bees indicating the significance of those plants in the honey industry. It is concluded that different microscopic analysis techniques give more clear and authentic pictures of and melliferous pollen identification which is well supported by the floral calendar. The diversity of pollen are observed in case of melliferous pollen, and most of the windborne pollen were found less sculptured or psilate expressing the adaptation to the specific mode of pollination. Pollen morphology and sculpturing would serve as a reference for future studies.

Keywords: pollen, allergenic flora, sem, pollen key, Scanning Electron Microscopy (SEM)

Procedia PDF Downloads 202
1063 Annexing the Strength of Information and Communication Technology (ICT) for Real-time TB Reporting Using TB Situation Room (TSR) in Nigeria: Kano State Experience

Authors: Ibrahim Umar, Ashiru Rajab, Sumayya Chindo, Emmanuel Olashore

Abstract:

INTRODUCTION: Kano is the most populous state in Nigeria and one of the two states with the highest TB burden in the country. The state notifies an average of 8,000+ TB cases quarterly and has the highest yearly notification of all the states in Nigeria from 2020 to 2022. The contribution of the state TB program to the National TB notification varies from 9% to 10% quarterly between the first quarter of 2022 and second quarter of 2023. The Kano State TB Situation Room is an innovative platform for timely data collection, collation and analysis for informed decision in health system. During the 2023 second National TB Testing week (NTBTW) Kano TB program aimed at early TB detection, prevention and treatment. The state TB Situation room provided avenue to the state for coordination and surveillance through real time data reporting, review, analysis and use during the NTBTW. OBJECTIVES: To assess the role of innovative information and communication technology platform for real-time TB reporting during second National TB Testing week in Nigeria 2023. To showcase the NTBTW data cascade analysis using TSR as innovative ICT platform. METHODOLOGY: The State TB deployed a real-time virtual dashboard for NTBTW reporting, analysis and feedback. A data room team was set up who received realtime data using google link. Data received was analyzed using power BI analytic tool with statistical alpha level of significance of <0.05. RESULTS: At the end of the week-long activity and using the real-time dashboard with onsite mentorship of the field workers, the state TB program was able to screen a total of 52,054 people were screened for TB from 72,112 individuals eligible for screening (72% screening rate). A total of 9,910 presumptive TB clients were identified and evaluated for TB leading to diagnosis of 445 TB patients with TB (5% yield from presumptives) and placement of 435 TB patients on treatment (98% percentage enrolment). CONCLUSION: The TB Situation Room (TBSR) has been a great asset to Kano State TB Control Program in meeting up with the growing demand for timely data reporting in TB and other global health responses. The use of real time surveillance data during the 2023 NTBTW has in no small measure improved the TB response and feedback in Kano State. Scaling up this intervention to other disease areas, states and nations is a positive step in the right direction towards global TB eradication.

Keywords: tuberculosis (tb), national tb testing week (ntbtw), tb situation rom (tsr), information communication technology (ict)

Procedia PDF Downloads 71
1062 Feedback from a Service Evaluation of a Modified Intrauterine Device Insertor: A First Step to a Changement of the Standard of Iud Insertion Procedure

Authors: Desjardin, Michaels, Martinez, Ulmann

Abstract:

Copper IUD is one of the most efficient and cost-effective contraception. However, pain at insertion hampers the use of this method. This is especially unfortunate in nulliparous women, often younger, who are excellent candidates for this contraception, including Emergency Contraception. Standard insertion procedure of a copper IUD usually involves measurement of uterine cavity with an hysterometer and the use of a tenaculum in order to facilitate device insertion. Both procedures lead to patient pain which often constitutes a limitation of the method. To overcome these issues, we have developed a modified insertor combined with a copper IUD. The singular design of the inserter includes a flexible inflatable membrane technology allowing an easy access to the uterine cavity even in case of abnormal uterine positions or narrow cervical canal. Moreover, this inserter makes possible a direct IUD insertion with no hysterometry and no need for tenaculum. To assess device effectiveness and patient-reported pain, a study was conducted at two clinics in Fance with 31 individuals who wanted to use a copper IUD as contraceptive method. IUD insertions have been performed by four healthcare providers. Operators completed questionnaire and evaluated effectiveness of the procedure (including IUD correct fundal placement and other usability questions) as their satisfaction. Patient also completed questionnaire and pain during procedure was measured on a 10-cm Visual Analogue Scale (VAS). Analysis of the questionnaires indicates that correct IUD placement took place in more than 93% of women, which is a standard efficacy rate. It also demonstrates that IUD insertion resulted in no, light or moderate pain predominantly in nulliparous women. No insertion resulted in severe pain (none above 6cm on a 10-cm VAS). This translated by a high level of satisfaction from both patients and practitioners. In addition, this modified inserter allowed a simplification of the insertion procedure: correct fundal placement was ensured with no need for hysterometry (100%) prior to insertion nor for cervical tenaculum to pull on the cervix (90%). Avoidance of both procedures contributed to the decrease in pain during insertion. Taken together, the results of the study demonstrate that this device constitutes a significant advance in the use of copper IUDs for any woman. It allows a simplification of the insertion procedure: there is no need for pre-insertion hysterometry and no need for traction on the cervix with tenaculum. Increased comfort during insertion should allow a wider use of the method for nulliparous women and for emergency contraception. In addition, pain is often underestimated by practitioners, but fear of pain is obviously one of the blocking factors as indicated by the analysis of the questionnaire. This evaluation brings interesting information on the use of this modified inserter for standard copper IUD and promising perspectives to set up a changement in the standard of IUD insertion procedure.

Keywords: contraceptio, IUD, innovation, pain

Procedia PDF Downloads 84
1061 Variation of Carbon Isotope Ratio (δ13C) and Leaf-Productivity Traits in Aquilaria Species (Thymelaeceae)

Authors: Arlene López-Sampson, Tony Page, Betsy Jackes

Abstract:

Aquilaria genus produces a highly valuable fragrant oleoresin known as agarwood. Agarwood forms in a few trees in the wild as a response to injure or pathogen attack. The resin is used in perfume and incense industry and medicine. Cultivation of Aquilaria species as a sustainable source of the resin is now a common strategy. Physiological traits are frequently used as a proxy of crop and tree productivity. Aquilaria species growing in Queensland, Australia were studied to investigate relationship between leaf-productivity traits with tree growth. Specifically, 28 trees, representing 12 plus trees and 16 trees from yield plots, were selected to conduct carbon isotope analysis (δ13C) and monitor six leaf attributes. Trees were grouped on four diametric classes (diameter at 150 mm above ground level) ensuring the variability in growth of the whole population was sampled. Model averaging technique based on the Akaike’s information criterion (AIC) was computed to identify whether leaf traits could assist in diameter prediction. Carbon isotope values were correlated with height classes and leaf traits to determine any relationship. In average four leaves per shoot were recorded. Approximately one new leaf per week is produced by a shoot. Rate of leaf expansion was estimated in 1.45 mm day-1. There were no statistical differences between diametric classes and leaf expansion rate and number of new leaves per week (p > 0.05). Range of δ13C values in leaves of Aquilaria species was from -25.5 ‰ to -31 ‰ with an average of -28.4 ‰ (± 1.5 ‰). Only 39% of the variability in height can be explained by δ13C in leaf. Leaf δ13C and nitrogen content values were positively correlated. This relationship implies that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations (ci/ca) and less depleted values of 13C. Most of the predictor variables have a weak correlation with diameter (D). However, analysis of the 95% confidence of best-ranked regression models indicated that the predictors that could likely explain growth in Aquilaria species are petiole length (PeLen), values of δ13C (true13C) and δ15N (true15N), leaf area (LA), specific leaf area (SLA) and number of new leaf produced per week (NL.week). The model constructed with PeLen, true13C, true15N, LA, SLA and NL.week could explain 45% (R2 0.4573) of the variability in D. The leaf traits studied gave a better understanding of the leaf attributes that could assist in the selection of high-productivity trees in Aquilaria.

Keywords: 13C, petiole length, specific leaf area, tree growth

Procedia PDF Downloads 509
1060 Investigating the Essentiality of Oxazolidinones in Resistance-Proof Drug Combinations in Mycobacterium tuberculosis Selected under in vitro Conditions

Authors: Gail Louw, Helena Boshoff, Taeksun Song, Clifton Barry

Abstract:

Drug resistance in Mycobacterium tuberculosis is primarily attributed to mutations in target genes. These mutations incur a fitness cost and result in bacterial generations that are less fit, which subsequently acquire compensatory mutations to restore fitness. We hypothesize that mutations in specific drug target genes influence bacterial metabolism and cellular function, which affects its ability to develop subsequent resistance to additional agents. We aim to determine whether the sequential acquisition of drug resistance and specific mutations in a well-defined clinical M. tuberculosis strain promotes or limits the development of additional resistance. In vitro mutants resistant to pretomanid, linezolid, moxifloxacin, rifampicin and kanamycin were generated from a pan-susceptible clinical strain from the Beijing lineage. The resistant phenotypes to the anti-TB agents were confirmed by the broth microdilution assay and genetic mutations were identified by targeted gene sequencing. Growth of mono-resistant mutants was done in enriched medium for 14 days to assess in vitro fitness. Double resistant mutants were generated against anti-TB drug combinations at concentrations 5x and 10x the minimum inhibitory concentration. Subsequently, mutation frequencies for these anti-TB drugs in the different mono-resistant backgrounds were determined. The initial level of resistance and the mutation frequencies observed for the mono-resistant mutants were comparable to those previously reported. Targeted gene sequencing revealed the presence of known and clinically relevant mutations in the mutants resistant to linezolid, rifampicin, kanamycin and moxifloxacin. Significant growth defects were observed for mutants grown under in vitro conditions compared to the sensitive progenitor. Mutation frequencies determination in the mono-resistant mutants revealed a significant increase in mutation frequency against rifampicin and kanamycin, but a significant decrease in mutation frequency against linezolid and sutezolid. This suggests that these mono-resistant mutants are more prone to develop resistance to rifampicin and kanamycin, but less prone to develop resistance against linezolid and sutezolid. Even though kanamycin and linezolid both inhibit protein synthesis, these compounds target different subunits of the ribosome, thereby leading to different outcomes in terms of fitness in the mutants with impaired cellular function. These observations showed that oxazolidinone treatment is instrumental in limiting the development of multi-drug resistance in M. tuberculosis in vitro.

Keywords: oxazolidinones, mutations, resistance, tuberculosis

Procedia PDF Downloads 163
1059 Effect of Irrigation and Hydrogel on the Water Use Efficiency of Zeto-Tiled Green-Gram Relay System in the Eastern Indo Gangetic-Plain

Authors: Benukar Biswas, S. Banerjee, P. K. Bandhyopadhyaya, S. K. Patra, S. Sarkar

Abstract:

Jute can be sown as relay crop in between the lines of 15-20 days old green gram for additional pulse yield without reducing the yield of jute. The main problem of this system is water use efficiency (WUE). The increase in water productivity and reduction in production cost were reported in the zero-tilled crop. The hydrogel can hold water up to 400 times of its weight and can release 95 % of the retained water. The present field study was carried out during 2015-16 at BCKV (tropical sub-humid, 1560 mm annual rainfall, 22058/ N, 88051/ E, 9.75 m AMSL, sandy loam soil, aeric Haplaquept, pH 6.75, organic carbon 5.4 g kg-1, available N 85 kg ha-1, P2O5 15.3 kg ha-1 and K2O 40 kg ha-1) with four levels of irrigation regimes: no irrigation - RF, cumulative pan evaporation 250mm (CPE250), CPE125 and CPE83 and three levels of hydrogel: no hydrogel (H0), 2.5 kg ha-1 (H2.5) and 5 kg ha-1 (H5). Throughout the crop growing period a linear positive relationship remained between Leaf Area Index (LAI) and evapotranspiration rate. The strength of the relationship between ETa and LAI started increasing and reached its peak at 7 WAS (R2=0.78) when green gram was at its maturity, and both the crops covered the nearly entire base area. This relation starts weakening from 13 WAS due to jute leaf shading. A linear relationship between system yield and ET was also obtained in the present study. The variation in system yield might be predicted 75% with ET alone. Effective rainfall was reduced with increasing irrigation frequency due to enhanced water supply in contrast to hydrogel application due to the difference in water storage capacity. Irrigation contributed a major source of variability of ET. Higher irrigation frequency resulted in higher ET loss ranging from 574 mm in RF to 764 mm in CPE83. Hydrogel application also increased water storage on a sustained basis and supplied to crops resulting higher ET from 639 mm in H0 to 671mm in H5. WUE ranged between 0.4 kg m-3 (RF) to 0.63 kg m-3 (CPE83 H5). WUE increased with increased application of irrigation water from 0.42 kg m-3 in RF to 0.57 kg m-3 in CPE 83. Hydrogel application significantly improves the WUE from 0.45 kg m-3 in H0 to 0.50 in H2.5 and 0.54 in H5. Under relatively dry root zone (RF), both evaporation and transpiration remain at suboptimal level resulting in lower ET as well as lower system yield. Green gram – jute relay system can be water use efficient with 38% higher yield with application of hydrogel @ 2.5 kg ha-1 under deficit irrigation regime of CPE 125 over rainfed system without application of the gel. Application of gel conditioner improved water storage, checked excess water loss from the system, and mitigated ET demand of the relay system for a longer time. Hence, irrigation frequency was reduced from five times at CPE 83 to only three times in CPE 125.

Keywords: zero tillage, deficit irrigation, hydrogel, relay system

Procedia PDF Downloads 233
1058 Radar Cross Section Modelling of Lossy Dielectrics

Authors: Ciara Pienaar, J. W. Odendaal, J. Joubert, J. C. Smit

Abstract:

Radar cross section (RCS) of dielectric objects play an important role in many applications, such as low observability technology development, drone detection, and monitoring as well as coastal surveillance. Various materials are used to construct the targets of interest such as metal, wood, composite materials, radar absorbent materials, and other dielectrics. Since simulated datasets are increasingly being used to supplement infield measurements, as it is more cost effective and a larger variety of targets can be simulated, it is important to have a high level of confidence in the predicted results. Confidence can be attained through validation. Various computational electromagnetic (CEM) methods are capable of predicting the RCS of dielectric targets. This study will extend previous studies by validating full-wave and asymptotic RCS simulations of dielectric targets with measured data. The paper will provide measured RCS data of a number of canonical dielectric targets exhibiting different material properties. As stated previously, these measurements are used to validate numerous CEM methods. The dielectric properties are accurately characterized to reduce the uncertainties in the simulations. Finally, an analysis of the sensitivity of oblique and normal incidence scattering predictions to material characteristics is also presented. In this paper, the ability of several CEM methods, including method of moments (MoM), and physical optics (PO), to calculate the RCS of dielectrics were validated with measured data. A few dielectrics, exhibiting different material properties, were selected and several canonical targets, such as flat plates and cylinders, were manufactured. The RCS of these dielectric targets were measured in a compact range at the University of Pretoria, South Africa, over a frequency range of 2 to 18 GHz and a 360° azimuth angle sweep. This study also investigated the effect of slight variations in the material properties on the calculated RCS results, by varying the material properties within a realistic tolerance range and comparing the calculated RCS results. Interesting measured and simulated results have been obtained. Large discrepancies were observed between the different methods as well as the measured data. It was also observed that the accuracy of the RCS data of the dielectrics can be frequency and angle dependent. The simulated RCS for some of these materials also exhibit high sensitivity to variations in the material properties. Comparison graphs between the measured and simulation RCS datasets will be presented and the validation thereof will be discussed. Finally, the effect that small tolerances in the material properties have on the calculated RCS results will be shown. Thus the importance of accurate dielectric material properties for validation purposes will be discussed.

Keywords: asymptotic, CEM, dielectric scattering, full-wave, measurements, radar cross section, validation

Procedia PDF Downloads 240
1057 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 151
1056 Determination of the Relative Humidity Profiles in an Internal Micro-Climate Conditioned Using Evaporative Cooling

Authors: M. Bonello, D. Micallef, S. P. Borg

Abstract:

Driven by increased comfort standards, but at the same time high energy consciousness, energy-efficient space cooling has become an essential aspect of building design. Its aims are simple, aiming at providing satisfactory thermal comfort for individuals in an interior space using low energy consumption cooling systems. In this context, evaporative cooling is both an energy-efficient and an eco-friendly cooling process. In the past two decades, several academic studies have been performed to determine the resulting thermal comfort produced by an evaporative cooling system, including studies on temperature profiles, air speed profiles, effect of clothing and personnel activity. To the best knowledge of the authors, no studies have yet considered the analysis of relative humidity (RH) profiles in a space cooled using evaporative cooling. Such a study will determine the effect of different humidity levels on a person's thermal comfort and aid in the consequent improvement designs of such future systems. Under this premise, the research objective is to characterise the resulting different RH profiles in a chamber micro-climate using the evaporative cooling system in which the inlet air speed, temperature and humidity content are varied. The chamber shall be modelled using Computational Fluid Dynamics (CFD) in ANSYS Fluent. Relative humidity shall be modelled using a species transport model while the k-ε RNG formulation is the proposed turbulence model that is to be used. The model shall be validated with measurements taken using an identical test chamber in which tests are to be conducted under the different inlet conditions mentioned above, followed by the verification of the model's mesh and time step. The verified and validated model will then be used to simulate other inlet conditions which would be impractical to conduct in the actual chamber. More details of the modelling and experimental approach will be provided in the full paper The main conclusions from this work are two-fold: the micro-climatic relative humidity spatial distribution within the room is important to consider in the context of investigating comfort at occupant level; and the investigation of a human being's thermal comfort (based on Predicted Mean Vote – Predicted Percentage Dissatisfied [PMV-PPD] values) and its variation with different locations of relative humidity values. The study provides the necessary groundwork for investigating the micro-climatic RH conditions of environments cooled using evaporative cooling. Future work may also target the analysis of ways in which evaporative cooling systems may be improved to better the thermal comfort of human beings, specifically relating to the humidity content around a sedentary person.

Keywords: chamber micro-climate, evaporative cooling, relative humidity, thermal comfort

Procedia PDF Downloads 155
1055 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 132
1054 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 187
1053 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery

Authors: Bencherif Kada

Abstract:

In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, diversity, shrublands

Procedia PDF Downloads 124
1052 A Conceptual Model of the Factors Affecting Saudi Citizens' Use of Social Media to Communicate with the Government

Authors: Reemiah Alotaibi, Muthu Ramachandran, Ah-Lian Kor, Amin Hosseinian-Far

Abstract:

In the past decade, developers of Web 2.0 technologies have shown increasing interest in the topic of e-government. There has been a rapid growth in social media technology because of its significant role in backing up some essential social needs. Its importance and power is derived from its capacity to support two-way communication. Governments are curious to get engaged in these websites, hoping to benefit from the new forms of communication and interaction offered by such technology. Greater participation by the public can be viewed as a chief indicator of effective government communication. Yet, the level of public participation in government 2.0 is not quite satisfactory. In general, it is still at the early stage in most developing countries, including Saudi Arabia. Although it is a fact that Saudi people are among the most active in using social media, the number of people who use social media to communicate with the public institutions is not high. Furthermore, most of the governmental organisations are not using social media tools to communicate with the public. They use these platforms to disseminate information. Our study focuses on the factors affecting citizens’ adoption of social media in Saudi Arabia. Our research question is: what are the factors affecting Saudi citizens’ use of social media to communicate with the government? To answer this research question, the research aims to validate the UTAUT model for examining social media tools from the citizen perspective. An amendment will be proposed to fit the adoption of social media platforms as a communication channel in government by using a developed conceptual model which integrates constructs from the UTAUT model and others external variables based on the literature review. The set of potential factors that affect these citizens' decisions to adopt social media to communicate with their government has been identified as perceived encouragement, trust and cultural influence. The connection between the above-mentioned constructs from the basis for the research hypothesis will be examined in the light of a quantitative methodology. Data collection will be performed through a survey targeting a number of Saudi citizens who are social media users. The data collected from the primary survey will later be analysed by using statistical methods. The outcomes of this research project are argued to have potential contributions to the fields of social media and e-Government adoption, both on the theoretical and practical levels. It is believed that this research project is the first of its type that attempts to identify the factors that affect citizens’ adoption of social media to communicate with the government. The importance of identifying these factors stems from the potential use of them to enhance the government’s implementation of social media and help in making more accurate decisions and strategies based on comprehending the most important factors that affect citizens’ decisions.

Keywords: social media, adoption, citizen, UTAUT model

Procedia PDF Downloads 418
1051 Refractory Visceral Leishmaniasis Responding to Second-Line Therapy

Authors: Preet Shah, Om Shrivastav

Abstract:

Introduction : In India, Leishmania donovani is the only parasite causing Leishmaniasis. The parasite infects the reticuloendothelial system and is found in the bone marrow, spleen and liver. Treatment of choice is amphotericin-B with sodium stibogluconate being an alternative. Miltefosine is useful in refractory cases. In our case, Leishmaniasis occurred in a person residing in western India (which is quite rare) and it failed to respond to two different drugs (again an uncommon feature) before it finally responded to a third one. Description: A 50 year old lady, a resident of western India, with no history of recent travel, presented with an ulcer on the left side of the nose since 8 months. She was apparently alright 8 months back, when she noticed a small ulcerated lesion on the left ala of the nose which was immediately biopsied. The biopsy revealed amastigotes of Leishmania for which she was administered intra-lesional sodium stibogluconate for 1 month (4 doses every 8 days).Despite this, there was no regression of the ulcer and hence she presented to us for further management. On examination, her vital parameters were normal. Barring an ulcer on the left side of the nose, rest of the examination findings were unremarkable. Complete blood count was normal. Ultrasound abdomen showed hepatomegaly. PET-CT scan showed increased metabolic activity in left ala of nose, hepatosplenomegaly and increased metabolic activity in spleen and bone marrow. Bone marrow biopsy was done which showed hypercellular marrow with erythroid preponderance. Considering a diagnosis of leishmaniasis which had so far been unresponsive to sodium stibogluconate, she was started on liposomal amphotericin-B. At the time of admission, her creatinine level was normal, but it started rising with the administration of liposomal amphotericin-B, hence the dose was reduced. Despite this, creatinine levels did not improve, and she started developing hypokalemia and hypomagnesemia as side effects of the drug, hence further reductions in the dosage were made. Despite a total of 3 weeks of liposomal amphotericin-B, there was no improvement in the ulcer. As had so far failed to respond to sodium stibogluconate and liposomal amphotericin-B, it was decided to start her on miltefosine. She received the miltefosine for a total of 12 weeks. At the end of this duration, there was a marked regression of the cutaneous lesion. Conclusion: Refractoriness to amphotericin-B in leishmaniasis may be seen in up to 5 % cases. Here, an alternative drug such as miltefosine is useful and hence we decided to use it, to which she responded adequately. Furthermore, although leishmaniasis is common in the eastern part of India, it is a relatively unknown entity in the western part of the country with the occurrence being very rare. Because of these 2 reasons, we consider our case to be a unique one.

Keywords: amphotericin-b, leishmaniasis, miltefosine, tropical diseases

Procedia PDF Downloads 139
1050 Effect of Germination on Nutritional Values of Isolates from Two Varieties (DAS and BS) of Under-Utilized Nigerian Cultivated Solojo Cowpea (Vigna Unguiculata L. Walp)

Authors: Henry O. Chibudike, Olubamike A. Adeyoju, Bolanle O. Oluwole, Kayode O. Adebowale, Bamidele I. Olu-Owolabi, Chinedum E. Chibudike

Abstract:

Studies on the Mineral Content of Solojo Flour and Protein Isolates from the two varieties (DAS and BS) of Nigeria cultivated solojo cowpeas were conducted to determine their nutritional value. These inorganic elements or minerals were classified into 3 categories: the ultra-trace minerals, which are the third category; the microelements, also known as the trace minerals, in the second category; while the first category is the macro elements, also known as major minerals. Some of the macro-elements are Ca, P, Na and Cl; the second category, micro-elements include iron, copper, cobalt, potassium, magnesium, iodine, zinc, manganese, molybdenum, F, Cr, Se and S. Results show that the proportion of Sodium (Na) which is ingested into the body in the form of NaCl through food intake maintenance of body pH and to retain water ranged from 728.97 to 253.37 ppm (72.90 to 25.34 mg/100 g); 715.24 to 235.45 ppm; 735.28 to 270.37 ppm; 726.59 to 264.35ppm, for FFDAS, FFBS, DAS and BS respectively with all values of the germinated samples all bellow the control. While FFDAS iron content ranged from 4.25 to 13.50 mg/100 g; FFBS ranged from 3.15 to 12.56 mg/100 g; DAS ranged from 3.81 to 12.90 mg/100g; BS ranged from 3.42 to 9.40 mg/100 g. The values of the germinated flours were all greater than the ungerminated flour. Iron helps to transport oxygen round the body and also helps in red blood cells building and to convert food into needed energy by the body. While Manganese an element that is needed in micro quantity but necessary to convert food into energy, is also crucial for healthy bone and cartilage creation. Results also show that zinc quantity increased as germination proceeded, and the values ranged from 38.80 ppm to 230.00 ppm (3.880 mg/100 g to 23.00 mg/100 g; 0.003880% to 0.0230%); 40.84 to 250.01 ppm; 32.85 to 93.41 ppm; 37.07 to 115.00 ppm, for FFDAS, FFBS, DAS and BS respectively. The Ca content improved significantly (p<0.05) with sprouting; the value extended from 250.56 ppm to 760.03 ppm (25.056 to 76.00 mg/100g or 0.0251 to 0.0760 %); 400.40 to 998.22 ppm; 116.87 to 195.69 ppm; 113.48 to 220.75 ppm, for FFDAS, FFBS, DAS and BS respectively. Zinc element although needed at the micro level in the body, is essential for a strong immune system to keep the body in good health. It is also crucial for the maintenance of a healthy sense of taste and odor, while Calcium is critical for strong bones and teeth, blood coagulation, and muscle tightening and relaxation. Magnesium is needed to build enzymes and antioxidants and also for healthy bones, while Potassium is needed to maintain water balance, muscle movement, and nerve impulses. It functions in conjunction with Na to regulate blood pressure.

Keywords: Solojo cowpea, underutilized legumes, protein isolates, BS, DAS, ungerminated

Procedia PDF Downloads 59
1049 Bridging the Gap: Living Machine in Educational Nature Preserve Center

Authors: Zakeia Benmoussa

Abstract:

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Keywords: Biodiversity, Design with Nature, Sustainable architecture, Waste water treatment.

Procedia PDF Downloads 297
1048 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 105
1047 Sustainable Development and Modern Challenges of Higher Educational Institutions in the Regions of Georgia

Authors: Natia Tsiklashvili, Tamari Poladashvili

Abstract:

Education is one of the fundamental factors of economic prosperity in all respects. It is impossible to talk about the sustainable economic development of the country without substantial investments in human capital and investment into higher educational institutions. Education improves the standard of living of the population and expands the opportunities to receive more benefits, which will be equally important for both the individual and the society as a whole. There are growing initiatives among educated people such as entrepreneurship, technological development, etc. At the same time, the distribution of income between population groups is improving. The given paper discusses the scientific literature in the field of sustainable development through higher educational institutions. Scholars of economic theory emphasize a few major aspects that show the role of higher education in economic growth: a) Alongside education, human capital gradually increases which leads to increased competitiveness of the labor force, not only in the national but also in the international labor market (Neoclassical growth theory), b) The high level of education can increase the efficiency of the economy, investment in human capital, innovation, and knowledge are significant contributors to economic growth. Hence, it focuses on positive externalities and spillover effects of a knowledge-based economy which leads to economic development (endogenous growth theory), c) Education can facilitate the diffusion and transfer of knowledge. Hence, it supports macroeconomic sustainability and microeconomic conditions of individuals. While discussing the economic importance of education, we consider education as the spiritual development of the human that advances general skills, acquires a profession, and improves living conditions. Scholars agree that human capital is not only money but liquid assets, stocks, and competitive knowledge. The last one is the main lever in the context of increasing human competitiveness and high productivity. To address the local issues, the present article researched ten educational institutions across Georgia, including state and private HEIs. Qualitative research was done by analyzing in-depth interweaves of representatives from each institution, and respondents were rectors/vice-rectors/heads of quality assurance service at the institute. The result shows that there is a number of challenges that institution face in order to maintain sustainable development and be the strong links to education and the labor market. Mostly it’s contacted with bureaucracy, insufficient finances they receive, and local challenges that differ across the regions.

Keywords: higher education, higher educational institutions, sustainable development, regions, Georgia

Procedia PDF Downloads 85
1046 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization

Authors: Cheng-Jui Li, Chien-Chou Tseng

Abstract:

This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.

Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray

Procedia PDF Downloads 284
1045 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 415
1044 Services, Stigma and Discrimination: Perceptions of African Descendant Men Living with HIV/AIDS in Brazil and in the US

Authors: Aparecida De Fatima Dutra, Freddie Avant, Wilma Cordova

Abstract:

People living with HIV/AIDS (PLWHA) have benefited from advances in treatment. Medical costs are a challenge for some, but the real challenge is the stigma and discrimination PLWHA continue to face, even though the disease has festered for the last four decades. Few studies regarding stigma and discrimination give voice to those affected by these practices. This study provides a voice to PLWHA in Brazil and in the US as to how they perceive stigma and discrimination, as well as services they access. The methodology of this study was designed based on phenomenological research, which is a research that aims to identify what individuals facing the same situation have to share about their experiences. Qualitative research using in- depth interviews was used in order to gather participants’ perceptions about services they access, and stigma and discrimination they experience as PLWHA (hypothesis). The target population was a minority group of 13 Afro-descendant men, mean age of 48.3, residents in East Texas, United States and Salvador, Brazil. Our findings indicate that in both countries, overall, participants have reasonable access to medication and qualified services, except for some specialties, such as dentistry. With regard to stigma and discrimination the majority of participants have not disclosed their diagnosis. They state they prefer not to disclose for fear of being ostracized and rejected. Participants who did reveal their status indicate that stigma and discrimination is a daily occurrence. These experiences tend to occur within their own families, neighborhoods, and in public health agencies where HIV/AIDS is not the focus. Participants who did offer suggestions for social change indicated they would have to reveal their status even if it means being stigmatized and discriminated against. Other factors contributing to this discrimination include skin color and poverty. This study concludes that even after decades since the spread of this epidemic, nothing has changed regarding stigma and discrimination towards PLWHA. Lack of awareness, empathy and education continue to be a major challenge, not only at a local level but across the globe. In conclusion, as documented in previous studies while stigma and discrimination towards this population prevail, negative attitudes will continue to jeopardize all individuals from receiving equal access to prevention, treatment and care. It is crucial to face stigma and discrimination not only as individual experiences, but as social practices that violate and restrict human rights and that as a result, reinforce inequality and social exclusion. Policies should be at the forefront to eliminate the stigma and discrimination PLWHA experience. Health professionals and societies must take a stand in order to promote mindfulness about the negative effect of oppression towards individuals living with HIV/AIDS and the potential global impact of these practices.

Keywords: discrimination, HIV/AIDS, human rights, stigma

Procedia PDF Downloads 335
1043 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)

Authors: Bencherif Kada

Abstract:

In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, biodiversity, shrublands

Procedia PDF Downloads 30
1042 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel

Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn

Abstract:

Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.

Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method

Procedia PDF Downloads 481
1041 Proposition of an Integrative Model for Assessing the Effectiveness of the Performance Management System

Authors: Mariana L. de Araújo, Pedro P. M. Menezes

Abstract:

Research on strategic human resource management (SHRM) has made progress in the last few decades, showing a relationship between policies and practices of human resource management (HRM) and improving organizational results. That's because demonstrating the effectiveness of any HRM or other organizational practice, which means the extent that this can operate as a tool to achieve organizational performance, is a complex and arduous task to execute. Even today, there isn't consensus about "effectiveness," and the tools to measure the effectiveness are disconnected and not convincing. It is not different from the performance management system (PMS) effectiveness. A disproportionate focus on specific criteria adopted and an accumulation of studies that don't relate to the others, which damages the development of the field. Therefore, it aimed to evaluate the effectiveness of the PMS through models, dimensions, criteria, and measures. The objective of this study is to propose a theoretical-integrative model for evaluating PMS based on the literature in the PMS field. So, the PRISMA protocol was applied to carry out a systematic review, resulting in 57 studies. After performing the content analysis, we identified six dimensions: learning, societal impact, reaction, financial results, operational results and transfer, and 22 categories. In this way, a theoretical-integrative model for assessing the effectiveness of PMS was proposed based on the findings of this study, in which it was possible to confirm that the effectiveness construct is somewhat complex when viewing that most of the reviewed studies considered multiple dimensions in their assessment. In addition, we identified that the most immediate and proximal results of PMS are the most adopted by the studies; conversely, the studies adopted less distal outcomes to assess the effectiveness of PMS. Another finding of this research is that the reviewed studies predominantly analyze from the individual or psychological perspective, even when it comes to criteria whose phenomena are at an organizational level. Therefore, this study converges with a trend recently identified when referring to a process of "psychologization" in which GP studies, in general, have demonstrated macro results of the GP system from an individual perspective. Therefore, given the identification of a methodological pattern, the predominant influence of individual and psychological aspects in studies on HRM in administration is highlighted, demonstrated by the reflection on the practically absolute way of measuring the effectiveness of PMS from perceptual and subjective measures. Therefore, based on the recognition of the patterns identified, the model proposed to promote studies on the subject more broadly and profoundly to broaden and deepen the perspective of the field of management's interests so that the evaluation of the effectiveness of PMS can promote inputs on the impact of the PMS system in organizational performance. Finally, the findings encourage reflections on assessing the effectiveness of PMS through the theoretical-integrative model developed so that the field can promote new theoretical and practical perspectives.

Keywords: performance management, strategic human resource management, effectiveness, organizational performance

Procedia PDF Downloads 115
1040 Impact of UV on Toxicity of Zn²⁺ and ZnO Nanoparticles to Lemna minor

Authors: Gabriela Kalcikova, Gregor Marolt, Anita Jemec Kokalj, Andreja Zgajnar Gotvajn

Abstract:

Since the 90’s, nanotechnology is one of the fastest growing fields of science. Nanomaterials are increasingly becoming part of many products and technologies. Metal oxide nanoparticles are among the most used nanomaterials. Zinc oxide nanoparticles (nZnO) is widely used due to its versatile properties; it has been used in products including plastics, paints, food, batteries, solar cells and cosmetic products. It is also a very effective photocatalyst used for water treatment. Such expanding application of nZnO increases their possible occurrence in the environment. In the aquatic ecosystem nZnO interact with natural environmental factors such as UV radiation, and thus it is essential to evaluate possible interaction between them. In this context, the aim of our study was to evaluate combined ecotoxicity of nZnO and Zn²⁺ on duckweed Lemna minor in presence or absence UV. Inhibition of vegetative growth of duckweed Lemna minor was monitored over a period of 7 days in multi-well plates. After the experiment, specific growth rate was determined. ZnO nanoparticles used were of primary size 13.6 ± 1.7 nm. The test was conducted with nominal nZnO and Zn²⁺ (in form of ZnCl₂) concentrations of 1, 10, 100 mg/L. Experiment was repeated with presence of natural intensity of UV (8h UV, 10 W/m² UVA, 0.5 W/m² UVB). Concentration of Zn during the test was determined by ICP-MS. In the regular experiment (absence of UV) the specific growth rate was slightly increased by low concentrations of nZnO and Zn²⁺ in comparison to control. However, 10 and 100 mg/L of Zn²⁺ resulted in 45% and 68% inhibition of the specific growth rate, respectively. In case of nZnO both concentrations (10 and 100 mg/L) resulted in similar ~ 30% inhibition and the response was not dose-dependent. The lack of the dose-response relationship is often observed in case of nanoparticles. The possible explanation is that the physical impact prevails instead of chemical ones. In the presence of UV the toxicity of Zn²⁺ was increased and 100 mg/L of Zn²⁺ caused total inhibition of the specific growth rate (100%). On the other hand, 100 mg/L of nZnO resulted in low inhibition (19%) in comparison to the experiment without UV (30%). It is thus expected, that tested nZnO is low photoactive, but could have a good UV absorption and/or reflective properties and thus protect duckweed against UV impacts. Measured concentration of Zn in the test suspension decreased only about 4% after 168h in the case of ZnCl₂. On the other hand concentration of Zn in nZnO test decreased by 80%. It is expected that nZnO were partially dissolved in the medium and at the same time agglomeration and sedimentation of particles took place and thus the concentration of Zn at the water level decreased. Results of our study indicated, that nZnO combined with UV of natural intensity does not increase toxicity of nZnO, but slightly protect the plant against UV negative effects. When Zn²⁺ and ZnO results are compared it seems that dissolved Zn plays a central role in the nZnO toxicity.

Keywords: duckweed, environmental factors, nanoparticles, toxicity

Procedia PDF Downloads 334