Search results for: slug flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4783

Search results for: slug flow

3133 Modelling of Heat Transfer during Controlled Cooling of Thermo-Mechanically Treated Rebars Using Computational Fluid Dynamics Approach

Authors: Rohit Agarwal, Mrityunjay K. Singh, Soma Ghosh, Ramesh Shankar, Biswajit Ghosh, Vinay V. Mahashabde

Abstract:

Thermo-mechanical treatment (TMT) of rebars is a critical process to impart sufficient strength and ductility to rebar. TMT rebars are produced by the Tempcore process, involves an 'in-line' heat treatment in which hot rolled bar (temperature is around 1080°C) is passed through water boxes where it is quenched under high pressure water jets (temperature is around 25°C). The quenching rate dictates composite structure consisting (four non-homogenously distributed phases of rebar microstructure) pearlite-ferrite, bainite, and tempered martensite (from core to rim). The ferrite and pearlite phases present at core induce ductility to rebar while martensitic rim induces appropriate strength. The TMT process is difficult to model as it brings multitude of complex physics such as heat transfer, highly turbulent fluid flow, multicomponent and multiphase flow present in the control volume. Additionally the presence of film boiling regime (above Leidenfrost point) due to steam formation adds complexity to domain. A coupled heat transfer and fluid flow model based on computational fluid dynamics (CFD) has been developed at product technology division of Tata Steel, India which efficiently predicts temperature profile and percentage martensite rim thickness of rebar during quenching process. The model has been validated with 16 mm rolling of New Bar mill (NBM) plant of Tata Steel Limited, India. Furthermore, based on the scenario analyses, optimal configuration of nozzles was found which helped in subsequent increase in rolling speed.

Keywords: boiling, critical heat flux, nozzles, thermo-mechanical treatment

Procedia PDF Downloads 218
3132 Investigation of Several Parameters on Local Scour around Inclined Dual Bridge Piers

Authors: Murat Çeşme

Abstract:

For a bridge engineer to ensure a safe footing design, it is very important to estimate the maximum scour depth around the piers as accurately as possible. Many experimental studies have been performed by several investigators to obtain information about scouring mechanism. In order to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths, an experimental research on scaled dual bridge piers has been carried over in METU Hydromechanics Lab. Dimensional and non-dimensional curves were developed and presented to show the variation of scour depth with respect to various parameters such as footing angle with the vertical, flow depth and footing dimensions. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses to be used for predicting local scour depths around inclined piers in uniform and non-uniform sediments.

Keywords: experimental research, inclined dual bridge piers, footing safety, scour depth, clear water condition

Procedia PDF Downloads 101
3131 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow

Authors: Shivani Saini

Abstract:

The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.

Keywords: Darcy model, nanofluid, porous layer, throughflow

Procedia PDF Downloads 139
3130 Process Mining as an Ecosystem Platform to Mitigate a Deficiency of Processes Modelling

Authors: Yusra Abdulsalam Alqamati, Ahmed Alkilany

Abstract:

The teaching staff is a distinct group whose impact is on the educational process and which plays an important role in enhancing the quality of the academic education process. To improve the management effectiveness of the academy, the Teaching Staff Management System (TSMS) proposes that all teacher processes be digitized. Since the BPMN approach can accurately describe the processes, it lacks a clear picture of the process flow map, something that the process mining approach has, which is extracting information from event logs for discovery, monitoring, and model enhancement. Therefore, these two methodologies were combined to create the most accurate representation of system operations, the ability to extract data records and mining processes, recreate them in the form of a Petri net, and then generate them in a BPMN model for a more in-depth view of process flow. Additionally, the TSMS processes will be orchestrated to handle all requests in a guaranteed small-time manner thanks to the integration of the Google Cloud Platform (GCP), the BPM engine, and allowing business owners to take part throughout the entire TSMS project development lifecycle.

Keywords: process mining, BPM, business process model and notation, Petri net, teaching staff, Google Cloud Platform

Procedia PDF Downloads 144
3129 Experimental and Numerical Studies on Hydrogen Behavior in a Small-Scale Container with Passive Autocatalytic Recombiner

Authors: Kazuyuki Takase, Yoshihisa Hiraki, Gaku Takase, Isamu Kudo

Abstract:

One of the most important issue is to ensure the safety of long-term waste storage containers in which fuel debris and radioactive materials are accumulated. In this case, hydrogen generated by water decomposition by radiation is accumulated in the container for a long period of time, so it is necessary to reduce the concentration of hydrogen in the container. In addition, a condition that any power supplies from the outside of the container are unnecessary is requested. Then, radioactive waste storage containers with the passive autocatalytic recombiner (PAR) would be effective. The radioactive waste storage container with PAR was used for moving the fuel debris of the Three Mile Island Unit 2 to the storage location. However, the effect of PAR is not described in detail. Moreover, the reduction of hydrogen concentration during the long-term storage period was performed by the venting system, which was installed on the top of the container. Therefore, development of a long-term storage container with PAR was started with the aim of safely storing fuel debris picked up at the Fukushima Daiichi Nuclear Power Plant for a long period of time. A fundamental experiment for reducing the concentration of hydrogen which generates in a nuclear waste long-term storage container was carried out using a small-scale container with PAR. Moreover, the circulation flow behavior of hydrogen in the small-scale container resulting from the natural convection by the decay heat was clarified. In addition, preliminary numerical analyses were performed to predict the experimental results regarding the circulation flow behavior and the reduction of hydrogen concentration in the small-scale container. From the results of the present study, the validity of the container with PAR was experimentally confirmed on the reduction of hydrogen concentration. In addition, it was predicted numerically that the circulation flow behavior of hydrogen in the small-scale container is blocked by steam which generates by chemical reaction of hydrogen and oxygen.

Keywords: hydrogen behavior, reduction of concentration, long-term storage container, small-scale, PAR, experiment, analysis

Procedia PDF Downloads 165
3128 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions

Authors: X. Wang, T. J. Craft, H. Iacovides

Abstract:

When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.

Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function

Procedia PDF Downloads 348
3127 Hydrodynamics of Undulating Ribbon-fin and Its Application in Bionic Underwater Robot

Authors: Zhang Jun, Zhai Shucheng, Bai Yaqiang, Zhang Guoping

Abstract:

The Gymnarchus Niioticus fish(GNF) cruises generally with high efficiency by undulating ribbon-fin propulsion while keeping its body for straight line. The swing amplitude of GNF fins is usually in 60° to 90°, and in normal state the amplitude is close to 90°, only in the control of hovering or swimming at very low speed, the amplitude is smaller (about 60°). It provides inspiration for underwater robot design. In the paper, the unsteady flow of undulating ribbon-fin propulsion is numerical simulated by the dynamic grid technique including spring-based smoothing model and local grid remeshing to adapt to the fin surface significantly deforming, and the swing amplitude of fin ray reaches 850. The numerical simulation method is validated by thrust experiments. The spatial vortex structure and its evolution with phase angle is analyzed. The propulsion mechanism is investigated by comprehensive analysis of the hydrodynamics, vortex structure, and pressure distribution on the fin surface. The numerical results indicates that there are mainly three kinds of vortexes, i.e. streamwise vortex, crescent vortex and toroidal vortex. The intensity of streamwise vortex is the strongest among all kinds of vortexes. Streamwise vortexes and crescent vortexes all alternately distribute on the two sides of mid-sagittal plane. Inside the crescent vortexes is high-speed flow, while outside is low-speed flow. The crescent vortexes mainly induce high-speed axial jet, which produces the primary thrust. This is hydrodynamic mechanism undulating ribbon-fin propulsion. The streamwise vortexes mainly induce the vertical jet, which generates the primary heave force. The effect on hydrodynamics of main geometry and movement parameters including wave length, amplitude and advanced coefficients is investigated. A bionic underwater robot with bilateral undulating ribbon-fins is designed, and its navigation performance and maneuverability are measured.

Keywords: bionic propulsion, mobile robot, underwater robot, undulating ribbon-fins

Procedia PDF Downloads 288
3126 A Coupled Model for Two-Phase Simulation of a Heavy Water Pressure Vessel Reactor

Authors: D. Ramajo, S. Corzo, M. Nigro

Abstract:

A Multi-dimensional computational fluid dynamics (CFD) two-phase model was developed with the aim to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a commercial nuclear power plant (NPP). Due to the fact that this PHWR is a Reactor Pressure Vessel type (RPV), three-dimensional (3D) detailed modelling of the large reservoirs of the RPV (the upper and lower plenums and the downcomer) were coupled with an in-house finite volume one-dimensional (1D) code in order to model the 451 coolant channels housing the nuclear fuel. Regarding the 1D code, suitable empirical correlations for taking into account the in-channel distributed (friction losses) and concentrated (spacer grids, inlet and outlet throttles) pressure losses were used. A local power distribution at each one of the coolant channels was also taken into account. The heat transfer between the coolant and the surrounding moderator was accurately calculated using a two-dimensional theoretical model. The implementation of subcooled boiling and condensation models in the 1D code along with the use of functions for representing the thermal and dynamic properties of the coolant and moderator (heavy water) allow to have estimations of the in-core steam generation under nominal flow conditions for a generic fission power distribution. The in-core mass flow distribution results for steady state nominal conditions are in agreement with the expected from design, thus getting a first assessment of the coupled 1/3D model. Results for nominal condition were compared with those obtained with a previous 1/3D single-phase model getting more realistic temperature patterns, also allowing visualize low values of void fraction inside the upper plenum. It must be mentioned that the current results were obtained by imposing prescribed fission power functions from literature. Therefore, results are showed with the aim of point out the potentiality of the developed model.

Keywords: PHWR, CFD, thermo-hydraulic, two-phase flow

Procedia PDF Downloads 471
3125 Ageing Gingiva: A New Hope for Autologous Stem Cell Therapy

Authors: Ankush M. Dewle, Suditi Bhattacharya, Prachi R. Abhang, Savita Datar, Ajay J. Jog, Rupesh K. Srivastava, Geetanjali Tomar

Abstract:

Objectives: The aim of this study was to investigate the quality of mesenchymal stem cells (MSCs) obtained from ageing gingival tissues, in order to suggest their potential role in autologous stem cell therapy for old individuals. Methods: MSCs were isolated from gingival tissues of young (18-45 years) and old (above 45 years) donors by enzymatic digestion. MSCs were analysed for cfu-f, surface marker expression by flow-cytometry and multilineage differentiation potential. The angiogenic potential was compared in a chick embryo yolk sac membrane model. The aging and differentiation markers including SA-β-galactosidase and p21 respectively were analysed by staining and flow-cytometry analysis. Additionally, osteogenic markers such as glucocorticoid receptor (GR), vitamin D receptor (VDR) were measured by flow-cytometry and RT-qPCR was performed for quantification of osteogenic gene expression. Alizarin Red S and alkaline phosphatase (ALP) activity were also quantitated. Results: Gingival MSCs (GMSCs) from both the age groups were similar in their morphology and displayed cfu-f. They had similar expression of MSC surface markers and p21, comparable rate of proliferation and differentiated to all the four lineages. GMSCs from young donors had a higher adipogenic differentiation potential as compared to the old GMSCs. Moreover, these cells did not display a significant difference in ALP activity probably due to comparable expression of GR, VDR, and osteogenic genes. Conclusions: Ageing of GMSCs occurs at a much slower rate than stem cells from other sources. Thus we suggest GMSCs as an excellent candidate for autologous stem cell therapy in degenerative diseases of elderly individuals. Clinical Significance: GMSCs could help overcome the setbacks in clinical implementation of autologous stem cell therapy for regenerative medicine in all age group of patient.

Keywords: bone regeneration, cell therapy, senescence, stem cell

Procedia PDF Downloads 185
3124 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks

Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu

Abstract:

Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.

Keywords: pin-fin, heat sinks, simulations, turbulent flow

Procedia PDF Downloads 318
3123 A Steady State Characteristics of Four-Lobe Journal Bearing Lubricated with a Couple Stress Fluids in Turbulent Flow Regime

Authors: Boualem Chetti, Samir Zahaf

Abstract:

This paper presents the steady-state performance analysis of a four-lobe journal bearing lubricated with a couple stress fluids operating in the turbulent regime, following Constantinescu’s turbulent lubrication theory. The modified Reynolds equation is solved numerically using the finite difference method taking into consideration the effects of the turbulence and the couple stress. In this analysis, the steady-state parameters in terms of the attitude angle, load carrying capacity, side leakage and friction coefficient are determined at various values of eccentricities ratio. The computed results show that the turbulence increases the load carrying capacity, the attitude angle and the friction coefficient for a journal bearing lubricated with a Newtonian or a couple stress fluids. It is found that the turbulence has strongly influence on the steady-state performances of the four-lobe journal bearing lubricated with Newtonian fluids or a couple stress fluids.

Keywords: Four-lobe journal bearings, static characteristics, couple-stress fluids, turbulent flow

Procedia PDF Downloads 198
3122 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept

Authors: Ahmed El Naggar, Homyan Saleh

Abstract:

Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.

Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy

Procedia PDF Downloads 94
3121 Sulfide Removal from Liquid Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno Ambarwati Sigit Lestari, Wahyudi Budi Sediawan, Sarto Sarto

Abstract:

This study focused on the removal of sulfide from liquid solution using biofilm on packed bed of salak fruit seeds. Biofilter operation of 444 hours consists of 6 phases of operation. Each phase lasted for approximately 72 hours to 82 hours and run at various inlet concentration and flow rate. The highest removal efficiency is 92.01%, at the end of phase 7 at the inlet concentration of 60 ppm and the flow rate of 30 mL min-1. Mathematic model of sulfide removal was proposed to describe the operation of biofilter. The model proposed can be applied to describe the removal of sulfide liquid using biofilter in packed bed. The simulation results the value of the parameters in process. The value of the rate maximum spesific growth is 4.15E-8 s-1, Saturation constant is 9.1E-8 g cm-3, mass transfer coefisient of liquid is 0.5 cm s-1, Henry’s constant is 0.007, and mass of microorganisms growth to mass of sulfide comsumed is 30. The value of the rate maximum spesific growth in early process is 0.00000004 s-1.

Keywords: biofilm, packed bed, removal, sulfide, salak fruit seeds.

Procedia PDF Downloads 195
3120 Characterization of Structural Elements Concrete Metal Fibre

Authors: Benaouda Hemza

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 456
3119 The Metabolism of Built Environment: Energy Flow and Greenhouse Gas Emissions in Nigeria

Authors: Yusuf U. Datti

Abstract:

It is becoming increasingly clear that the consumption of resources now enjoyed in the developed nations will be impossible to be sustained worldwide. While developing countries still have the advantage of low consumption and a smaller ecological footprint per person, they cannot simply develop in the same way as other western cities have developed in the past. The severe reality of population and consumption inequalities makes it contentious whether studies done in developed countries can be translated and applied to developing countries. Additional to this disparities, there are few or no metabolism of energy studies in Nigeria. Rather more contentious majority of energy metabolism studies have been done only in developed countries. While researches in Nigeria concentrate on other aspects/principles of sustainability such as water supply, sewage disposal, energy supply, energy efficiency, waste disposal, etc., which will not accurately capture the environmental impact of energy flow in Nigeria, this research will set itself apart by examining the flow of energy in Nigeria and the impact that the flow will have on the environment. The aim of the study is to examine and quantify the metabolic flows of energy in Nigeria and its corresponding environmental impact. The study will quantify the level and pattern of energy inflow and the outflow of greenhouse emissions in Nigeria. This study will describe measures to address the impact of existing energy sources and suggest alternative renewable energy sources in Nigeria that will lower the emission of greenhouse gas emissions. This study will investigate the metabolism of energy in Nigeria through a three-part methodology. The first step involved selecting and defining the study area and some variables that would affect the output of the energy (time of the year, stability of the country, income level, literacy rate and population). The second step involves analyzing, categorizing and quantifying the amount of energy generated by the various energy sources in the country. The third step involves analyzing what effect the variables would have on the environment. To ensure a representative sample of the study area, Africa’s most populous country, with economy that is the second biggest and that is among the top largest oil producing countries in the world is selected. This is due to the understanding that countries with large economy and dense populations are ideal places to examine sustainability strategies; hence, the choice of Nigeria for the study. National data will be utilized unless where such data cannot be found, then local data will be employed which will be aggregated to reflect the national situation. The outcome of the study will help policy-makers better target energy conservation and efficiency programs and enables early identification and mitigation of any negative effects in the environment.

Keywords: built environment, energy metabolism, environmental impact, greenhouse gas emissions and sustainability

Procedia PDF Downloads 184
3118 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer

Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang

Abstract:

The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.

Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer

Procedia PDF Downloads 114
3117 Characterization of Structural Elements in Metal Fiber Concrete

Authors: Ammari Abdelhammid

Abstract:

This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.

Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test

Procedia PDF Downloads 443
3116 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.

Keywords: gas pipelines, incident radiation, numerical simulation, safety distance

Procedia PDF Downloads 334
3115 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields

Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-Xin Wang

Abstract:

The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.

Keywords: supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings(FW-H) equations, nozzle size

Procedia PDF Downloads 413
3114 Earnings Management and Firm’s Creditworthiness

Authors: Maria A. Murtiati, Ancella A. Hermawan

Abstract:

The objective of this study is to examine whether the firm’s eligibility to get a bank loan is influenced by earnings management. The earnings management is distinguished between accruals and real earnings management. Hypothesis testing is carried out with logistic regression model using sample of 285 companies listed at Indonesian Stock Exchange in 2010. The result provides evidence that a greater magnitude in accruals earnings management increases the firm’s probability to be eligible to get bank loan. In contrast, real earnings management through abnormal cash flow and abnormal discretionary expenses decrease firm’s probability to be eligible to get bank loan, while real management through abnormal production cost increases such probability. The result of this study suggests that if the earnings management is assumed to be opportunistic purpose, the accruals based earnings management can distort the banks credit analysis using financial statements. Real earnings management has more impact on the cash flows, and banks are very concerned on the firm’s cash flow ability. Therefore, this study indicates that banks are more able to detect real earnings management, except abnormal production cost in real earning management.

Keywords: discretionary accruals, real earning management, bank loan, credit worthiness

Procedia PDF Downloads 347
3113 Taleghan Dam Break Numerical Modeling

Authors: Hamid Goharnejad, Milad Sadeghpoor Moalem, Mahmood Zakeri Niri, Leili Sadeghi Khalegh Abadi

Abstract:

While there are many benefits to using reservoir dams, their break leads to destructive effects. From the viewpoint of International Committee of Large Dams (ICOLD), dam break means the collapse of whole or some parts of a dam; thereby the dam will be unable to hold water. Therefore, studying dam break phenomenon and prediction of its behavior and effects reduces losses and damages of the mentioned phenomenon. One of the most common types of reservoir dams is embankment dam. Overtopping in embankment dams occurs because of flood discharge system inability in release inflows to reservoir. One of the most important issues among managers and engineers to evaluate the performance of the reservoir dam rim when sliding into the storage, creating waves is large and long. In this study, the effects of floods which caused the overtopping of the dam have been investigated. It was assumed that spillway is unable to release the inflow. To determine outflow hydrograph resulting from dam break, numerical model using Flow-3D software and empirical equations was used. Results of numerical models and their comparison with empirical equations show that numerical model and empirical equations can be used to study the flood resulting from dam break.

Keywords: embankment dam break, empirical equations, Taleghan dam, Flow-3D numerical model

Procedia PDF Downloads 321
3112 Fully Coupled Porous Media Model

Authors: Nia Mair Fry, Matthew Profit, Chenfeng Li

Abstract:

This work focuses on the development and implementation of a fully implicit-implicit, coupled mechanical deformation and porous flow, finite element software tool. The fully implicit software accurately predicts classical fundamental analytical solutions such as the Terzaghi consolidation problem. Furthermore, it can capture other analytical solutions less well known in the literature, such as Gibson’s sedimentation rate problem and Coussy’s problems investigating wellbore stability for poroelastic rocks. The mechanical volume strains are transferred to the porous flow governing equation in an implicit framework. This will overcome some of the many current industrial issues, which use explicit solvers for the mechanical governing equations and only implicit solvers on the porous flow side. This can potentially lead to instability and non-convergence issues in the coupled system, plus giving results with an accountable degree of error. The specification of a fully monolithic implicit-implicit coupled porous media code sees the solution of both seepage-mechanical equations in one matrix system, under a unified time-stepping scheme, which makes the problem definition much easier. When using an explicit solver, additional input such as the damping coefficient and mass scaling factor is required, which are circumvented with a fully implicit solution. Further, improved accuracy is achieved as the solution is not dependent on predictor-corrector methods for the pore fluid pressure solution, but at the potential cost of reduced stability. In testing of this fully monolithic porous media code, there is the comparison of the fully implicit coupled scheme against an existing staggered explicit-implicit coupled scheme solution across a range of geotechnical problems. These cases include 1) Biot coefficient calculation, 2) consolidation theory with Terzaghi analytical solution, 3) sedimentation theory with Gibson analytical solution, and 4) Coussy well-bore poroelastic analytical solutions.

Keywords: coupled, implicit, monolithic, porous media

Procedia PDF Downloads 140
3111 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: PCM, TES, LHSU, melting

Procedia PDF Downloads 262
3110 Experimental Analysis on the Thermal Performance of Vacuum Membrane Distillation Module Using Polyvinylidene Fluoride Hollow Fiber Membrane

Authors: Hong-Jin Joo, Hee-Yoel Kwak

Abstract:

Vacuum Membrane Distillation (VMD) uses pressure lower than the atmospheric pressure. The feed seawater is capable of producing more vapor at the same temperature than Direct Contact Membrane Distillation (DCMD), Air Gap Membrane Distillation (AGMD) or Sweep Gas Membrane Distillation (SGMD). It is advantageous because it is operable at a lower temperature than other membrane distillations. However, no commercial product is available that uses the VMD method, as it is still in the study stage. In this study, therefore, thermal performance test according to the feed water conditions was performed prior to both construction of the demonstration plant, which uses VMD module of the capacity of 400m³/d in South Korea, and commercialization of VMD module with hollow fiber membrane. Such study was performed by designing and constructing the VMD module of the capacity of 2 m³/day which utilizes the polyvinylidene fluoride (PVDF) hollow fiber membrane. The results obtained from the VMD module manufactured by ECONITY Co., Ltd in South Korea, showed that the maximum performance ratio (PR) value of 0.904, feed water temperature of 75 ℃, and the flow rate of 8 m3/h. As the temperature of and flow rate of the feed water increased, the PR value of the VMD module also increased.

Keywords: membrane distillation, vacuum membrane distillation, hollow fiber membrane, desalination

Procedia PDF Downloads 212
3109 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel

Authors: Behzad Panahirad, UğUr Atikol

Abstract:

The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.

Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility

Procedia PDF Downloads 172
3108 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber

Authors: Stanislav Perepechko

Abstract:

Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.

Keywords: waste-free air filtration, concrete, basalt fiber, building automation

Procedia PDF Downloads 429
3107 Spatial Variability of Brahmaputra River Flow Characteristics

Authors: Hemant Kumar

Abstract:

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Keywords: aerosol, change detection, spatial analysis, trend analysis

Procedia PDF Downloads 147
3106 Role of Molecular Changes and Immunohistochamical in Early Detection of Colon Cancer

Authors: Fatimah Alhomaid

Abstract:

The present study was planned to investigate the role of molecular changes and immunohistochemical in early detection of colon cancer in Saudi patients. Our results were carried out on 48 patients colon cancer. We obtained our data from laboratory in King Khalid university hospital. The specimens were taken (48) patients with colon cancer 34 male and 14 female and 2 control. The average age of varied from 37-85 years. The tumor was diagnosed as I in tow patients (male and female) and grade 2 in 42 patients (29 male and 13 female) while the grade 3 in 4 patients (all males). The specimens were processed for haematoxylin and eosin staining , immunohistochemical technique and flow cytometry analysis. Our study noted that most patients had adenocarcinoma which characterized by presence of signet-ring cells were very clear in advanced patients of adenocarcinoma. Our sections in adenocarcinoma in grade 2 and stage 3 had an increase in signet ring cells,an increase in the acini of glands and an increase in number of lymphocytes which spread to the muscularis layer. With advancing the disease, there were haemorge in blood and increase in lymphocytes and increase number of nuclei in the tubular glands. Our study was carried on 48 patients, immunohistochemical diagnosis (CK20,PCNA,P53) and the analysis of DNA content by flow cytometry technique. Our study indicated that the presence of correlation between the immunohistochemical analysis for P53 and the grades. The reaction of P53 appeared as strong in nucleus in grades &stage 3 and appeared in other sections as dark brown pigment. Our study indicated that the absence of correlation between the immunohistochemical analysis for pcan and the grades. In our sections, there were strong reactions in the more 80% of nuclei in grade 1& stage 2. Our study indicated that the presence of correlation between the immunohistochemical analysis for CK20 and the grades. Our results indicated the presence of positive reaction in cytoplasm varied from weak to moderate in grade 3 & stage 4. Concerning the Flow cytometry technique our results indicated that the presence of correlation between the DNA and different stages of colon cancer.

Keywords: DNA-CK20, PCNA, P53, colon cancer

Procedia PDF Downloads 357
3105 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies

Authors: Abdelhadi Adel, Kadri Ouahab

Abstract:

This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.

Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling

Procedia PDF Downloads 338
3104 Role of Fracturing, Brecciation and Calcite Veining in Fluids Flow and Permeability Enhancement in Low-Porosity Rock Masses: Case Study of Boulaaba Aptian Dolostones, Kasserine, Central Tunisia

Authors: Mohamed Khali Zidi, Mohsen Henchiri, Walid Ben Ahmed

Abstract:

In the context of a hypogene hydrothermal travertine system, including low-porosity brittle bedrock and rock-mass permeability in Aptian dolostone of Boulaaba, Kasserine is enhanced through faulting and fracturing. This permeability enhancement related to the deformation modes along faults and fractures is likely to be in competition with permeability reduction when microcracks, fractures, and faults all become infilled with breccias and low-permeability hydrothermal precipitates. So that, fault continual or intermittent reactivation is probably necessary for them to keep their potential as structural high-permeability conduits. Dilational normal faults in strong mechanical stratigraphy associated with fault segments with dip changes are sites for porosity and permeability in groundwater infiltration and flow, hydrocarbon reservoirs, and also may be important sources of mineralization. The brecciation mechanism through dilational faulting and gravitational collapse originates according to hosting lithologies chaotic clast-supported breccia in strong lithologies such as sandstones, limestones, and dolostones, and matrix-supported cataclastic in weaker lithologies such as marls and shales. Breccias contribute to controlling fluid flow when the porosity is sealed either by low-permeability hydrothermal precipitates or by fine matrix materials. All these mechanisms of fault-related rock-mass permeability enhancement and reduction can be observed and analyzed in the region of Sidi Boulaaba, Kasserine, central Tunisia, where dilational normal faulting occurs in mechanical strong dolostone layering alternating with more weak marl and shale lithologies, has originated a variety of fault voids (fluid conduits) breccias (chaotic, crackle and mosaic breccias) and carbonate cement.

Keywords: travertine, Aptian dolostone, Boulaaba, fracturing

Procedia PDF Downloads 67