Search results for: unitary response function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9602

Search results for: unitary response function

7952 Accidental Compartment Fire Dynamics: Experiment, Computational Fluid Dynamics Weakness and Expert Interview Analysis

Authors: Timothy Onyenobi

Abstract:

Accidental fires and its dynamic as it relates to building compartmentation and the impact of the compartment morphology, is still an on-going area of study; especially with the use of computational fluid dynamics (CFD) modeling methods. With better knowledge on this subject come better solution recommendations by fire engineers. Interviews were carried out for this study where it was identified that the response perspectives to accidental fire were different with the fire engineer providing qualitative data which is based on “what is expected in real fires” and the fire fighters provided information on “what actually obtains in real fires”. This further led to a study and analysis of two real and comprehensively instrumented fire experiments: the Open Plan Office Project by National Institute of Standard and Technology (NIST) USA (to study time to flashover) and the TF2000 project by the Building Research Establishment (BRE) UK (to test for conformity with Building Regulation requirements). The findings from the analysis of the experiments revealed the relative yet critical weakness of fire prediction using a CFD model (usually used by fire engineers) as well as explained the differences in response perspectives of the fire engineers and firefighters from the interview analysis.

Keywords: CFD, compartment fire, experiment, fire fighters, fire engineers

Procedia PDF Downloads 321
7951 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 17
7950 Ocular Immunology: In Face of Immune Privilege the Eye Remains Vulnerable to Autoimmune and Inflammatory-Mediated Diseases

Authors: Husham Bayazed

Abstract:

Purpose of Presentation: The eye is one of a few sites in the body with immune privilege (IP). However, this IP is relatively easily bypassed in the face of sufficient strong local or systemic immunological responses. As immune responses are crucial elements of the repair response, the eye has developed distinct mechanisms to deliver immune responses to injury in the avascular regions of the eye. This presentation may cover and provide an overview of the mechanisms that dictate immune cell trafficking to the local ocular microenvironment in response to different autoimmune and inflammatory-mediated diseases. Recent Findings: Literature reviews declare that immune responses and inflammation play a key role in a diverse range of eye diseases. In recent years, our understanding of ocular immune responses has widely spread in ocular surface inflammation, uveitis, age-related macular degeneration (AMD), glaucoma, transplantation rejection, and other ocular diseases. It is becoming increasingly clear that multiple seemingly unrelated diseases involve immune responses with common themes in their ocular pathogenesis. Recent studies are focusing on elucidating the pathogenesis of ocular inflammatory disease to identify new targets for immunotherapy that will not only improve efficacy but also minimize adverse effects from traditional therapy. Summary: While IP was believed to protect the eye from day-to-day inflammatory insults, however, it is relatively easily breached in the face of different strong local or systemic immunological and inflammatory responses. Therefore, the ocular immune response encapsulates the full range of classical and non-classical immune responses and demonstrates many features which are reflected in other tissues, but eye tissues, by modifying these responses, may reveal unexpected and novel findings which are relevant to immune responses generally. This may have therapeutic potential for new targeting immunotherapy, restoring immune tolerance in ocular autoimmune and inflammatory diseases, and preventing rejection such as stem cells, currently being considered for treatment of worldwide blinding diseases such as AMD.

Keywords: ocular diseases, immunology, immune privilege, immunotherapy

Procedia PDF Downloads 68
7949 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol

Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang

Abstract:

Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.

Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function

Procedia PDF Downloads 184
7948 The Role of a Novel DEAD-Box Containing Protein in NLRP3 Inflammasome Activation

Authors: Yi-Hui Lai, Chih-Hsiang Yang, Li-Chung Hsu

Abstract:

The inflammasome is a protein complex that modulates caspase-1 activity, resulting in proteolytic cleavage of proinflammatory cytokines such as IL-1β and IL-18, into their bioactive forms. It has been shown that the inflammasomes play a crucial role in the clearance of pathogenic infection and tissue repair. However, dysregulated inflammasome activation contributes to a wide range of human diseases such as cancers and auto-inflammatory diseases. Yet, regulation of NLRP3 inflammasome activation remains largely unknown. We discovered a novel DEAD box protein, whose biological function has not been reported, not only negatively regulates NLRP3 inflammasome activation by interfering NLRP3 inflammasome assembly and cellular localization but also mitigate pyroptosis upon pathogen evasion. The DEAD-box protein is the first DEAD-box protein gets involved in modulation of the inflammasome activation. In our study, we found that caspase-1 activation and mature IL-1β production were largely enhanced upon LPS challenge in the DEAD box-containing protein- deleted THP-1 macrophages and bone marrow-derived macrophages (BMDMs). In addition, this DEAD box-containing protein migrates from the nucleus to the cytoplasm upon LPS stimulation, which is required for its inhibitory role in NLRP3 inflammasome activation. The DEAD box-containing protein specifically interacted with the LRR motif of NLRP3 via its DEAD domain. Furthermore, due to the crucial role of the NLRP3 LRR domain in the recruitment of NLRP3 to mitochondria and binding to its adaptor ASC, we found that the interaction of NLRP3 and ASC was downregulated in the presence of the DEAD box-containing protein. In addition to the mechanical study, we also found that this DEAD box protein protects host cells from inflammasome-triggered cell death in response to broad-ranging pathogens such as Candida albicans, Streptococcus pneumoniae, etc., involved in nosocomial infections and severe fever shock. Collectively, our results suggest that this novel DEAD box molecule might be a key therapeutic strategy for various infectious diseases.

Keywords: inflammasome, inflammation, innate immunity, pyroptosis

Procedia PDF Downloads 269
7947 Integrating Molecular Approaches to Understand Diatom Assemblages in Marine Environment

Authors: Shruti Malviya, Chris Bowler

Abstract:

Environmental processes acting at multiple spatial scales control marine diatom community structure. However, the contribution of local factors (e.g., temperature, salinity, etc.) in these highly complex systems is poorly understood. We, therefore, investigated the diatom community organization as a function of environmental predictors and determined the relative contribution of various environmental factors on the structure of marine diatoms assemblages in the world’s ocean. The dataset for this study was derived from the Tara Oceans expedition, constituting 46 sampling stations from diverse oceanic provinces. The V9 hypervariable region of 18s rDNA was organized into assemblages based on their distributional co-occurrence. Using Ward’s hierarchical clustering, nine clusters were defined. The number of ribotypes and reads varied within each cluster-three clusters (II, VIII and IX) contained only a few reads whereas two of them (I and IV) were highly abundant. Of the nine clusters, seven can be divided into two categories defined by a positive correlation with phosphate and nitrate and a negative correlation with longitude and, the other by a negative correlation with salinity, temperature, latitude and positive correlation with Lyapunov exponent. All the clusters were found to be remarkably dominant in South Pacific Ocean and can be placed into three classes, namely Southern Ocean-South Pacific Ocean clusters (I, II, V, VIII, IX), South Pacific Ocean clusters (IV and VII), and cosmopolitan clusters (III and VI). Our findings showed that co-occurring ribotypes can be significantly associated into recognizable clusters which exhibit a distinct response to environmental variables. This study, thus, demonstrated distinct behavior of each recognized assemblage displaying a taxonomic and environmental signature.

Keywords: assemblage, diatoms, hierarchical clustering, Tara Oceans

Procedia PDF Downloads 191
7946 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy

Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez

Abstract:

The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.

Keywords: intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing

Procedia PDF Downloads 181
7945 Heat Transfer Characteristics of Aluminum Foam Heat Sinks Subject to an Impinging Jet

Authors: So-Ra Jeon, Chan Byon

Abstract:

This study investigates the heat transfer characteristics of aluminum foam heat sink and pin fin heat sink subjected to an impinging air jet under a fixed pumping power condition as well as fixed flow rate condition. The effects of dimensionless pumping power or the Reynolds number and the impinging distance ratio on the Nusselt number are considered. The result shows that the effect of the impinging distance on the Nusselt number is negligible under a fixed pumping power condition, while the Nusselt number increases with decreasing the impinging distance under a fixed pumping power condition. A correlation for the pressure drop is obtained as a function of the flow rate and the impinging distance ratio. And correlations for the stagnation Nusselt number of the impinging jet are developed as a function of the pumping power. The aluminum foam heat sinks did not show higher thermal performance compared to a conventional pin fin heat sink under a fixed pumping power condition.

Keywords: aluminum foam, heat sinks, impinging jet, pumping power

Procedia PDF Downloads 294
7944 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone

Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi

Abstract:

The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.

Keywords: system identification, tuned mass damper, wall buildings, seismic protection

Procedia PDF Downloads 115
7943 Integrated Life Skill Training and Executive Function Strategies in Children with Autism Spectrum Disorder in Qatar: A Study Protocol for a Randomized Controlled Trial

Authors: Bara M Yousef, Naresh B Raj, Nadiah W Arfah, Brightlin N Dhas

Abstract:

Background: Executive function (EF) impairment is common in children with autism spectrum disorder (ASD). EF strategies are considered effective in improving the therapeutic outcomes of children with ASD. Aims: This study primarily aims to explore whether integrating EF strategies combined with regular occupational therapy intervention is more effective in improving daily life skills (DLS) and sensory integration/processing (SI/SP) skills than regular occupational therapy alone in children with ASD and secondarily aims to assess treatment outcomes on improving visual motor integration (VMI) skills. Procedures: A total of 92 children with ASD will be recruited and, following baseline assessments, randomly assigned to the treatment group (45-min once weekly individual occupational therapy plus EF strategies) and control group (45-min once weekly individual therapy sessions alone). Results and Outcomes: All children will be evaluated systematically by assessing SI/SP, DLS, and VMI, skills at baseline, 7 weeks, and 14 weeks of treatment. Data will be analyzed using ANCOVA and T-test. Conclusions and Implications: This single-blind, randomized controlled trial will provide empirical evidence for the effectiveness of EF strategies when combined with regular occupational therapy programs. Based on trial results, EF strategies could be recommended in multidisciplinary programs for children with ASD. Trial Registration: The trial has been registered in the clinicaltrail.gov for a registry, protocol ID: MRC-01-22-509 ClinicalTrials.gov Identifier: NCT05829577, registered 25th April 2023

Keywords: autism spectrum disorder, executive function strategies, daily life skills, sensory integration/processing, visual motor integration, occupational therapy, effectiveness

Procedia PDF Downloads 97
7942 Mutational and Evolutionary Analysis of Interleukin-2 Gene in Four Pakistani Goat Breeds

Authors: Tanveer Hussain, Misbah Hussain, Masroor Ellahi Babar, Muhammad Traiq Pervez, Fiaz Hussain, Sana Zahoor, Rashid Saif

Abstract:

Interleukin 2 (IL-2) is a cytokine which is produced by activated T cells, play important role in immune response against antigen. It act in both autocrine and paracrine manner. It can stimulate B cells and various other phagocytic cells like monocytes, lymphokine-activated killer cells and natural killer cells. Acting in autocrine fashion, IL-2 protein plays a crucial role in proliferation of T cells. IL-2 triggers the release of pro and anti- inflammatory cytokines by activating several pathways. In present study, exon 1 of IL-2 gene of four local Pakistani breeds (Dera Din Panah, Beetal, Nachi and Kamori) from two provinces was amplified by using reported Ovine IL-2 primers, yielding PCR product of 501 bp. The sequencing of all samples was done to identify the polymorphisms in amplified region of IL-2 gene. Analysis of sequencing data resulted in identification of one novel nucleotide substitution (T→A) in amplified non-coding region of IL-2 gene. Comparison of IL-2 gene sequence of all four breeds with other goat breeds showed high similarity in sequence. While phylogenetic analysis of our local breeds with other mammals showed that IL-2 is a variable gene which has undergone many substitutions. This high substitution rate can be due to the decreased or increased changed selective pressure. These rapid changes can also lead to the change in function of immune system. This pioneering study of Pakistani goat breeds urge for further studies on immune system of each targeted breed for fully understanding the functional role of IL-2 in goat immunity.

Keywords: interleukin 2, mutational analysis, phylogeny, goat breeds, Pakistan

Procedia PDF Downloads 594
7941 Odor-Color Association Stroop-Task and the Importance of an Odorant in an Odor-Imagery Task

Authors: Jonathan Ham, Christopher Koch

Abstract:

There are consistently observed associations between certain odors and colors, and there is an association between the ability to imagine vivid visual objects and imagine vivid odors. However, little has been done to investigate how the associations between odors and visual information effect visual processes. This study seeks to understand the relationship between odor imaging, color associations, and visual attention by utilizing a Stroop-task based on common odor-color associations. This Stroop-task was designed using three fruits with distinct odors that are associated with the color of the fruit: lime with green, strawberry with red, and lemon with yellow. Each possible word-color combination was presented in the experimental trials. When the word matched the associated color (lime written in green) it was considered congruent; if it did not, it was considered incongruent (lime written in red or yellow). In experiment I (n = 34) participants were asked to both imagine the odor of the fruit on the screen and identify which fruit it was, and each word-color combination was presented 20 times (a total of 180 trials, with 60 congruent and 120 incongruent instances). Response time and error rate of the participant responses were recorded. There was no significant difference in either measure between the congruent and incongruent trials. In experiment II participants (n = 18) followed the identical procedure as in the previous experiment with the addition of an odorant in the room. The odorant (orange) was not the fruit or color used in the experimental trials. With a fruit-based odorant in the room, the response times (measured in milliseconds) between congruent and incongruent trials were significantly different, with incongruent trials (M = 755.919, SD = 239.854) having significantly longer response times than congruent trials (M = 690.626, SD = 198.822), t (1, 17) = 4.154, p < 0.01. This suggests that odor imagery does affect visual attention to colors, and the ability to inhibit odor-color associations; however, odor imagery is difficult and appears to be facilitated in the presence of a related odorant.

Keywords: odor-color associations, odor imagery, visual attention, inhibition

Procedia PDF Downloads 161
7940 Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids

Authors: Yen-Hui Chen, Terry Walker

Abstract:

As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production.

Keywords: Chlorella protothecoides, microalgal lipids, response surface methodology, supercritical carbon dioxide extraction

Procedia PDF Downloads 429
7939 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 154
7938 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 421
7937 Classifying Time Independent Plane Symmetric Spacetime through Noether`s Approach

Authors: Nazish Iftikhar, Adil Jhangeer, Tayyaba Naz

Abstract:

The universe is expanding at an accelerated rate. Symmetries are useful in understanding universe’s behavior. Emmy Noether reported the relation between symmetries and conservation laws. These symmetries are known as Noether symmetries which correspond to a conserved quantity. In differential equations, conservation laws play an important role. Noether symmetries are helpful in modified theories of gravity. Time independent plane symmetric spacetime was classified by Noether`s theorem. By using Noether`s theorem, set of linear partial differential equations was obtained having A(r), B(r) and F(r) as unknown radial functions. The Lagrangian corresponding to considered spacetime in the Noether equation was used to get Noether operators. Different possibilities of radial functions were considered. Firstly, all functions were same. All the functions were considered as non-zero constant, linear, reciprocal and exponential respectively. Secondly, two functions were proportional to each other keeping third function different. Second case has four subcases in which four different relationships between A(r), B(r) and F(r) were discussed. In all cases, we obtained nontrivial Noether operators including gauge term. Conserved quantities for each Noether operators were also presented.

Keywords: Noether gauge symmetries, radial function, Noether operator, conserved quantities

Procedia PDF Downloads 218
7936 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 485
7935 Analysis of Path Nonparametric Truncated Spline Maximum Cubic Order in Farmers Loyalty Modeling

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

Path analysis tests the relationship between variables through cause and effect. Before conducting further tests on path analysis, the assumption of linearity must be met. If the shape of the relationship is not linear and the shape of the curve is unknown, then use a nonparametric approach, one of which is a truncated spline. The purpose of this study is to estimate the function and get the best model on the nonparametric truncated spline path of linear, quadratic, and cubic orders with 1 and 2-knot points and determine the significance of the best function estimator in modeling farmer loyalty through the jackknife resampling method. This study uses secondary data through questionnaires to farmers in Sumbawa Regency who use SP-36 subsidized fertilizer products as many as 100 respondents. Based on the results of the analysis, it is known that the best-truncated spline nonparametric path model is the quadratic order of 2 knots with a coefficient of determination of 85.50%; the significance of the best-truncated spline nonparametric path estimator shows that all exogenous variables have a significant effect on endogenous variables.

Keywords: nonparametric path analysis, farmer loyalty, jackknife resampling, truncated spline

Procedia PDF Downloads 29
7934 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules

Authors: BenedictI Ita, Etido P. Inyang

Abstract:

In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.

Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules

Procedia PDF Downloads 72
7933 On Transferring of Transient Signals along Hollow Waveguide

Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener

Abstract:

In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.

Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon

Procedia PDF Downloads 313
7932 Oral Microbiota as a Novel Predictive Biomarker of Response To Immune Checkpoint Inhibitors in Advanced Non-small Cell Lung Cancer Patients

Authors: Francesco Pantano, Marta Fogolari, Michele Iuliani, Sonia Simonetti, Silvia Cavaliere, Marco Russano, Fabrizio Citarella, Bruno Vincenzi, Silvia Angeletti, Giuseppe Tonini

Abstract:

Background: Although immune checkpoint inhibitors (ICIs) have changed the treatment paradigm of non–small cell lung cancer (NSCLC), these drugs fail to elicit durable responses in the majority of NSCLC patients. The gut microbiota, able to regulate immune responsiveness, is emerging as a promising, modifiable target to improve ICIs response rates. Since the oral microbiome has been demonstrated to be the primary source of bacterial microbiota in the lungs, we investigated its composition as a potential predictive biomarker to identify and select patients who could benefit from immunotherapy. Methods: Thirty-five patients with stage IV squamous and non-squamous cell NSCLC eligible for an anti-PD-1/PD-L1 as monotherapy were enrolled. Saliva samples were collected from patients prior to the start of treatment, bacterial DNA was extracted using the QIAamp® DNA Microbiome Kit (QIAGEN) and the 16S rRNA gene was sequenced on a MiSeq sequencing instrument (Illumina). Results: NSCLC patients were dichotomized as “Responders” (partial or complete response) and “Non-Responders” (progressive disease), after 12 weeks of treatment, based on RECIST criteria. A prevalence of the phylum Candidatus Saccharibacteria was found in the 10 responders compared to non-responders (abundance 5% vs 1% respectively; p-value = 1.46 x 10-7; False Discovery Rate (FDR) = 1.02 x 10-6). Moreover, a higher prevalence of Saccharibacteria Genera Incertae Sedis genus (belonging to the Candidatus Saccharibacteria phylum) was observed in "responders" (p-value = 6.01 x 10-7 and FDR = 2.46 x 10-5). Finally, the patients who benefit from immunotherapy showed a significant abundance of TM7 Phylum Sp Oral Clone FR058 strain, member of Saccharibacteria Genera Incertae Sedis genus (p-value = 6.13 x 10-7 and FDR=7.66 x 10-5). Conclusions: These preliminary results showed a significant association between oral microbiota and ICIs response in NSCLC patients. In particular, the higher prevalence of Candidatus Saccharibacteria phylum and TM7 Phylum Sp Oral Clone FR058 strain in responders suggests their potential immunomodulatory role. The study is still ongoing and updated data will be presented at the congress.

Keywords: oral microbiota, immune checkpoint inhibitors, non-small cell lung cancer, predictive biomarker

Procedia PDF Downloads 79
7931 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 329
7930 Effect of Duration and Frequency on Ground Motion: Case Study of Guwahati City

Authors: Amar F. Siddique

Abstract:

The Guwahati city is one of the fastest growing cities of the north-eastern region of India, situated on the South Bank of the Brahmaputra River falls in the highest seismic zone level V. The city has witnessed many high magnitude earthquakes in the past decades. The Assam earthquake occurred on August 15, 1950, of moment magnitude 8.7 epicentered near Rima, Tibet was one of the major earthquakes which caused a serious structural damage and widespread soil liquefaction in and around the region. Hence the study of ground motion characteristics of Guwahati city is very essential. In this present work 1D equivalent linear ground response analysis (GRA) has been adopted using Deep soil software. The analysis has been done for two typical sites namely, Panbazar and Azara comprising total four boreholes location in Guwahati city of India. GRA of the sites is carried out by using an input motion recorded at Nongpoh station (recorded PGA 0.048g) and Nongstoin station (recorded PGA 0.047g) of 1997 Indo-Burma earthquake. In comparison to motion recorded at Nongpoh, different amplifications of bedrock peak ground acceleration (PGA) are obtained for all the boreholes by the motion recorded at Nongstoin station; although, the Fourier amplitude ratios (FAR) and fundamental frequencies remain almost same. The difference in recorded duration and frequency content of the two motions mainly influence the amplification of motions thus getting different surface PGA and amplification factor keeping a constant bedrock PGA. From the results of response spectra, it is found that at the period of less than 0.2 sec the ground motion recorded at Nongpoh station will give a high spectral acceleration (SA) on the structures than at Nongstoin station. Again for a period greater than 0.2 sec the ground motion recorded at Nongstoin station will give a high SA on the structures than at Nongpoh station.

Keywords: fourier amplitude ratio, ground response analysis, peak ground acceleration, spectral acceleration

Procedia PDF Downloads 172
7929 The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience

Authors: Parisa Mansour

Abstract:

Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration.

Keywords: glial activity, manganese-enhanced magnetic resonance imaging, neuroarchitecture, neuronal activity, neuronal tract tracing, visual pathway, eye

Procedia PDF Downloads 11
7928 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies

Authors: Margaret S. Wright

Abstract:

Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.

Keywords: data management, decision making, disaster planning documentation, public health nursing

Procedia PDF Downloads 204
7927 Evaluating the Impact of Future Scenarios on Water Availability and Demand Based on Stakeholders Prioritized Water Management Options in the Upper Awash Basin, Ethiopia

Authors: Adey Nigatu Mersha, Ilyas Masih, Charlotte de Fraiture, Tena Alamirew

Abstract:

Conflicts over water are increasing mainly as a result of water scarcity in response to higher water demand and climatic variability. There is often not enough water to meet all demands for different uses. Thus, decisions have to be made as to how the available resources can be managed and utilized. Correspondingly water allocation goals, practically national water policy goals, need to be revised accordingly as the pressure on water increases from time to time. A case study is conducted in the Upper Awash Basin, Ethiopia, to assess and evaluate prioritized comprehensive water demand management options based on the framework of integrated water resources management in account of stakeholders’ knowledge and preferences as well as practical prominence within the Upper Awash Basin. Two categories of alternative management options based on policy analysis and stakeholders' consultation were evaluated against the business-as-usual scenario by using WEAP21 model as an analytical tool. Strong effects on future (unmet) demands are observed with major socio-economic assumptions and forthcoming water development plans. Water management within the basin will get more complex with further abstraction which may lead to an irreversible damage to the ecosystem. It is further confirmed through this particular study that efforts to maintain users’ preferences alone cannot insure economically viable and environmentally sound development and vice versa. There is always a tradeoff between these factors. Hence, all of these facets must be analyzed separately, related with each other in equal footing, and ultimately taken up in decision making in order for the whole system to function properly.

Keywords: water demand, water availability, WEAP21, scenarios

Procedia PDF Downloads 269
7926 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

Authors: Oscar Javier Herrera, Manuel Angel Camacho

Abstract:

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors’. The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

Keywords: demand forecasting, empirical distribution, propagation of error, Bogota

Procedia PDF Downloads 617
7925 Variations of Metaphors: Wittgenstein's Contribution to Literary Studies

Authors: Dorit Lemberger

Abstract:

Wittgenstein directly used the term "metaphor" only infrequently and with reservations, but his writings include a number of metaphors that have become imprinted in the philosophical memory of Western thought. For example, the ladder in his book Tractatus, or in Philosophical investigations - the ancient city, the beetle in a box, the fly in the fly-bottle, and the duck-rabbit. In light of Wittgenstein's stressing, throughout his investigations, that the only language that exists is ordinary language, and that there is no "second-order" language, the question should be asked: How do these metaphors function, specifically, and in general, how are we to relate to language use that exceeds the normal? Wittgenstein did not disregard such phenomena, but he proposed viewing them in a different way, that would enable understanding them as uses in ordinary language, without necessarily exceeding such language. Two important terms that he coined in this context are "secondary sense" and "experience of meaning". Each denotes language use as reflective of a subjective element characteristic of the speaker, such as intent, experience, or emphasis of a certain aspect. More recent Wittgenstein scholars added the term "quasi-metaphor", that refers to his discussion of the possibility of aesthetic judgment. This paper will examine how, according to Wittgenstein, these terms function without exceeding ordinary language, and will illustrate how they can be applied, in an analysis of the poem "Butterfly" by Nelly Sachs.

Keywords: metaphor, quasi-metaphor, secondary sense, experience of meaning

Procedia PDF Downloads 425
7924 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 100
7923 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge

Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio

Abstract:

Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.

Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction

Procedia PDF Downloads 317