Search results for: WEKA data mining tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28613

Search results for: WEKA data mining tool

26963 Object-Oriented Programming for Modeling and Simulation of Systems in Physiology

Authors: J. Fernandez de Canete

Abstract:

Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students.

Keywords: object-oriented modeling, SIMSCAPE simulation language, MODELICA simulation language, cardiovascular system

Procedia PDF Downloads 506
26962 Consumer Knowledge of Food Quality Assurance and Use of Food Labels in Trinidad, West Indies

Authors: Daryl Clement Knutt, Neela Badrie, Marsha Singh

Abstract:

Quality assurance and product labelling are vital in the food and drink industry, as a tactical tool in a competitive environment. The food label is a principal marketing tool which also serves as a regulatory mechanism in the safeguarding of consumer well –being. The objective of this study was to evaluate the level of consumers’ use and understanding of food labeling information and knowledge pertaining to food quality assurance systems. The study population consisted of Trinidadian adults, who were over the age of 18 (n=384). Data collection was conducted via a self-administered questionnaire, which contained 31 questions, comprising of four sections: I. socio demographic information; II. food quality and quality assurance; III. use of Labeling information; and IV. laws and regulations. Sampling was conducted at six supermarkets, in five major regions of the country over a period of three weeks in 2014. The demographic profile of the shoppers revealed that majority was female (63.6%). The gender factor and those who were concerned about the nutrient content of their food, were predictive indicators of those who read food labels. Most (93.1%) read food labels before purchase, 15.4% ‘always’; 32.5% ‘most times’ and 45.2% ‘sometimes’. Some (42%) were often satisfied with the information presented on food labels, whilst 35.7% of consumers were unsatisfied. When the respondents were questioned on their familiarity with terms ‘food quality’ and ‘food quality assurance’, 21.3% of consumers replied positively - ‘I have heard the terms and know a lot’ whilst 37% were only ‘somewhat familiar’. Consumers were mainly knowledgeable of the International Standard of Organization (ISO) (51.5%) and Good Agricultural Practices GAP (38%) as quality tools. Participants ranked ‘nutritional information’ as the number one labeling element that should be better presented, followed by ‘allergy notes’ and ‘best before date’. Females were more inclined to read labels being the household shoppers. The shoppers would like better presentation of the food labelling information so as to guide their decision to purchase a product.

Keywords: food labels, food quality, nutrition, marketing, Trinidad, Tobago

Procedia PDF Downloads 490
26961 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 253
26960 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name

Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing

Abstract:

Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.

Keywords: NDN, order-preserving encryption, fuzzy search, privacy

Procedia PDF Downloads 484
26959 Factors Relating to Travel Behavior at the Floating Market of Thai Tourists

Authors: Siri-orn Champatong

Abstract:

The purpose of this research was to study factors that were related with travel behaviors of Thai tourists at the Ayothaya Floating Market, Phra Nakhon Sri Ayutthaya. The quantitative research was conducted with 400 samples of Thai tourists traveling to the Ayothaya Floating Market. The Questionnaire was a tool used to collect data, and the statistics used for data analysis were mean and Pearson product moment correlation coefficient. The results found that Thai tourists focused on attraction, easy access and facilities of the tourist spot at a high level. In addition, they gave priority to the marketing mix in the dimension of products, price, and distribution channels at a high level as well. For marketing promotion, it was at the moderate level. The results of hypothesis testing revealed that factors related to the attractions of the tourist destination, easy access to the tourist destination, the facilities of the tourist spot, and product and price of the marketing mix were associated with travel behaviors in the aspect of the number of visits used and the budget on tourism.

Keywords: floating market, marketing mix, tourism attractions, travelling behavior

Procedia PDF Downloads 289
26958 Cardiothoracic Ratio in Postmortem Computed Tomography: A Tool for the Diagnosis of Cardiomegaly

Authors: Alex Eldo Simon, Abhishek Yadav

Abstract:

This study aimed to evaluate the utility of postmortem computed tomography (CT) and heart weight measurements in the assessment of cardiomegaly in cases of sudden death due to cardiac origin by comparing the results of these two diagnostic methods. The study retrospectively analyzed postmortem computed tomography (PMCT) data from 54 cases of sudden natural death and compared the findings with those of the autopsy. The study involved measuring the cardiothoracic ratio (CTR) from coronal computed tomography (CT) images and determining the actual cardiac weight by weighing the heart during the autopsy. The inclusion criteria for the study were cases of sudden death suspected to be caused by cardiac pathology, while exclusion criteria included death due to unnatural causes such as trauma or poisoning, diagnosed natural causes of death related to organs other than the heart, and cases of decomposition. Sensitivity, specificity, and diagnostic accuracy were calculated, and to evaluate the accuracy of using the cardiothoracic ratio (CTR) to detect an enlarged heart, the study generated receiver operating characteristic (ROC) curves. The cardiothoracic ratio (CTR) is a radiological tool used to assess cardiomegaly by measuring the maximum cardiac diameter in relation to the maximum transverse diameter of the chest wall. The clinically used criteria for CTR have been modified from 0.50 to 0.57 for use in postmortem settings, where abnormalities can be detected by comparing CTR values to this threshold. A CTR value of 0.57 or higher is suggestive of hypertrophy but not conclusive. Similarly, heart weight is measured during the traditional autopsy, and a cardiac weight greater than 450 grams is defined as hypertrophy. Of the 54 cases evaluated, 22 (40.7%) had a cardiothoracic ratio (CTR) ranging from > 0.50 to equal 0.57, and 12 cases (22.2%) had a CTR greater than 0.57, which was defined as hypertrophy. The mean CTR was calculated as 0.52 ± 0.06. Among the 54 cases evaluated, the weight of the heart was measured, and the mean was calculated as 369.4 ± 99.9 grams. Out of the 54 cases evaluated, 12 were found to have hypertrophy as defined by PMCT, while only 9 cases were identified with hypertrophy in traditional autopsy. The sensitivity and specificity of the test were calculated as 55.56% and 84.44%, respectively. The sensitivity of the hypertrophy test was found to be 55.56% (95% CI: 26.66, 81.12¹), the specificity was 84.44% (95% CI: 71.22, 92.25¹), and the diagnostic accuracy was 79.63% (95% CI: 67.1, 88.23¹). The limitation of the study was a low sample size of only 54 cases, which may limit the generalizability of the findings. The comparison of the cardiothoracic ratio with heart weight in this study suggests that PMCT may serve as a screening tool for medico-legal autopsies when performed by forensic pathologists. However, it should be noted that the low sensitivity of the test (55.5%) may limit its diagnostic accuracy, and therefore, further studies with larger sample sizes and more diverse populations are needed to validate these findings.

Keywords: PMCT, virtopsy, CTR, cardiothoracic ratio

Procedia PDF Downloads 81
26957 Embedded Acoustic Signal Processing System Using OpenMP Architecture

Authors: Abdelkader Elhanaoui, Mhamed Hadji, Rachid Skouri, Said Agounad

Abstract:

In this paper, altera de1-SoC FPGA board technology is utilized as a distinguished tool for nondestructive characterization of an aluminum circular cylindrical shell of radius ratio b/a (a: outer radius; b: inner radius). The acoustic backscattered signal processing system has been developed using OpenMP architecture. The design is built in three blocks; it is implemented per functional block, in a heterogeneous Intel-Altera system running under Linux. The useful data to determine the performances of SoC FPGA is computed by the analytical method. The exploitation of SoC FPGA has lead to obtain the backscattering form function and resonance spectra. A0 and S0 modes of propagation in the tube are shown. The findings are then compared to those achieved from the Matlab simulation of analytical method. A good agreement has, therefore, been noted. Moreover, the detailed SoC FPGA-based system has shown that acoustic spectra are performed at up to 5 times faster than the Matlab implementation using almost the same data. This FPGA-based system implementation of processing algorithms is realized with a coefficient of correlation R and absolute error respectively about 0.962 and 5 10⁻⁵.

Keywords: OpenMP, signal processing system, acoustic backscattering, nondestructive characterization, thin tubes

Procedia PDF Downloads 92
26956 Audit of TPS photon beam dataset for small field output factors using OSLDs against RPC standard dataset

Authors: Asad Yousuf

Abstract:

Purpose: The aim of the present study was to audit treatment planning system beam dataset for small field output factors against standard dataset produced by radiological physics center (RPC) from a multicenter study. Such data are crucial for validity of special techniques, i.e., IMRT or stereotactic radiosurgery. Materials/Method: In this study, multiple small field size output factor datasets were measured and calculated for 6 to 18 MV x-ray beams using the RPC recommend methods. These beam datasets were measured at 10 cm depth for 10 × 10 cm2 to 2 × 2 cm2 field sizes, defined by collimator jaws at 100 cm. The measurements were made with a Landauer’s nanoDot OSLDs whose volume is small enough to gather a full ionization reading even for the 1×1 cm2 field size. At our institute the beam data including output factors have been commissioned at 5 cm depth with an SAD setup. For comparison with the RPC data, the output factors were converted to an SSD setup using tissue phantom ratios. SSD setup also enables coverage of the ion chamber in 2×2 cm2 field size. The measured output factors were also compared with those calculated by Eclipse™ treatment planning software. Result: The measured and calculated output factors are in agreement with RPC dataset within 1% and 4% respectively. The large discrepancies in TPS reflect the increased challenge in converting measured data into a commissioned beam model for very small fields. Conclusion: OSLDs are simple, durable, and accurate tool to verify doses that delivered using small photon beam fields down to a 1x1 cm2 field sizes. The study emphasizes that the treatment planning system should always be evaluated for small field out factors for the accurate dose delivery in clinical setting.

Keywords: small field dosimetry, optically stimulated luminescence, audit treatment, radiological physics center

Procedia PDF Downloads 327
26955 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 413
26954 Osteoarticular Ultrasound for Diagnostic Purposes in the Practice of the Rheumatologist

Authors: A. Ibovi Mouondayi, S. Zaher, K. Nassar, S. Janani

Abstract:

Introduction: Osteoarticular ultrasound has become an essential tool for the investigation and monitoring of osteoarticular pathologies for rheumatologists. It is performed in the clinic, cheap to access than other imaging technics. Important anatomical sites of inflammation in inflammatory diseases such as synovium, tendon sheath, and enthesis are easily identifiable on ultrasound. Objective: The objective of this study was to evaluate the importance of ultrasound for rheumatologists in the development of diagnoses of inflammatory rheumatism in cases of uncertain clinical presentation. Material and Methods: This is a retrospective study conducted in our department and carried out over a period of 30 months from January 2020 to June 2022. We included all patients with inflammatory arthralgia without clinical arthritis. Patients' data were collected through a patient operating system. Results: A total of 35 patients were identified, made up of 4 men and 31 women, with a sex ratio M/F of 0.12. The average age of the patients was 48.8 years, with extremes ranging from 17 years to 83 years. All patients had inflammatory polyarthralgia for an average of 9.3 years. Only two patients had suspicious synovitis on clinical examination. 91.43% of patients had a positive inflammatory assessment with an average CRP of 22.2 mg/L. Rheumatoid factor (RF) was present in 45.7% of patients and anti-CCP in 48.57%, with respective averages of 294.43 and 314.63 international units/mL. Radiographic lesions were found in 54% of patients. Osteoarticular ultrasound was performed in all these patients. Subclinical synovitis was found in 60% of patients, including 23% Doppler positive. Tenosynovitis was found in 11% of patients. Enthesitis was objectified in 3% of patients. Rheumatoid arthritis (RA) was retained in 40% of patients; psoriatic arthritis in 6% of patients, hydroxyapatite arthritis, and osteoarthritis in 3% each. Conclusion: Osteoarticular ultrasound has been an essential tool in the practice of rheumatology in recent years. It is for diagnostic purposes in chronic inflammatory rheumatism as well as in degenerative rheumatism and crystal induced arthropathies, but also essential in the follow-up of patients in rheumatology.

Keywords: ultrasound, skeletal, rheumatoid arthritis, arthralgia

Procedia PDF Downloads 118
26953 A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle

Authors: Thien X. Dinh, Peter Witt

Abstract:

A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude.

Keywords: condensation, metallurgical flow, solidification, supersonic expansion

Procedia PDF Downloads 63
26952 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments

Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo

Abstract:

Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.

Keywords: data disorders, quality, healthcare, treatment

Procedia PDF Downloads 433
26951 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.

Keywords: big data, data analytics, higher education, republic of the philippines, assessment

Procedia PDF Downloads 348
26950 Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation

Authors: Saied Farham-Nia, Alireza Ghaffari-Hadigheh

Abstract:

Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree.

Keywords: game theory, uncertainty theory, belief degree, uncertain expected value, Nash equilibrium

Procedia PDF Downloads 415
26949 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Authors: N. David, H. O. Gao

Abstract:

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Keywords: air pollution, commercial microwave links, rainfall, washout

Procedia PDF Downloads 111
26948 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 173
26947 Effects of Sulphide Mining on AISI 304 Stainless Steel

Authors: Aguasanta Miguel Sarmiento, José Miguel Dávila, María Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV, and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz), and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyse the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned, and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components, but also because of the implications for human safety.

Keywords: acid mine drainage, corrosion, mechanical properties, stainless steel

Procedia PDF Downloads 16
26946 Title: Real World Evidence a Tool to Overcome the Lack of a Comparative Arm in Drug Evaluation in the Context of Rare Diseases

Authors: Mohamed Wahba

Abstract:

Objective: To build a comparative arm for product (X) in specific gene mutated advanced gastrointestinal cancer using real world evidence to fulfill HTA requirements in drug evaluation. Methods: Data for product (X) were collected from phase II clinical trial while real world data for (Y) and (Z) were collected from US database. Real-world (RW) cohorts were matched to clinical trial base line characteristics using weighting by odds method. Outcomes included progression-free survival (PFS) and overall survival (OS) rates. Study location and participants: Internationally (product X, n=80) and from USA (Product Y and Z, n=73) Results: Two comparisons were made: trial cohort 1 (X) versus real-world cohort 1 (Z), trial cohort 2 (X) versus real-world cohort 2 (Y). For first line, the median OS was 9.7 months (95% CI 8.6- 11.5) and the median PFS was 5.2 months (95% CI 4.7- not reached) for real-world cohort 1. For second line, the median OS was 10.6 months (95% CI 4.7- 27.3) for real-world cohort 2 and the median PFS was 5.0 months (95% CI 2.1- 29.3). For OS analysis, results were statistically significant but not for PFS analysis. Conclusion: This study provided the clinical comparative outcomes needed for HTA evaluation.

Keywords: real world evidence, pharmacoeconomics, HTA agencies, oncology

Procedia PDF Downloads 90
26945 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
26944 Fault Tree Analysis and Bayesian Network for Fire and Explosion of Crude Oil Tanks: Case Study

Authors: B. Zerouali, M. Kara, B. Hamaidi, H. Mahdjoub, S. Rouabhia

Abstract:

In this paper, a safety analysis for crude oil tanks to prevent undesirable events that may cause catastrophic accidents. The estimation of the probability of damage to industrial systems is carried out through a series of steps, and in accordance with a specific methodology. In this context, this work involves developing an assessment tool and risk analysis at the level of crude oil tanks system, based primarily on identification of various potential causes of crude oil tanks fire and explosion by the use of Fault Tree Analysis (FTA), then improved risk modelling by Bayesian Networks (BNs). Bayesian approach in the evaluation of failure and quantification of risks is a dynamic analysis approach. For this reason, have been selected as an analytical tool in this study. Research concludes that the Bayesian networks have a distinct and effective method in the safety analysis because of the flexibility of its structure; it is suitable for a wide variety of accident scenarios.

Keywords: bayesian networks, crude oil tank, fault tree, prediction, safety

Procedia PDF Downloads 660
26943 Data Management and Analytics for Intelligent Grid

Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh

Abstract:

Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.

Keywords: data management, analytics, energy data analytics, smart grid, smart utilities

Procedia PDF Downloads 779
26942 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 70
26941 Improving the Utility of Social Media in Pharmacovigilance: A Mixed Methods Study

Authors: Amber Dhoot, Tarush Gupta, Andrea Gurr, William Jenkins, Sandro Pietrunti, Alexis Tang

Abstract:

Background: The COVID-19 pandemic has driven pharmacovigilance towards a new paradigm. Nowadays, more people than ever before are recognising and reporting adverse reactions from medications, treatments, and vaccines. In the modern era, with over 3.8 billion users, social media has become the most accessible medium for people to voice their opinions and so provides an opportunity to engage with more patient-centric and accessible pharmacovigilance. However, the pharmaceutical industry has been slow to incorporate social media into its modern pharmacovigilance strategy. This project aims to make social media a more effective tool in pharmacovigilance, and so reduce drug costs, improve drug safety and improve patient outcomes. This will be achieved by firstly uncovering and categorising the barriers facing the widespread adoption of social media in pharmacovigilance. Following this, the potential opportunities of social media will be explored. We will then propose realistic, practical recommendations to make social media a more effective tool for pharmacovigilance. Methodology: A comprehensive systematic literature review was conducted to produce a categorised summary of these barriers. This was followed by conducting 11 semi-structured interviews with pharmacovigilance experts to confirm the literature review findings whilst also exploring the unpublished and real-life challenges faced by those in the pharmaceutical industry. Finally, a survey of the general public (n = 112) ascertained public knowledge, perception, and opinion regarding the use of their social media data for pharmacovigilance purposes. This project stands out by offering perspectives from the public and pharmaceutical industry that fill the research gaps identified in the literature review. Results: Our results gave rise to several key analysis points. Firstly, inadequacies of current Natural Language Processing algorithms hinder effective pharmacovigilance data extraction from social media, and where data extraction is possible, there are significant questions over its quality. Social media also contains a variety of biases towards common drugs, mild adverse drug reactions, and the younger generation. Additionally, outdated regulations for social media pharmacovigilance do not align with new, modern General Data Protection Regulations (GDPR), creating ethical ambiguity about data privacy and level of access. This leads to an underlying mindset of avoidance within the pharmaceutical industry, as firms are disincentivised by the legal, financial, and reputational risks associated with breaking ambiguous regulations. Conclusion: Our project uncovered several barriers that prevent effective pharmacovigilance on social media. As such, social media should be used to complement traditional sources of pharmacovigilance rather than as a sole source of pharmacovigilance data. However, this project adds further value by proposing five practical recommendations that improve the effectiveness of social media pharmacovigilance. These include: prioritising health-orientated social media; improving technical capabilities through investment and strategic partnerships; setting clear regulatory guidelines using multi-stakeholder processes; creating an adverse drug reaction reporting interface inbuilt into social media platforms; and, finally, developing educational campaigns to raise awareness of the use of social media in pharmacovigilance. Implementation of these recommendations would speed up the efficient, ethical, and systematic adoption of social media in pharmacovigilance.

Keywords: adverse drug reaction, drug safety, pharmacovigilance, social media

Procedia PDF Downloads 82
26940 Impact of Small and Medium Enterprises on Economic Development in the Gulf Cooperation Council: Quantitative Approaches

Authors: Hanadi Al-Mubaraki, Michael Busler

Abstract:

Both in the developed and developing countries as well as Gulf Cooperation Council (GCC), the small and medium-sized enterprises (SMEs) proven to be main drivers of jobs creation and tools to accelerate economic development and economic diversification. This paper seeks to investigate and identify the strengths and weakness of SME as a veritable tool in economic development. A survey method was used to gather data from 171 SME from Gulf Cooperation Council (GCC). The research methodology uses a quantitative approach (survey) while data were collected with a structured questionnaire and analyzed with several descriptive statistics. The results of the study, therefore, will present sets of the strengths of SME in GCC such as 1) government supported local products (59%), 2) promoting SME local products rather than international products (47%), 3) reduce the legal and administrative procedures of SME establishment (46%) and weakness of SME in GCC such as: 1) lack of funding during the initial phase of the project (46%), 2) lack of liquidity during project continuity (39%), and 3) strong competition in the domestic and global market (38%). The study findings will be guidelines for academia and practitioners such as governments, policymakers, funded organizations, universities and strategic institutions for successful implementation.

Keywords: SME, economic development, GCC, strengths and weaknesses

Procedia PDF Downloads 145
26939 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive

Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh

Abstract:

Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.

Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data

Procedia PDF Downloads 295
26938 Reasons for Study of Evening Class Students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University

Authors: Luedech Girdwichai, Ratchasak Sannok, Jeeranan Wueamprakhon

Abstract:

This research aims to study reasons for study of Evening Class Students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University. Population is special program students of the Faculty of Industrial Technology, Suan Sunandha Rajabhat University enrolled in academic year B.E. 2012. Data were collected in February 2013 from 98 students. Tool used in this research was questionnaire. Data were analyzed by statistics: percentage, mean, and standard deviation, using a computer program. The results revealed that: 1. Most of the special program students have monthly income between 10,001–20,000 Baht. Majority of the students were private company employees, working in operational level. They were mainly single and the commuting distance to the university is between 10-30 kilometers. 2. Reasons for enrolling of special program students of the Faculty of Industrial Technology, namely, career, self advancement, personal reasons and support from others received high scores. 3. Problems identified such as facilities, services, learning media and the content of the course received average scores.

Keywords: reasons, evening class students, Faculty of Industrial Technology, Suan Sunandha Rajabhat University

Procedia PDF Downloads 320
26937 Effects of Artificial Intelligence and Machine Learning on Social Media for Health Organizations

Authors: Ricky Leung

Abstract:

Artificial intelligence (AI) and machine learning (ML) have revolutionized the way health organizations approach social media. The sheer volume of data generated through social media can be overwhelming, but AI and ML can help organizations effectively manage this information to improve the health and well-being of individuals and communities. One way AI can be used to enhance social media in health organizations is through sentiment analysis. This involves analyzing the emotions expressed in social media posts to better understand public opinion and respond accordingly. This can help organizations gauge the impact of their campaigns, track the spread of misinformation, and improve communication with the public. While social media is a useful tool, researchers and practitioners have expressed fear that it will be used for the spread of misinformation, which can have serious consequences for public health. Health organizations must work to ensure that AI systems are transparent, trustworthy, and unbiased so they can help minimize the spread of misinformation. In conclusion, AI and ML have the potential to greatly enhance the use of social media in health organizations. These technologies can help organizations effectively manage large amounts of data and understand stakeholders' sentiments. However, it is important to carefully consider the potential consequences and ensure that these systems are carefully designed to minimize the spread of misinformation.

Keywords: AI, ML, social media, health organizations

Procedia PDF Downloads 89
26936 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 161
26935 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method

Authors: Md. Moinul Islam, N. M. Golam Zakaria

Abstract:

Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.

Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function

Procedia PDF Downloads 220
26934 Stainless Steel Degradation by Sulphide Mining

Authors: Aguasanta M. Sarmiento, Jose Miguel Davila, Juan Carlos Fortes, Maria Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz) and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyze the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components but also because of the implications for human safety.

Keywords: Acid mine drainage, Corrosion, Mechanical properties, Stainless steel

Procedia PDF Downloads 9