Search results for: lateral velocity estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4061

Search results for: lateral velocity estimation

2411 Numerical Study of 5kW Vertical Axis Wind Turbine Using DOE Method

Authors: Yan-Ting Lin, Wei-Nian Su

Abstract:

The purpose of this paper is to demonstrate the design of 5kW vertical axis wind turbine (VAWT) using DOE method. The NACA0015 airfoil was implemented for the design and 3D simulation. The critical design parameters are chord length, tip speed ratio (TSR), aspect ratio (AR) and pitch angle in this investigation. The RNG k-ε turbulent model and the sliding mesh method are adopted in the CFD simulation. The results show that the model with zero pitch, 0.3 m in chord length, TSR of 3, and AR of 10 demonstrated the optimum aerodynamic power under the uniform 10m/s inlet velocity. The aerodynamic power is 3.61kW and 3.89kW under TSR of 3 and 4 respectively. The aerodynamic power decreased dramatically while TSR increased to 5.

Keywords: vertical axis wind turbine, CFD, DOE, VAWT

Procedia PDF Downloads 417
2410 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 386
2409 Assessment of Dose: Area Product of Common Radiographic Examinations in Selected Southern Nigerian Hospitals

Authors: Lateef Bamidele

Abstract:

Over the years, radiographic examinations are the most used diagnostic tools in the Nigerian health care system, but most diagnostic examinations carried out do not have records of patient doses. Lack of adequate information on patient doses has been a major hindrance in quantifying the radiological risk associated with radiographic examinations. This study aimed at estimating dose–area product (DAP) of patient examined in X-Ray units in selected hospitals in Southern Nigeria. The standard projections selected are chest posterior-anterior (PA), abdomen anterior-posterior (AP), pelvis AP, pelvis lateral (LAT), skull AP/PA, skull LAT, lumbar spine AP, lumbar spine, LAT. Measurement of entrance surface dose (ESD) was carried out using thermoluminescent dosimeter (TLD). Measured ESDs were converted into DAP using the beam area of patients. The results show that the mean DAP ranged from 0.17 to 18.35 Gycm². The results obtained in this study when compared with those of NRPB-HPE were found to be higher. These are an indication of non optimization of operational conditions.

Keywords: dose–area product, radiographic examinations, patient doses, optimization

Procedia PDF Downloads 160
2408 Biological Soil Crust Effects on Dust Control Around the Urmia Lake

Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh

Abstract:

Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.

Keywords: wind erosion, algae, cyanobacteria, carbohydrate

Procedia PDF Downloads 43
2407 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry

Authors: Bjorn Kierulf, Arun Chundru

Abstract:

Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.

Keywords: additive manufacturing, machining, pitot tube, sounding rocketry

Procedia PDF Downloads 148
2406 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 339
2405 Influence of the Test Environment on the Dynamic Response of a Composite Beam

Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar

Abstract:

Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.

Keywords: vibration, composite, endommagement, correlation

Procedia PDF Downloads 349
2404 Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel

Authors: Seonggil Kim, Jeonghun Nam, Chae Seung Lim

Abstract:

Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells.

Keywords: candida cells, concentration, separation, viscoelastic fluid

Procedia PDF Downloads 183
2403 Parametric Study and Modelling of Orthogonal Cutting Process for AISI 4340 and Ti-6Al-4V Alloy

Authors: Purnank Bhatt, Mit Shah, Pawan Nagda, Vimal Jasoliya

Abstract:

The influence of parameters like velocity and depth of cut on cutting forces is investigated for the empirical relation of the coefficient of friction derived for CRS 1018 for different materials like AISI 4340 and Ti6Al4V. For this purpose, turning tests were carried out on the above materials using coated cemented carbide tool inserts for steel grade and uncoated cemented carbide cutting tool inserts for Titanium with different chip breaker geometries. The cutting forces were measured using a Kistler dynamometer where the multiplication factor taken is 200.The effect of cutting force variation was analyzed experimentally and are compared with the analytical results.

Keywords: cutting forces, coefficient of friction, carbide tool inserts, titanium

Procedia PDF Downloads 359
2402 Surgical Collaboration in Managing Spinal Cord Compression Due to a Pre-Vertebral Chordoma: A Case Report

Authors: Rose Virginy S. Bautista, Ida Marie Tabangay-Lim, Helen Bongalon-Amo, Jose Modesto B. Abellera

Abstract:

Chordomas, particularly those of the spine and the head and neck region, represent a rare and locally aggressive group of malignancies. The complexity of these tumors -given the rarity, location, and involvement of neurovascular structures- imposes a challenge in the diagnosis and management. We herein report a case of spinal cord compression due to a prevertebral cervical chordoma. The patient presented with a gradually enlarging lateral neck mass, with progressive bilateral extremity weakness and urinary incontinence; preoperative biopsy showed chordoma. A multidisciplinary approach for the management of this case was made, involving neurosurgery, head and neck surgery, and radiation oncology services. Surgical collaboration between the two cutting services was done to have a radical excision of the tumor and spinal cord decompression. The patient was then referred for adjuvant radiation therapy. With this collaborative treatment strategy, more comprehensive and quality care could be provided to our patients.

Keywords: chordoma, surgical collaboration, spinal cord compression, neurosurgery, head and neck surgery

Procedia PDF Downloads 54
2401 Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions

Authors: Abdulrahman M. Homadi

Abstract:

This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.

Keywords: solar energy, air heater, control of temperature, CFD

Procedia PDF Downloads 319
2400 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels

Authors: Meimei Wen, Chang Nyung Kim

Abstract:

In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.

Keywords: CFX, liquid metal, manifold, MHD flow

Procedia PDF Downloads 333
2399 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov

Abstract:

Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: quality of communication, IP-telephony, fuzzy set, fuzzy implication, neural network

Procedia PDF Downloads 451
2398 Capture Zone of a Well Field in an Aquifer Bounded by Two Parallel Streams

Authors: S. Nagheli, N. Samani, D. A. Barry

Abstract:

In this paper, the velocity potential and stream function of capture zone for a well field in an aquifer bounded by two parallel streams with or without a uniform regional flow of any directions are presented. The well field includes any number of extraction or injection wells or a combination of both types with any pumping rates. To delineate the capture envelope, the potential and streamlines equations are derived by conformal mapping method. This method can help us to release constrains of other methods. The equations can be applied as useful tools to design in-situ groundwater remediation systems, to evaluate the surface–subsurface water interaction and to manage the water resources.

Keywords: complex potential, conformal mapping, image well theory, Laplace’s equation, superposition principle

Procedia PDF Downloads 412
2397 Symbolic Computation for the Multi-Soliton Solutions of a Class of Fifth-Order Evolution Equations

Authors: Rafat Alshorman, Fadi Awawdeh

Abstract:

By employing a simplified bilinear method, a class of generalized fifth-order KdV (gfKdV) equations which arise in nonlinear lattice, plasma physics and ocean dynamics are investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of nonlinear solitary waves in many physical models in shallow water. Parametric analysis is carried out in order to illustrate that the soliton amplitude, width and velocity are affected by the coefficient parameters in the equation.

Keywords: multiple soliton solutions, fifth-order evolution equations, Cole-Hopf transformation, Hirota bilinear method

Procedia PDF Downloads 305
2396 The Beta-Fisher Snedecor Distribution with Applications to Cancer Remission Data

Authors: K. A. Adepoju, O. I. Shittu, A. U. Chukwu

Abstract:

In this paper, a new four-parameter generalized version of the Fisher Snedecor distribution called Beta- F distribution is introduced. The comprehensive account of the statistical properties of the new distributions was considered. Formal expressions for the cumulative density function, moments, moment generating function and maximum likelihood estimation, as well as its Fisher information, were obtained. The flexibility of this distribution as well as its robustness using cancer remission time data was demonstrated. The new distribution can be used in most applications where the assumption underlying the use of other lifetime distributions is violated.

Keywords: fisher-snedecor distribution, beta-f distribution, outlier, maximum likelihood method

Procedia PDF Downloads 327
2395 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach

Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes

Abstract:

Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.

Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux

Procedia PDF Downloads 148
2394 Performance Comparison of Cooperative Banks in the EU, USA and Canada

Authors: Matěj Kuc

Abstract:

This paper compares different types of profitability measures of cooperative banks from two developed regions: the European Union and the United States of America together with Canada. We created balanced dataset of more than 200 cooperative banks covering 2011-2016 period. We made series of tests and run Random Effects estimation on panel data. We found that American and Canadian cooperatives are more profitable in terms of return on assets (ROA) and return on equity (ROE). There is no significant difference in net interest margin (NIM). Our results show that the North American cooperative banks accommodated better to the current market environment.

Keywords: cooperative banking, panel data, profitability measures, random effects

Procedia PDF Downloads 101
2393 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 62
2392 Finite Element Modelling of Log Wall Corner Joints

Authors: Reza Kalantari, Ghazanfarah Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. 8% variability is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia PDF Downloads 196
2391 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion

Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.

Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system

Procedia PDF Downloads 283
2390 Effect of Adding Horizontal Steel Bracing System to Ordinary Moment Steel Frames Subjected to Wind Load

Authors: Yousef Al-Qaryouti, Besan Alagawani

Abstract:

The main concern of this study is to evaluate the effect of adding horizontal steel bracing system to ordinary moment resisting steel frames subjected to wind load. Similar frames without bracing systems are also to be compared. A general analytical study was carried out to obtain the influence of such system in resisting wind load. Linear static analysis has been carried out using ETABS software by applying fixed wind load defined according to ASCE7-10 for three-, six-, nine-, and twelve-story ordinary moment steel frame buildings including and not including horizontal steel bracing system. The results showed that the lateral drift due to wind load decreased by adding horizontal bracing system. Also, the results show that effect of such system is more efficient to low-rise buildings.

Keywords: horizontal bracing system, steel moment frames, wind load resisting system, linear static analysis

Procedia PDF Downloads 273
2389 The Effect of Radiation on Unsteady MHD Flow past a Vertical Porous Plate in the Presence of Heat Flux

Authors: Pooja Sharma

Abstract:

In the present paper the effects of radiation is studied on unsteady flow of viscous incompressible electrically conducting fluid past a vertical porous plate embedded in the porous medium in the presence of constant heat flux. A uniform Transverse Magnetic field is considered and induced magnetic field is supposed as negligible. The non-linear governing equations are solved numerically. Numerical results of the velocity and temperature fields are shown through graphs. The results illustrates that the appropriator combination of regulated values of thermo-physical parameters is expedient for controlling the flow system.

Keywords: heat transfer, radiation, MHD flow, porous medium

Procedia PDF Downloads 421
2388 Reservoir Characterization of the Pre-Cenomanian Sandstone: Central Sinai, Egypt

Authors: Abdel Moktader A. El Sayed, Nahla A. El Sayed

Abstract:

Fifty-one sandstone core samples were obtained from the wadi Saal area. They belong to the Pre-Cenomanian age. These samples were subjected to various laboratory measurements such as density, porosity, permeability, electrical resistivity, grain size analysis and ultrasonic wave velocity. The parameters describing reservoir properties are outlined. The packing index, reservoir quality index, flow zone indicator and pore throat radius (R35 and R36) were calculated. The obtained interrelationships among these parameters allow improving petrophysical knowledge about the Pre-Cenomanian reservoir information. The obtained rock physics models could be employed with some precautions to the subsurface existences of the Pre-Cenomanian sandstone reservoirs, especially in the surrounding areas.

Keywords: resevoir sandstone, Egypt, Sinai, permeability

Procedia PDF Downloads 83
2387 Eresa, Hospital General Universitario de Elche

Authors: Ashish Kumar Singh, Mehak Gulati, Neelam Verma

Abstract:

Arginine majorly acts as a substrate for the enzyme nitric oxide synthase (NOS) for the production of nitric oxide, a strong vasodilator. Current study demonstrated a novel amperometric approach for estimation of arginine using nitric oxide synthase. The enzyme was co-immobilized in carbon paste electrode with NADP+, FAD and BH4 as cofactors. The detection principle of the biosensor is enzyme NOS catalyzes the conversion of arginine into nitric oxide. The developed biosensor could able to detect up to 10-9M of arginine. The oxidation peak of NO was observed at 0.65V. The developed arginine biosensor was used to monitor arginine content in fruit juices.

Keywords: arginine, biosensor, carbon paste elctrode, nitric oxide

Procedia PDF Downloads 401
2386 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair

Authors: Anamika Paul, Sudipto Sarkar

Abstract:

The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.

Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic

Procedia PDF Downloads 103
2385 Evaluation of Postural Stability in Female Patients with Structural Scoliosis

Authors: Ghada M. R. Koura, Ahmed M. F. El Shiwi

Abstract:

Background: structural scoliosis is a twisting deformity in the curve of vertebral column to the lateral side with simultaneous rotation of the vertebrae, which occurs during the growing years from 10 years to the puberty. Purpose: Studies investigating balance problems specific to scoliotic patients showed that those patients reveal variable balance abnormalities. In this study we evaluated the difference in postural stability responses between female patients (students, office worker and shish weapon players) with structural scoliosis and normal subjects. Methods: sixty subjects participated in this study. Thirty female patients with structural scoliosis with a mean age of (19.5 ± 3.26) years, with Cobb's angle ranged from 20º to 40° in the major curves, and thirty healthy female subjects with a mean age of (19.36 ± 2.41) years. Postural stability of both groups were evaluated by the Biodex Stability System. Results: There was no significant difference between both groups in dynamic balance test. Interpretation/Conclusion: As there was no significant difference between both groups in balance response, it is not recommended to add balance training as an extra physical therapy program for AIS female patients.

Keywords: structural scoliosis, postural stability, female patients, evaluation

Procedia PDF Downloads 444
2384 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 63
2383 A Modified Estimating Equations in Derivation of the Causal Effect on the Survival Time with Time-Varying Covariates

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

a systematic observation from a defined time of origin up to certain failure or censor is known as survival data. Survival analysis is a major area of interest in biostatistics and biomedical researches. At the heart of understanding, the most scientific and medical research inquiries lie for a causality analysis. Thus, the main concern of this study is to investigate the causal effect of treatment on survival time conditional to the possibly time-varying covariates. The theory of causality often differs from the simple association between the response variable and predictors. A causal estimation is a scientific concept to compare a pragmatic effect between two or more experimental arms. To evaluate an average treatment effect on survival outcome, the estimating equation was adjusted for time-varying covariates under the semi-parametric transformation models. The proposed model intuitively obtained the consistent estimators for unknown parameters and unspecified monotone transformation functions. In this article, the proposed method estimated an unbiased average causal effect of treatment on survival time of interest. The modified estimating equations of semiparametric transformation models have the advantage to include the time-varying effect in the model. Finally, the finite sample performance characteristics of the estimators proved through the simulation and Stanford heart transplant real data. To this end, the average effect of a treatment on survival time estimated after adjusting for biases raised due to the high correlation of the left-truncation and possibly time-varying covariates. The bias in covariates was restored, by estimating density function for left-truncation. Besides, to relax the independence assumption between failure time and truncation time, the model incorporated the left-truncation variable as a covariate. Moreover, the expectation-maximization (EM) algorithm iteratively obtained unknown parameters and unspecified monotone transformation functions. To summarize idea, the ratio of cumulative hazards functions between the treated and untreated experimental group has a sense of the average causal effect for the entire population.

Keywords: a modified estimation equation, causal effect, semiparametric transformation models, survival analysis, time-varying covariate

Procedia PDF Downloads 154
2382 Behaviour and Design of the Candle-Loc Inter-Module Connection in High-Rise Modular Buildings under Seismic Action

Authors: Alessandro Marzucchini, Yie Sue Chua, Andrew Lian, Richard Shonn Mills

Abstract:

A unique, fast and easy installed inter-module connection named Candle-Loc was developed and applied in several high-rise steel and reinforced concrete modular buildings in Singapore and Hong Kong, China. However, its effect on the global behaviour of modular buildings in high seismic zones was not studied. Therefore, the design concept and the structural performance of each component in this connection was investigated through analytical approach. Response spectrum, linear time-history, and nonlinear time-history analyses were conducted to investigate the effects of the different joint models of the Candle-Loc in the global analysis of high-rise buildings under high seismic loads. It is found that it is important to assess the level of plasticity developed in the inter-module connection under high seismic loads. The ductility of the lateral force resisting system influences the amount of load taken by the inter-module connections.

Keywords: high-rise, inter-module connection, nonlinear, seismic, time-history analysis

Procedia PDF Downloads 136