Search results for: ultrasound 3D images
1181 Fracture Crack Monitoring Using Digital Image Correlation Technique
Authors: B. G. Patel, A. K. Desai, S. G. Shah
Abstract:
The main of objective of this paper is to develop new measurement technique without touching the object. DIC is advance measurement technique use to measure displacement of particle with very high accuracy. This powerful innovative technique which is used to correlate two image segments to determine the similarity between them. For this study, nine geometrically similar beam specimens of different sizes with (steel fibers and glass fibers) and without fibers were tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control with a rate of opening of 0.0005 mm/sec. Digital images were captured before loading (unreformed state) and at different instances of loading and were analyzed using correlation techniques to compute the surface displacements, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It was seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.Keywords: Digital Image Correlation, fibres, self compacting concrete, size effect
Procedia PDF Downloads 3911180 Manufacturing the Authenticity of Dokkaebi’s Visual Representation in Tourist Marketing
Authors: Mikyung Bak
Abstract:
The dokkaebi, a beloved icon of Korean culture, is represented as an elf, goblin, monster, dwarf, or any similar creature in different media, such as animated shows, comics, soap operas, and movies. It is often described as a mythical creature with a horn or horns and long teeth, wearing tiger-skin pants or a grass skirt, and carrying a magic stick. Many Korean researchers agree on the similarity of the image of the Korean dokkaebi with that of the Japanese oni, a view that is regard as negative from an anti-colonial or nationalistic standpoint. They cite such similarity between the two mythical creatures as evidence that Japanese colonialism persists in Korea. The debate on the originality of dokkaebi’s visual representation is an issue that must be addressed urgently. This research demonstrates through a diagram the plurality of interpretations of dokkaebi’s visual representations in what are considered ‘authentic’ images of dokkaebi in Korean art and culture. This diagram presents the opinions of four major groups in the debate, namely, the scholars of Korean literature and folklore, art historians, authors, and artists. It also shows the creation of new dokkaebi visual representations in popular media, including those influenced by the debate. The diagram further proves that dokkaebi’s representations varied, which include the typical persons or invisible characters found in Korean literature, original Korean folk characters in traditional art, and even universal spirit characters. They are also visually represented by completely new creatures as well as oni-based mythical beings and the actual oni itself. The earlier dokkaebi representations were driven by the creation of a national ideology or national cultural paradigm and, thus, were more uniform and protected. In contrast, the more recent representations are influenced by the Korean industrial strategy of ‘cultural economics,’ which is concerned with the international rather than the domestic market. This recent Korean cultural strategy emphasizes diversity and commonality with the global culture rather than originality and locality. It employs traditional cultural resources to construct a global image. Consequently, dokkaebi’s recent representations have become more common and diverse, thereby incorporating even oni’s characteristics. This argument has rendered the grounds of the debate irrelevant. The dokkaebi has been used recently for tourist marketing purposes, particularly in revitalizing interest in regions considered the cradle of various traditional dokkaebi tales. These campaign strategies include the Jeju-do Dokkaebi Park, Koksung Dokkaebi Land, as well as the Taebaek and Sokri-san Dokkaebi Festivals. Almost dokkaebi characters are identical to the Japanese oni in tourist marketing. However, the pursuit for dokkaebi’s authentic visual representation is less interesting and fruitful than the appreciation of the entire spectrum of dokkaebi images that have been created. Thus, scholars and stakeholders must not exclude the possibilities for a variety of potentials within the visual culture. The same sentiment applies to traditional art and craft. This study aims to contribute to a new visualization of the dokkaebi that embraces the possibilities of both folk craft and art, which continue to be uncovered by diverse and careful researchers in a still-developing field.Keywords: Dokkaebi, post-colonial period, representation, tourist marketing
Procedia PDF Downloads 2811179 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks
Authors: Andrew N. Saylor, James R. Peters
Abstract:
Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging
Procedia PDF Downloads 1361178 Tribological Characterization of Composites Based on Epoxy Resin Filled with Tailings of Scheelite
Authors: Clarissa D. M. O. Guimaraes, Mariza C. M. Fernandes, Francisco R. V. Diaz, Juliana R. Souza
Abstract:
The use of mineral fillers in the preparation of organic matrix composites can be an efficient alternative in minimizing the environmental damage generated in passive mineral beneficiation processes. In addition, it may represent a new material option for wind, construction, and aeronautical industries, for example. In this sense, epoxy resin composites with Tailings of Scheelite (TS) were developed. The composites were manufactured with 5%, 10% and 20% of TS in volume percentage, homogenized by mechanical mixing and molded in a silicon mold. In order to make the tribological evaluation, pin on disk tests were performed to analyze coefficient of friction and wear. The wear mechanisms were identified by SEM (scanning electron microscope) images. The coefficient of friction had a tendency to decrease with increasing amount of filler. The wear tends to increase with increasing amount of filler, although it exhibits a similar wear behavior. The results suggest characteristics that are potential used in many tribological applications.Keywords: composites, mineral filler, tailings of scheelite, tribology
Procedia PDF Downloads 1711177 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation
Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park
Abstract:
In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.Keywords: aerial image, image process, machine vision, open field smart farm, segmentation
Procedia PDF Downloads 871176 Optimized and Secured Digital Watermarking Using Fuzzy Entropy, Bezier Curve and Visual Cryptography
Authors: R. Rama Kishore, Sunesh
Abstract:
Recent development in the usage of internet for different purposes creates a great threat for the copyright protection of the digital images. Digital watermarking can be used to address the problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field of secured, robust and imperceptible watermarking. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (2, 2) share visual cryptography and Bezier curve based algorithm to improve the security of the watermark. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method. The algorithm is optimized using fuzzy entropy for better results.Keywords: digital watermarking, fractional transform, visual cryptography, Bezier curve, fuzzy entropy
Procedia PDF Downloads 3701175 Image Compression Based on Regression SVM and Biorthogonal Wavelets
Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane
Abstract:
In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding
Procedia PDF Downloads 3851174 Shock Formation for Double Ramp Surface
Authors: Abdul Wajid Ali
Abstract:
Supersonic flight promises speed, but the design of the air inlet faces an obstacle: shock waves. They prevent air flow in the mixed compression ports, which reduces engine performance. Our research investigates this using supersonic wind tunnels and schlieren imaging to reveal the complex dance between shock waves and airflow. The findings show clear patterns of shock wave formation influenced by internal/external pressure surfaces. We looked at the boundary layer, the slow-moving air near the inlet walls, and its interaction with shock waves. In addition, the study emphasizes the dependence of the shock wave behaviour on the Mach number, which highlights the need for adaptive models. This knowledge is key to optimizing the combined compression inputs, paving the way for more powerful and efficient supersonic vehicles. Future engineers can use this knowledge to improve existing designs and explore innovative configurations for next-generation ultrasonic applications.Keywords: oblique shock formation, boundary layer interaction, schlieren images, double wedge surface
Procedia PDF Downloads 731173 Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack
Authors: Faraji Sepideh
Abstract:
Nowadays, purchase rate of the smart device is increasing and user authentication is one of the important issues in information security. Alphanumeric strong passwords are difficult to memorize and also owners write them down on papers or save them in a computer file. In addition, text password has its own flaws and is vulnerable to attacks. Graphical password can be used as an alternative to alphanumeric password that users choose images as a password. This type of password is easier to use and memorize and also more secure from pervious password types. In this paper we have designed a more secure graphical password system to prevent shoulder surfing, smudge and brute force attack. This scheme is a combination of two types of graphical passwords recognition based and Cued recall based. Evaluation the usability and security of our proposed scheme have been explained in conclusion part.Keywords: brute force attack, graphical password, shoulder surfing attack, smudge attack
Procedia PDF Downloads 1661172 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 401171 Identification and Management of Septic Arthritis of the Untouched Glenohumeral Joint
Authors: Sumit Kanwar, Manisha Chand, Gregory Gilot
Abstract:
Background: Septic arthritis of the shoulder has infrequently been discussed. Focus on infection of the untouched shoulder has not heretofore been described. We present four patients with glenohumeral septic arthritis. Methods: Case 1: A 59 year old male with left shoulder pain in the anterior, posterior and superior aspects. Case 2: A 60 year old male with fever, chills, and generalized muscle aches. Case 3: A 70 year old male with right shoulder pain about the anterior and posterior aspects. Case 4: A 55 year old male with global right shoulder pain, swelling, and limited ROM. Results: In case 1, the left shoulder was affected. Physical examination, swelling was notable, there was global tenderness with a painful range of motion (ROM). The lab values indicated an erythrocyte sedimentation rate (ESR) of 96, and a C-reactive protein (CRP) of 304.30. Imaging studies were performed and MRI indicated a high suspicion for an abscess with osteomyelitis of the humeral head. Our second case’s left arm was affected. He had swelling, global tenderness and painful ROM. His ESR was 38, CRP was 14.9. X-ray showed severe arthritis. Case 3 differed with the right arm being affected. Again, global tenderness and painful ROM was observed. His ESR was 94, and CRP was 10.6. X-ray displayed an eroded glenoid space. Our fourth case’s right shoulder was affected. He had global tenderness and painful, limited ROM. ESR was 108 and CRP was 2.4. X-ray was non-significant. Discussion: Monoarticular septic arthritis of the virgin glenohumeral joint is seldom diagnosed in clinical practice. Common denominators include elevated ESR, painful, limited ROM, and involvement of the dominant arm. The male population is more frequently affected with an average age of 57. Septic arthritis is managed with incision and drainage or needle aspiration of synovial fluid supplemented with 3-6 weeks of intravenous antibiotics. Due to better irrigation and joint visualization, arthroscopy is preferred. Open surgical drainage may be indicated if the above methods fail. Conclusion: If a middle-aged male presents with vague anterior or posterior shoulder pain, elevated inflammatory markers and a low grade fever, an x-ray should be performed. If this displays degenerative joint disease, the complete further workup with advanced imaging, such as an MRI, CT scan, or an ultrasound. If these imaging modalities display anterior space joint effusion with soft tissue involvement, we can suspect septic arthritis of the untouched glenohumeral joint and surgery is indicated.Keywords: glenohumeral joint, identification, infection, septic arthritis, shoulder
Procedia PDF Downloads 4241170 Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N
Authors: Saleh H. Abud, Z. Hassan, F. K. Yam
Abstract:
Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.Keywords: porous InGaN, photoluminescence, SMS photodetector, atomic force microscopy
Procedia PDF Downloads 4931169 Text Based Shuffling Algorithm on Graphics Processing Unit for Digital Watermarking
Authors: Zayar Phyo, Ei Chaw Htoon
Abstract:
In a New-LSB based Steganography method, the Fisher-Yates algorithm is used to permute an existing array randomly. However, that algorithm performance became slower and occurred memory overflow problem while processing the large dimension of images. Therefore, the Text-Based Shuffling algorithm aimed to select only necessary pixels as hiding characters at the specific position of an image according to the length of the input text. In this paper, the enhanced text-based shuffling algorithm is presented with the powered of GPU to improve more excellent performance. The proposed algorithm employs the OpenCL Aparapi framework, along with XORShift Kernel including the Pseudo-Random Number Generator (PRNG) Kernel. PRNG is applied to produce random numbers inside the kernel of OpenCL. The experiment of the proposed algorithm is carried out by practicing GPU that it can perform faster-processing speed and better efficiency without getting the disruption of unnecessary operating system tasks.Keywords: LSB based steganography, Fisher-Yates algorithm, text-based shuffling algorithm, OpenCL, XORShiftKernel
Procedia PDF Downloads 1551168 Features Vector Selection for the Recognition of the Fragmented Handwritten Numeric Chains
Authors: Salim Ouchtati, Aissa Belmeguenai, Mouldi Bedda
Abstract:
In this study, we propose an offline system for the recognition of the fragmented handwritten numeric chains. Firstly, we realized a recognition system of the isolated handwritten digits, in this part; the study is based mainly on the evaluation of neural network performances, trained with the gradient backpropagation algorithm. The used parameters to form the input vector of the neural network are extracted from the binary images of the isolated handwritten digit by several methods: the distribution sequence, sondes application, the Barr features, and the centered moments of the different projections and profiles. Secondly, the study is extended for the reading of the fragmented handwritten numeric chains constituted of a variable number of digits. The vertical projection was used to segment the numeric chain at isolated digits and every digit (or segment) was presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits).Keywords: features extraction, handwritten numeric chains, image processing, neural networks
Procedia PDF Downloads 2691167 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image
Authors: Lan Du, Yan Wang, Hui Dai
Abstract:
Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation
Procedia PDF Downloads 3931166 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 3751165 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area
Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna
Abstract:
The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.Keywords: Hyperion, hyperspectral, sensor, Landsat-8
Procedia PDF Downloads 1291164 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing
Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto
Abstract:
In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration
Procedia PDF Downloads 2501163 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 3551162 Data Gathering and Analysis for Arabic Historical Documents
Authors: Ali Dulla
Abstract:
This paper introduces a new dataset (and the methodology used to generate it) based on a wide range of historical Arabic documents containing clean data simple and homogeneous-page layouts. The experiments are implemented on printed and handwritten documents obtained respectively from some important libraries such as Qatar Digital Library, the British Library and the Library of Congress. We have gathered and commented on 150 archival document images from different locations and time periods. It is based on different documents from the 17th-19th century. The dataset comprises differing page layouts and degradations that challenge text line segmentation methods. Ground truth is produced using the Aletheia tool by PRImA and stored in an XML representation, in the PAGE (Page Analysis and Ground truth Elements) format. The dataset presented will be easily available to researchers world-wide for research into the obstacles facing various historical Arabic documents such as geometric correction of historical Arabic documents.Keywords: dataset production, ground truth production, historical documents, arbitrary warping, geometric correction
Procedia PDF Downloads 1721161 Outpatient Pelvic Nerve and Muscle Treatment Reduces Pain and Improves Functionality for Patients with Chronic Pelvic Pain and Erectile Dysfunction
Authors: Allyson Augusta Shrikhande, Alexa Rains, Tayyaba Ahmed, Marjorie Mamsaang, Rakhi Vyas, Janaki Natarajan, Erika Moody, Christian Reutter, Kimberlee Leishear, Yogita Tailor, Sandra Sandhu-Restaino, Lora Liu, Neha James, Rosemarie Filart
Abstract:
Characterized by consistent difficulty getting and keeping an erection firm enough for intercourse, Erectile Dysfunction may affect up to 15% of adult men. Although awareness and access to treatment have improved in recent years, many patients do not actively seek diagnosis or treatment due to the stigma surrounding this condition. Patients who do seek treatment are often dissatisfied by the efficacy of the medication. The condition inhibits patients’ quality of life by worsening mental health and relationships. The purpose of this study was to test the effectiveness of an outpatient neuromuscular treatment protocol in treating the symptoms of Chronic Pelvic Pain and Erectile Dysfunction, improving pain and function. 56 patients ages 20-79 presented to an outpatient clinic for treatment of pelvic pain and Erectile Dysfunction symptoms. These symptoms had persisted for an average of 4 years. All patients underwent external ultrasound-guided hydro-dissection technique targeted at pelvic peripheral nerves in combination with pelvic floor musculature trigger-point injections. To measure the effects of this treatment, a five question Erectile Dysfunction questionnaire was completed by each patient at their first visit to a clinic and three months after treatment began. Answers were summed for a total score of 5-25, with a higher score indicating optimal function. The average score before treatment was 14.125 (SD 5.411) (a=0.05; CI 12.708-15.542), which increased by 18% to an average of 16.625 (SD 6.423) (a=0.05; CI 14.943-18.307) after treatment (P=0.0004). Secondary outcome variables included a Visual Analogue Scale (VAS) to measure pelvic pain intensity and the Functional Pelvic Pain Scale (FPPS) to measure function across multiple areas. VAS scores reduced by 51% after three months. Before treatment, the mean VAS score was 5.87, and the posttreatment mean VAS score was 2.89. Pelvic pain functionality improved by 34% after three months. Pretreatment FPPS scores averaged at 7.48, decreasing to 4.91 after treatment. These results indicate that this unique treatment was very effective at relieving pain and increasing function for patients with Erectile Dysfunction.Keywords: chronic pelvic pain, erectile dysfunction, nonsurgical, outpatient, trigger point injections
Procedia PDF Downloads 941160 Satire of Victorian Mores in Charles Dickens’ Great Expectations
Authors: Nagwa Abouserie Soliman
Abstract:
The Victorian era, which started with the reign of Queen Victoria from June 1837 to January 1901, could be considered as one of the most significant eras that had a crucial impact which formed contemporary British life despite the fact that with the rise of the British empire many negative aspects surfaced, namelysocial inequalities such as class differences, child labor, population increase and poverty due to the industrial revolution. Charles Dickens was one of the most prominent writers of the Victorian era who perceived the hypocrisy of the Victorian mores. The appropriate researchstyle that was chosen for this literary analysis is a qualitative research method in which the researcher used the conceptual approach to analyse theDickensian characterisation andwriting style through diction, narrative voice, and images. The aim of this paper is to argue that Charles Dickens inGreat Expectations (1861) was highly satirical of the Victorian mores, as he uses a lot of sharp irony-to satirize various Victorian traditions such as class divisions, the justice system, the poor working class, and the upper-class snobbery that he thought are inhumane and unjust.Keywords: victorian, child labour, poverty, class division, snobbery
Procedia PDF Downloads 1261159 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 741158 Female Dis-Empowerment in Contemporary Zimbabwe: A Re-Look at Shona Writers’ Vision of the Factors and Solutions
Authors: Godwin Makaudze
Abstract:
The majority of women in contemporary Zimbabwe continue to hold marginalised and insignificant positions in society and to be accorded negative and stereotyped images in literature. In light of this, government and civic organisations and even writers channel many resources, time, and efforts towards the emancipation of the female gender. Using the Africana womanist and socio-historical literary theories and focussing on two post-colonial novels, this paper re-engages the dis-empowerment of women in contemporary Zimbabwe, examining the believed causes and suggested solutions. The paper observes that the writers whip the already whipped by blaming patriarchy, African men and cultural practices as the underlying causes of such a sorry state of affairs while at the same time celebrating war against all these, as well as education, unity among women, Christianity and single motherhood as panaceas to the problem. The paper concludes that the writers’ anger is misdirected as they have fallen trap to the very popular yet mythical victim-blame motif espoused by many writers who focus on Shona people’s problems.Keywords: cultural practices, female dis-empowerment, patriarchy, Shona novel, solutions, Zimbabwe
Procedia PDF Downloads 3361157 The Gender Criteria of Film Criticism: Creating the ‘Big’, Avoiding the Important
Authors: Eleni Karasavvidou
Abstract:
Social and anthropological research, parallel to Gender Studies, highlighted the relationship between social structures and symbolic forms as an important field of interaction and recording of 'social trends.' Since the study of representations can contribute to the understanding of the social functions and power relations, they encompass. This ‘mirage,’ however, has not only to do with the representations themselves but also with the ways they are received and the film or critical narratives that are established as dominant or alternative. Cinema and the criticism of its cultural products are no exception. Even in the rapidly changing media landscape of the 21st century, movies remain an integral and widespread part of popular culture, making films an extremely powerful means of 'legitimizing' or 'delegitimizing' visions of domination and commonsensical gender stereotypes throughout society. And yet it is film criticism, the 'language per se,' that legitimizes, reinforces, rewards and reproduces (or at least ignores) the stereotypical depictions of female roles that remain common in the realm of film images. This creates the need for this issue to have emerged (also) in academic research questioning gender criteria in film reviews as part of the effort for an inclusive art and society. Qualitative content analysis is used to examine female roles in selected Oscar-nominated films against their reviews from leading websites and newspapers. This method was chosen because of the complex nature of the depictions in the films and the narratives they evoke. The films were divided into basic scenes depicting social functions, such as love and work relationships, positions of power and their function, which were analyzed by content analysis, with borrowings from structuralism (Gennette) and the local/universal images of intercultural philology (Wierlacher). In addition to the measurement of the general ‘representation-time’ by gender, other qualitative characteristics were also analyzed, such as: speaking time, sayings or key actions, overall quality of the character's action in relation to the development of the scenario and social representations in general, as well as quantitatively (insufficient number of female lead roles, fewer key supporting roles, relatively few female directors and people in the production chain and how they might affect screen representations. The quantitative analysis in this study was used to complement the qualitative content analysis. Then the focus shifted to the criteria of film criticism and to the rhetorical narratives that exclude or highlight in relation to gender identities and functions. In the criteria and language of film criticism, stereotypes are often reproduced or allegedly overturned within the framework of apolitical "identity politics," which mainly addresses the surface of a self-referential cultural-consumer product without connecting it more deeply with the material and cultural life. One of the prime examples of this failure is the Bechtel Test, which tracks whether female characters speak in a film regardless of whether women's stories are represented or not in the films analyzed. If perceived unbiased male filmmakers still fail to tell truly feminist stories, the same is the case with the criteria of criticism and the related interventions.Keywords: representations, context analysis, reviews, sexist stereotypes
Procedia PDF Downloads 871156 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models
Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi
Abstract:
Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel
Procedia PDF Downloads 1851155 A Reliable Multi-Type Vehicle Classification System
Authors: Ghada S. Moussa
Abstract:
Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm
Procedia PDF Downloads 3631154 Saudi and U.S. Newspaper Coverage of Saudi Vision 2030 Concerning Women in Online Newspapers
Authors: Ziyad Alghamdi
Abstract:
This research investigates how issues concerning Saudi women have been represented in selected U.S. and Saudi publications. Saudi Vision 2030 is the Kingdom of Saudi Arabia's development strategy, which was revealed on April 25, 2016. This study used 115 news items across selected newspapers as its sampling. The New York Times and the Washington Post were chosen to represent U.S. newspapers and picked two Saudi newspapers, Al Jazirah, and Al Watan. This research examines how these issues were covered before and during the implementation of Saudi Vision 2030. The news pieces were analyzed using both quantitative and qualitative methodologies. The qualitative study employed an inductive technique to uncover frames. Furthermore, this work looked at how American and Saudi publications had framed Saudi women depicted in images by reviewing the photographs used in news reports about Saudi women's issues. The primary conclusion implies that the human-interest frame was more prevalent in American media, whereas the economic frame was more prevalent in Saudi publications. A variety of diverse topics were considered.Keywords: Saudi newspapers, Saudi Vision 2030, framing theory, Saudi women
Procedia PDF Downloads 951153 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases
Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury
Abstract:
Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification
Procedia PDF Downloads 981152 Review of the Software Used for 3D Volumetric Reconstruction of the Liver
Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta
Abstract:
In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.Keywords: image segmentation, semi-automatic, software, 3D volumetric reconstruction
Procedia PDF Downloads 294