Search results for: physical performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17829

Search results for: physical performance

1179 Hard and Soft Skills in Marketing Education: Using Serious Games to Engage Higher Order Processing

Authors: Ann Devitt, Mairead Brady, Markus Lamest, Stephen Gomez

Abstract:

This study set out to explore the use of an online collaborative serious game for student learning in a postgraduate introductory marketing module. The simulation game aimed to bridge the theory-practice divide in marketing by allowing students to apply theory in a safe, simulated marketplace. This study addresses the following research questions: Does an online marketing simulation game engage students higher order cognitive skills? Does collaborative activity required develop students’ “soft” skills, such as communication and negotiation? What specific affordances of the online simulation promote learning? This qualitative case study took place in 2014 with 40 postgraduate students on a Business Masters Programme. The two-week intensive module combined lectures with collaborative activity on a marketing simulation game, MMX from Pearsons. The game requires student teams to compete against other teams in a marketplace and design a marketing plan to maximize key performance indicators. The data for this study comprise essays written by students after the module reflecting on their learning on the module. A thematic analysis was conducted of the essays using the following a priori theme sets: 6 levels of the cognitive domain of Blooms taxonomy; 5 principles of Cooperative Learning; affordances of simulation environments including experiential learning; motivation and engagement; goal orientation. Preliminary findings would strongly suggest that the game facilitated students identifying the value of theory in practice, in particular for future employment; enhanced their understanding of group dynamics and their role within that; and impacted very strongly, both positively and negatively on motivation. In particular the game mechanics of MMX, which hinges on the correct identification of a target consumer group, was identified as a key determinant of extrinsic and intrinsic motivation for learners. The findings also suggest that the situation of the simulation game within a broader module which required post-game reflection was valuable in identifying key learning of marketing concepts in both the positive and the negative experiences of the game.

Keywords: simulation, marketing, serious game, cooperative learning, bloom's taxonomy

Procedia PDF Downloads 549
1178 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 301
1177 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 86
1176 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters

Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu

Abstract:

Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).

Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs

Procedia PDF Downloads 192
1175 Human Lens Metabolome: A Combined LC-MS and NMR Study

Authors: Vadim V. Yanshole, Lyudmila V. Yanshole, Alexey S. Kiryutin, Timofey D. Verkhovod, Yuri P. Tsentalovich

Abstract:

Cataract, or clouding of the eye lens, is the leading cause of vision impairment in the world. The lens tissue have very specific structure: It does not have vascular system, the lens proteins – crystallins – do not turnover throughout lifespan. The protection of lens proteins is provided by the metabolites which diffuse inside the lens from the aqueous humor or synthesized in the lens epithelial layer. Therefore, the study of changes in the metabolite composition of a cataractous lens as compared to a normal lens may elucidate the possible mechanisms of the cataract formation. Quantitative metabolomic profiles of normal and cataractous human lenses were obtained with the combined use of high-frequency nuclear magnetic resonance (NMR) and ion-pairing high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. The quantitative content of more than fifty metabolites has been determined in this work for normal aged and cataractous human lenses. The most abundant metabolites in the normal lens are myo-inositol, lactate, creatine, glutathione, glutamate, and glucose. For the majority of metabolites, their levels in the lens cortex and nucleus are similar, with the few exceptions including antioxidants and UV filters: The concentrations of glutathione, ascorbate and NAD in the lens nucleus decrease as compared to the cortex, while the levels of the secondary UV filters formed from primary UV filters in redox processes increase. That confirms that the lens core is metabolically inert, and the metabolic activity in the lens nucleus is mostly restricted by protection from the oxidative stress caused by UV irradiation, UV filter spontaneous decomposition, or other factors. It was found that the metabolomic composition of normal and age-matched cataractous human lenses differ significantly. The content of the most important metabolites – antioxidants, UV filters, and osmolytes – in the cataractous nucleus is at least ten fold lower than in the normal nucleus. One may suppose that the majority of these metabolites are synthesized in the lens epithelial layer, and that age-related cataractogenesis might originate from the dysfunction of the lens epithelial cells. Comprehensive quantitative metabolic profiles of the human eye lens have been acquired for the first time. The obtained data can be used for the analysis of changes in the lens chemical composition occurring with age and with the cataract development.

Keywords: cataract, lens, NMR, LC-MS, metabolome

Procedia PDF Downloads 314
1174 Associations between Surrogate Insulin Resistance Indices and the Risk of Metabolic Syndrome in Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A well-defined insulin resistance (IR) is one of the requirements for the good understanding and evaluation of metabolic syndrome (MetS). However, underlying causes for the development of IR are not clear. Endothelial dysfunction also participates in the pathogenesis of this disease. IR indices are being determined in various obesity groups and also in diagnosing MetS. Components of MetS have been well established and used in adult studies. However, there are some ambiguities particularly in the field of pediatrics. The aims of this study were to compare the performance of fasting blood glucose (FBG), one of MetS components, with some other IR indices and check whether FBG may be replaced by some other parameter or ratio for a better evaluation of pediatric MetS. Five-hundred and forty-nine children were involved in the study. Five groups were constituted. Groups 109, 40, 100, 166, 110, 24 children were included in normal-body mass index (N-BMI), overweight (OW), obese (OB), morbid obese (MO), MetS with two components (MetS2) and MetS with three components (MetS3) groups, respectively. Age and sex-adjusted BMI percentiles tabulated by World Health Organization were used for the classification of obesity groups. MetS components were determined. Aside from one of the MetS components-FBG, eight measures of IR [homeostatic model assessment of IR (HOMA-IR), homeostatic model assessment of beta cell function (HOMA-%β), alanine transaminase-to-aspartate transaminase ratio (ALT/AST), alanine transaminase (ALT), insulin (INS), insulin-to-FBG ratio (INS/FBG), the product of fasting triglyceride and glucose (TyG) index, McAuley index] were evaluated. Statistical analyses were performed. A p value less than 0.05 was accepted as the statistically significance degree. Mean values for BMI of the groups were 15.7 kg/m2, 21.0 kg/m2, 24.7 kg/m2, 27.1 kg/m2, 28.7 kg/m2, 30.4 kg/m2 for N-BMI, OW, OB, MO, MetS2, MetS3, respectively. Differences between the groups were significant (p < 0.001). The only exception was MetS2-MetS3 couple, in spite of an increase detected in MetS3 group. Waist-to-hip circumference ratios significantly differed only for N-BMI vs, OB, MO, MetS2; OW vs MO; OB vs MO, MetS2 couples. ALT and ALT/AST did not differ significantly among MO-MetS2-MetS3. HOMA-%β differed only between MO and MetS2. INS/FBG, McAuley index and TyG were not significant between MetS2 and MetS3. HOMA-IR and FBG were not significant between MO and MetS2. INS was the only parameter, which showed statistically significant differences between MO-MetS2, MO-MetS3, and MetS2-MetS3. In conclusion, these findings have suggested that FBG presently considered as one of the five MetS components, may be replaced by INS during the evaluation of pediatric morbid obesity and MetS.

Keywords: children, insulin resistance indices, metabolic syndrome, obesity

Procedia PDF Downloads 117
1173 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser

Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt

Abstract:

This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.

Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet

Procedia PDF Downloads 211
1172 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 89
1171 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling

Authors: M. J. Gibbons, A. J. Robinson

Abstract:

Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.

Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling

Procedia PDF Downloads 393
1170 The Effectiveness of Virtual Reality Training for Improving Interpersonal Communication Skills: An Experimental Study

Authors: Twinkle Sara Joseph

Abstract:

Virtual reality technology has emerged as a revolutionary power that can transform the education sector in many ways. VR environments can break the boundaries of the traditional classroom setting by immersing the students in realistic 3D environments where they can interact with virtual characters without fearing being judged. Communication skills are essential for every profession, and studies suggest the importance of implementing basic-level communication courses at both the school and graduate levels. Interpersonal communication is a skill that gains prominence as it is required in every profession. Traditional means of training have limitations for trainees as well as participants. The fear of being judged, the audience interaction, and other factors can affect the performance of a participant in a traditional classroom setting. Virtual reality offers a unique opportunity for its users to participate in training that does not set any boundaries that prevent the participants from performing in front of an audience. Specialised applications designed in VR headsets offer a range of training and exercises for participants without any time, space, or audience limitations. The present study aims at measuring the effectiveness of VR training in improving interpersonal communication skills among students. The study uses a mixed-method approach, in which a pre-and post-test will be designed to measure effectiveness. A preliminary selection process involving a questionnaire and a screening test will identify suitable candidates based on their current communication proficiency levels. Participants will undergo specialised training through the VR application Virtual Speech tailored for interpersonal communication and public speaking, designed to operate without the traditional constraints of time, space, or audience. The training's impact will subsequently be measured through situational exercises to engage the participants in interpersonal communication tasks, thereby assessing the improvement in their skills. The significance of this study lies in its potential to provide empirical evidence supporting VR technology's role in enhancing communication skills, thereby offering valuable insights for integrating VR-based methodologies into educational frameworks to prepare students more effectively for their professional futures.

Keywords: virtual reality, VR training, interpersonal communication, communication skills, 3D environments

Procedia PDF Downloads 49
1169 Evaluation of Percutaneous Tube Thoracostomy Performed by Trainee in Both Trauma and Non-Trauma Patients

Authors: Kulsum Maula, Md Kamrul Alam, Md Ibrahim Khalil, Md Nazmul Hasan, Mohammad Omar Faruq

Abstract:

Background: Percutaneous Tube Thoracostomy (PTT) is an invasive procedure that can save a life now and then in different traumatic and non-traumatic conditions. But still, it is an enigma; how our trainee surgeons are at home in this procedure. Objectives: To evaluate the outcome of the percutaneous tube thoracostomy performed by trainees in both trauma and non-trauma patients. Study design: Prospective, Observational Study. The duration of the study was September 2018 to February 2019. Methods: All patients who need PTT in traumatic and non-traumatic conditions were selected by purposive sampling. Thereafter, they were scrutinized according to eligibility criteria and 96 patients were finalized. A pre-tested, observation-based, peer-reviewed data collection sheet was prepared before the study. Data regarding clinical and surgical outcome profiles were recorded. Data were compiled, edited, and analyzed. Results: Among 96 patients, the highest 32.29% belonged to age group 31-40 years and the lowest 9.37% belonged to the age group ≤20. The mean age of the respondents was 29.19±9.81. We found out of 96 patients, 70(72.91%) were indicated PTT for traumatic conditions and the rest 26(27.08%) were indicated PTT for non-traumatic chest conditions, where 36(37.5%) had simple penumothorax, 21(21.87%) haemothorax, 14(14.58%) massive pleural effusion, 13(13.54%) tension pneumothorax, 10(10.41%) haemopneumothorax, and 2(2.08%) had pyothorax respectively. In 53.12% of patients had right-sided intercostal chest tube (ICT) insertion, whereas 46.87% had left-sided ICT insertion. In our study, 89.55 % of the tube was placed at the normal anatomical position. Besides, 10.41% of tube thoracostomy were performed deviated from anatomical site. Among 96 patients 62.5% patients had length of incision 2-3cm, 35.41% had >3cm and 2.08% had <2cm respectively. Out of 96 patients, 75(78.13%) showed uneventful outcomes, whereas 21(21.87%) had complications, including 11.15%(11) each had wound infection, 4.46%(4) subcutaneous emphysema, 4.28%(3) drain auto expulsion, 2.85%(2) hemorrhage, 1.45%(1) had a non-functioning drain and empyema with ascending infection respectively (p=<0.05). Conclusion: PTT is a life-saving procedure that is most frequently implemented in chest trauma patients in our country. In the majority of cases, the outcome of PTT was uneventful (78.13). Besides this, more than one-third of patients had a length of incision more than 3 cm that needed extra stitches and 10.41% of cases of PTT were placed other than the normal anatomical site. Trainees of Dhaka Medical College Hospitals are doing well in their performance of PTT insertion, but still, some anatomical orientations are necessary to avoid operative and post-operative complications.

Keywords: PTT, trainee, trauma, non-chest trauma patients

Procedia PDF Downloads 120
1168 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 311
1167 Preliminary Report on the Assessment of the Impact of the Kinesiology Taping Application versus Placebo Taping on the Knee Joint Position Sense

Authors: Anna Hadamus, Patryk Wasowski, Anna Mosiolek, Zbigniew Wronski, Sebastian Wojtowicz, Dariusz Bialoszewski

Abstract:

Introduction: Kinesiology Taping is a very popular physiotherapy method, often used for healthy people, especially athletes, in order to stimulate the muscles and improve their performance. The aim of this study was to determine the effect of the muscle application of Kinesiology Taping on the joint position sense in active motion. Material and Methods: The study involved 50 healthy people - 30 men and 20 women, mean age was 23.2 years (range 18-30 years). The exclusion criteria were injuries and operations of the knee, which could affect the test results. The participants were divided randomly into two equal groups. The first group consisted of individuals with the applied Kinesiology Taping muscle application (KT group), whereas in the rest of the individuals placebo application from red adhesive tape was used (placebo group). Both applications were to enhance the effects of quadriceps muscle activity. Joint position sense (JPS) was evaluated in this study. Error of Active Reproduction of the Joint Position (EARJP) of the knee was measured in 45° flexion. The test was performed prior to applying the patch, with the applied application, then 24 hours after wearing, and after removing the tape. The interval between trials was not less than 30 minutes. Statistical analysis was performed using Statistica 12.0. We calculated distribution characteristics, Wilcoxon test, Friedman‘s ANOVA and Mann-Whitney U test. Results. In the KT group and the placebo group average test score of JPS before applying application KT were 3.48° and 5.16° respectively, after its application it was 4.84° and 4.88°, then after 24 hours of experiment JPS was 5.12° and 4.96°, and after application removal we measured 3.84° and 5.12° respectively. Differences over time in any of the groups were not statistically significant. There were also no significant differences between the groups. Conclusions: 1. Applying Kinesiology Taping to quadriceps muscle had no significant effect on the knee joint proprioception. Its use in order to improve sensorimitor skills seems therefore to be unreasonable. 2. No differences between applications of KT and placebo indicates that the clinical effect of stretch tape is minimal or absent. 3. The results are the basis for the continuation of prospective, randomized trials of numerous study groups.

Keywords: joint position sense, kinesiology taping, kinesiotaping, knee

Procedia PDF Downloads 331
1166 Embedding Looping Concept into Corporate CSR Strategy for Sustainable Growth: An Exploratory Study

Authors: Vani Tanggamani, Azlan Amran

Abstract:

The issues of Corporate Social Responsibility (CSR) have been extended from developmental economics to corporate and business in recent years. Research in issues related to CSR is deemed to make higher impacts as CSR encourages long-term economy and business success without neglecting social, environmental risks, obligations and opportunities. Therefore, CSR is a key matter for any organisation aiming for long term sustainability since business incorporates principles of social responsibility into each of its business decisions. Thus, this paper presents a theoretical proposition based on stakeholder theory from the organisational perspective as a foundation for better CSR practices. The primary subject of this paper is to explore how looping concept can be effectively embedded into corporate CSR strategy to foster sustainable long term growth. In general, the concept of a loop is a structure or process, the end of which is connected to the beginning, whereas the narrow view of a loop in business field means plan, do, check, and improve. In this sense, looping concept is a blend of balance and agility with the awareness to know when to which. Organisations can introduce similar pull mechanisms by formulating CSR strategies in order to perform the best plan of actions in real time, then a chance to change those actions, pushing them toward well-organized planning and successful performance. Through the analysis of an exploratory study, this paper demonstrates that approaching looping concept in the context of corporate CSR strategy is an important source of new idea to propel CSR practices by deepening basic understanding through the looping concept which is increasingly necessary to attract and retain business stakeholders include people such as employees, customers, suppliers and other communities for long-term business survival. This paper contributes to the literature by providing a fundamental explanation of how the organisations will experience less financial and reputation risk if looping concept logic is integrated into core business CSR strategy.The value of the paper rests in the treatment of looping concept as a corporate CSR strategy which demonstrates "looping concept implementation framework for CSR" that could further foster business sustainability, and help organisations move along the path from laggards to leaders.

Keywords: corporate social responsibility, looping concept, stakeholder theory, sustainable growth

Procedia PDF Downloads 395
1165 A Microwave Heating Model for Endothermic Reaction in the Cement Industry

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.

Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing

Procedia PDF Downloads 138
1164 Cyclic Etching Process Using Inductively Coupled Plasma for Polycrystalline Diamond on AlGaN/GaN Heterostructure

Authors: Haolun Sun, Ping Wang, Mei Wu, Meng Zhang, Bin Hou, Ling Yang, Xiaohua Ma, Yue Hao

Abstract:

Gallium nitride (GaN) is an attractive material for next-generation power devices. It is noted that the performance of GaN-based high electron mobility transistors (HEMTs) is always limited by the self-heating effect. In response to the problem, integrating devices with polycrystalline diamond (PCD) has been demonstrated to be an efficient way to alleviate the self-heating issue of the GaN-based HEMTs. Among all the heat-spreading schemes, using PCD to cap the epitaxial layer before the HEMTs process is one of the most effective schemes. Now, the mainstream method of fabricating the PCD-capped HEMTs is to deposit the diamond heat-spreading layer on the AlGaN surface, which is covered by a thin nucleation dielectric/passivation layer. To achieve the pattern etching of the diamond heat spreader and device preparation, we selected SiN as the hard mask for diamond etching, which was deposited by plasma-enhanced chemical vapor deposition (PECVD). The conventional diamond etching method first uses F-based etching to remove the SiN from the special window region, followed by using O₂/Ar plasma to etch the diamond. However, the results of the scanning electron microscope (SEM) and focused ion beam microscopy (FIB) show that there are lots of diamond pillars on the etched diamond surface. Through our study, we found that it was caused by the high roughness of the diamond surface and the existence of the overlap between the diamond grains, which makes the etching of the SiN hard mask insufficient and leaves micro-masks on the diamond surface. Thus, a cyclic etching method was proposed to solve the problem of the residual SiN, which was left in the F-based etching. We used F-based etching during the first step to remove the SiN hard mask in the specific region; then, the O₂/Ar plasma was introduced to etch the diamond in the corresponding region. These two etching steps were set as one cycle. After the first cycle, we further used cyclic etching to clear the pillars, in which the F-based etching was used to remove the residual SiN, and then the O₂/Ar plasma was used to etch the diamond. Whether to take the next cyclic etching depends on whether there are still SiN micro-masks left. By using this method, we eventually achieved the self-terminated etching of the diamond and the smooth surface after the etching. These results demonstrate that the cyclic etching method can be successfully applied to the integrated preparation of polycrystalline diamond thin films and GaN HEMTs.

Keywords: AlGaN/GaN heterojunction, O₂/Ar plasma, cyclic etching, polycrystalline diamond

Procedia PDF Downloads 127
1163 Plasma Selenium Concentration and Polymorphism of Selenoprotein and Prostate Cancer

Authors: Yu-Mei Hsueh, Cheng-Shiuan Tsai, Chao-Yuan Huang

Abstract:

Prostate Cancer (PC) is a malignant tumor originated in prostate and is a second common male’s cancer in the world. Incidence of PC in Asia countries, have still been rising over the past few decades. As an antioxidant, selenium can slow down prostate cancer tumor progression, but the association between plasma selenium levels and risk of aggressive prostate cancer may be modified by different genotype of selenoprotein. The aim of this study is to determine the relationship between plasma selenium, polymorphism of selenoprotein, urinaty total arsenic, and prostate cancer. Two hundred ninety five pathologically-confirmed cases of PC and 295 cancer-free controls were individually matched to case subjects by age (± 5 years) were recruited from Department of Urology of National Taiwan University Hospital, Taipei Municipal Wan Fang Hospital and Taipei Medical University Hospital. Personal interview and biospeciment of urine and blood collection from participants were conducted by well-trained interviewers after participants’ informed consent was obtained. Plasma selenium was measured by an inductively coupled plasma mass. Urinary arsenic concentration was detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of SEPP1rs3797310 and SEP15 rs5859 were determined using polymerase chain reaction-restriction fragment length polymorphism method. The higher plasma selenium was the lower OR of PC with a dose-response relationship. Prostate cancer patients with high plasma selenium had low tumor stage and grade. Participants carried SEPP1rs3797310 CT+TT genotype compared to those with CC genotype had a lower OR of PC in crude model; then this relationship was disappeared after confounder was adjusted. Prostate cancer patients with high urinary total arsenic concentration had high tumor stage and grade. Urinary total arsenic concentration was significantly positively related with plasma selenium and prostate specific antigen concentration. Participants with lower plasma selenium concentration and higher urinary total arsenic concentration compared to those with higher plasma selenium concentration and lower urinary total arsenic concentration had a higher OR of PC with a dose-response relationship.

Keywords: prostate cancer, plasma selenium concentration, urinary arsenic concentration, prostate specific antigen

Procedia PDF Downloads 470
1162 Analyzing the Impacts of Sustainable Tourism Development on Residents’ Well-Being Based on Stakeholder Perception: Evidence from a Coastal-Hinterland Region

Authors: Elham Falatoonitoosi, Vikki Schaffer, Don Kerr

Abstract:

Over-development for tourism and its consequences on residents’ well-being turn into a critical issue in tourism destinations. Learning about undesirable impacts of tourism has led many people to seek more sustainable and responsible tourism. The main objective of this research is to understand how and to what extent sustainable tourism development enhances locals’ well-being regarding stakeholder perception. The research was conducted in a coastal-hinterland tourism region through two sequential phases. At the first phase, a unique set of 19 sustainable tourism indicators resulted from a triplex model was used to examine the sustainability effects on the main factors of residents’ well-being including equity and living condition, life satisfaction, health condition, and education quality. The triplex model including i) systematic literature search, ii) convergent interviewing, and iii) DEMATEL aimed to develop sustainability indicators, specify them for a particular destination, and identify the dominant sustainability issues acting as key predictors in sustainable development. At the second phase, a hierarchical multiple regression was used to examine the relationship between sustainable development and local residents’ well-being. A number of 167 participants from five different groups of stakeholders perceived the importance level of each sustainability indicators regarding well-being factors on 5-point Likert scale. Results from the first phase indicated that sustainability training, government support, tourism sociocultural effects, tourism revenue, and climate change are the top dominant sustainability issues in the regional sustainable development. Results from the second phase showed that sustainable development considerably improves the overall residents’ well-being and has positive relationships with all well-being factors except life satisfaction. It explains that it was difficult for stakeholders to recognize a link between sustainable development and their overall life satisfaction and happiness. Among well-being’s factors, health condition was influenced the most by sustainability indicators that indicate stakeholders believed sustainability development can promote public health, health sector performance, quality of drinking water, and sanitation. For the future research, it is highly recommended to analysis the effects of sustainable tourism development on the other features of a tourism destination’s well-being including residents sociocultural empowerment, local economic growth, and attractiveness of the destination.

Keywords: residents' well-being, stakeholder perception, sustainability indicators, sustainable tourism

Procedia PDF Downloads 261
1161 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis

Authors: Asif Arshid, Ying Huang, Denver Tolliver

Abstract:

Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.

Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade

Procedia PDF Downloads 136
1160 The Influence of Fashion Bloggers on the Pre-Purchase Decision for Online Fashion Products among Generation Y Female Malaysian Consumers

Authors: Mohd Zaimmudin Mohd Zain, Patsy Perry, Lee Quinn

Abstract:

This study explores how fashion consumers are influenced by fashion bloggers towards pre-purchase decision for online fashion products in a non-Western context. Malaysians rank among the world’s most avid online shoppers, with apparel the third most popular purchase category. However, extant research on fashion blogging focuses on the developed Western market context. Numerous international fashion retailers have entered the Malaysian market from luxury to fast fashion segments of the market; however Malaysian fashion consumers must balance religious and social norms for modesty with their dress style and adoption of fashion trends. Consumers increasingly mix and match Islamic and Western elements of dress to create new styles enabling them to follow Western fashion trends whilst paying respect to social and religious norms. Social media have revolutionised the way that consumers can search for and find information about fashion products. For online fashion brands with no physical presence, social media provide a means of discovery for consumers. By allowing the creation and exchange of user-generated content (UGC) online, they provide a public forum that gives individual consumers their own voices, as well as access to product information that facilitates their purchase decisions. Social media empower consumers and brands have important roles in facilitating conversations among consumers and themselves, to help consumers connect with them and one another. Fashion blogs have become an important fashion information sources. By sharing their personal style and inspiring their followers with what they wear on popular social media platforms such as Instagram, fashion bloggers have become fashion opinion leaders. By creating UGC to spread useful information to their followers, they influence the pre-purchase decision. Hence, successful Western fashion bloggers such as Chiara Ferragni may earn millions of US dollars every year, and some have created their own fashion ranges and beauty products, become judges in fashion reality shows, won awards, and collaborated with high street and luxury brands. As fashion blogging has become more established worldwide, increasing numbers of fashion bloggers have emerged from non-Western backgrounds to promote Islamic fashion styles, such as Hassanah El-Yacoubi and Dian Pelangi. This study adopts a qualitative approach using netnographic content analysis of consumer comments on two famous Malaysian fashion bloggers’ Instagram accounts during January-March 2016 and qualitative interviews with 16 Malaysian Generation Y fashion consumers during September-October 2016. Netnography adapts ethnographic techniques to the study of online communities or computer-mediated communications. Template analysis of the data involved coding comments according to the theoretical framework, which was developed from the literature review. Initial data analysis shows the strong influence of Malaysian fashion bloggers on their followers in terms of lifestyle and morals as well as fashion style. Followers were guided towards the mix and match trend of dress with Western and Islamic elements, for example, showing how vivid colours or accessories could be worked into an outfit whilst still respecting social and religious norms. The blogger’s Instagram account is a form of online community where followers can communicate and gain guidance and support from other followers, as well as from the blogger.

Keywords: fashion bloggers, Malaysia, qualitative, social media

Procedia PDF Downloads 216
1159 Assessing the Effect of Waste-based Geopolymer on Asphalt Binders

Authors: Amani A. Saleh, Maram M. Saudy, Mohamed N. AbouZeid

Abstract:

Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space.

Keywords: geopolymer, rutting, superpave, fatigue cracking, sustainability, waste

Procedia PDF Downloads 125
1158 Diagrid Structural System

Authors: K. Raghu, Sree Harsha

Abstract:

The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.

Keywords: diagrid, bracings, structural, building

Procedia PDF Downloads 383
1157 Culture Sustainability in Contemporary Vernacular Architecture: Muscat International Airport Case Study

Authors: Soheir Mohamed Hegazy

Abstract:

Culture sustainability, which reflects a deep respect for people and history, is a cause of concern in contemporary architecture. Adopting ultramodern architecture styles was initiated in the 20th century by a plurality of states worldwide. Only a few countries, including Oman, realized that fashionable architectural designs ignore cultural values, identity, the context of its environment, economic perspective, and social performance. Stirring the Sultanate of Oman from being a listless and closed community to a modern country started in the year 1970. Despite unprecedented development in all aspects of Omani people's life, the leadership and the public had the capability to adjust to the changing global challenges without compromising social values and identity. This research provides a close analysis of one of the recent examples of contemporary vernacular architecture in the Sultanate of Oman, as a case study, Oman International Airport. The said airport gained an international appreciation for its Omani-themed architecture, distinguished traveler experience, and advanced technology. Accordingly, it was selected by the World Travel Awards as the Best Tourism Development Project in the Middle East only four weeks afterward after starting its operation. This paper aims to transfer this successful design approach of integrating the latest trends in technology, systems, eco-friendly aspects, and materials with the traditional Omani architectural features, which reflects symbiotic harmony of the community, individuals, and environment to other countries, designers, researchers, and students. In addition, the paper aims to encourage architects and teachers to take responsibility for valorizing built heritage as a source of inspiration for modern architecture, which could be considered as an added value. The work depends on reviewing the relevant literature, a case study, interviews with two architects who were involved in the project’s site work, and one current high-ranking employee in the airport besides data analysis and conclusion.

Keywords: contemporary vernacular architecture, culture sustainability, Oman international airport, current Omani architecture type

Procedia PDF Downloads 141
1156 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain

Authors: Nizar Chaira

Abstract:

Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.

Keywords: date palm, fermentation, molasses, Saccharomyces, syrup

Procedia PDF Downloads 319
1155 Soil Properties and Crop Productivity of Kiln Sites in the Highlands of North-western Ethiopia

Authors: Hanamariam Mekonnen

Abstract:

Ethiopian farmers traditionally produce charcoal under several kilns on cultivated land: particularly in Kasiry micro-watershed Fagita Lekoma district of Northwestern Ethiopia. However, the effects of such soil heating and remnants of charcoal leftover on soils have not been adequately documented. Hence, this study tried to quantify the effects of such kiln sites on selected soil properties and wheat crop performance. Soils from four kiln sites were thus purposively sampled at depths of 0-20 cm, 20-40 cm and 40-60 cm and were compared with the respective soil layers of none-kiln sites from similar adjacent fields. While soil moisture content was sampled at kiln and none-kiln site in wet and dry seasons from each depth. In addition, a pot experiment was conducted using two sources of biochar (Acacia decurrens and Eucalyptus Camaldulensis) with four rates (0, 10, 20, and 40 t/ha) and compared with crops grown from soils of 1kiln sites without biochar application laid out in a CRD with three replications. The data were analyzed using SAS software Version 9.4.The result revealed notable variations of kiln site soils and along soil depth. The appreciable increased (p<0.05) soil pH (5.5 to 5.74), organic carbon (3.89 to 4.27%), TN (0.30 to 0.32%), CEC (32.59 to 35.23 cmolckg-1), Ca (6.44 to 7.9 cmolckg-1), Mg (4.48 to 5.46 cmolckg-1), and significantly (p<0.01) Av. P (30.25 to 46.4 ppm) and K (2.11 to 2.82 cmolckg-1) were recorded from the none-kiln to kiln soils, respectively. On the other hand, ex. acidity and aluminum, available Fe and Mn were reduced from 2.20 to 1.54, 1.95 to 1.31 cmolckg-1 and 57.46 to 41.40 and 5.65 to 3.86 ppm, respectively, from the control to the kiln. Soil texture was significantly affected by soil heating and along soil depth. The sand content was (p<0.05) varied between the value of 23% to 29% from none-kiln to kiln site, and clay content was (p<0.01) increased from 0-20 cm (32%) soil depth to 40-60 cm (43%) deeper soil. Significantly (p<0.05) higher Soil moisture content was recorded at none-kiln site (45.85%) compared to kiln (40.44%) in wet season, whereas in dry season, lower moisture content was revealed at kiln site (26%) compared to none-kiln (30.7%). As wet to dry season, soil moisture was decreased from 43% to 28% respectively. Bulk density (P<0.01) varied between 0.88 to 0.94 gcm-3 from control to kiln in dry season. Similarly, the value of soil pH (6.10), Av. P (58.12), exchangeable bases (Ca (9.83), Mg (6.19) and K (3.67)) were (p<0.01) higher at the 0-20 cm soil depth as compared to the deeper soils, the result of soil moisture (30 to 42%) and CEC (31 to 36 cmolckg-1) increased down the soil profile. After wheat harvest, soil pH, Av. P, CEC, and exchangeable bases (Mg, K and Na) were significantly higher in the kiln soil, while soil moisture and OC increased by the applied biochar of 20 and 40 ton/ha. High yield 2.28 gpot-1 (p<0.01) was recorded in kiln soil, growth parameters of wheat were significantly increased with increasing biochar rates.

Keywords: biochar, kasiry micro-watershed, kiln site, none-kiln site, soil properties

Procedia PDF Downloads 83
1154 An Exploratory Factor Analysis Approach to Explore Barriers to Oracy Proficiency Among Thai EFL Learners

Authors: Patsawut Sukserm

Abstract:

Oracy proficiency, encompassing both speaking and listening skills, is vital for EFL learners, yet Thai university students often face significant challenges in developing these abilities. This study aims to identify and analyze the barriers that hinder oracy proficiency in EFL learners. To achieve this, a questionnaire was developed based on a comprehensive review of the literature and administered to a large cohort of Thai EFL students. The data were subjected to exploratory factor analysis (EFA) to validate the questionnaire and uncover the underlying factors influencing learners’ performance. The results revealed that the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.912, and Bartlett’s test of sphericity was significant at 2345.423 (p < 0.05), confirming the suitability for factor analysis. There are five main barriers in oracy proficiency, namely Listening and Comprehension Obstacles (LCO), Accent and Speech Understanding (ASU), Speaking Anxiety and Confidence Issues (SACI), Fluency and Expression Issues (FEI), and Grammar and Conversational Understanding (GCU), with eigenvalues ranging from 1.066 to 12.990, explaining 60.305 % of the variance of the 32 variables. These findings highlight the complexity of the challenges faced by Thai EFL learners and emphasize the need for diverse and authentic listening experiences, a supportive classroom environment, or balanced grammar instruction. The findings of the study suggest that educators, curriculum developers, and policy makers should implement evidence-based strategies to address these barriers in order to improve Thai EFL learners’ oral proficiency and enhance their overall academic and professional success. Also, this study will discuss these findings in depth, offering evidence-based strategies for addressing these barriers. Recommendations include integrating diverse and authentic listening experiences, fostering a supportive classroom environment, and providing targeted instruction in both speaking fluency and grammar. The study’s implications extend to educators, curriculum developers, and policymakers, offering practical solutions to enhance learners’ oracy proficiency and support their academic and professional development.

Keywords: exploratory factor analysis, barriers, oracy proficiency, EFL learners

Procedia PDF Downloads 0
1153 A Multidimensional Indicator-Based Framework to Assess the Sustainability of Productive Green Roofs: A Case Study in Madrid

Authors: Francesca Maria Melucci, Marco Panettieri, Rocco Roma

Abstract:

Cities are at the forefront of achieving the sustainable development goals set out in the Sustainable Development Goals of Agenda 2030. For these reasons, increasing attention has been given to the creation of resilient, sustainable, inclusive and green cities and finding solutions to these problems is one of the greatest challenges faced by researchers today. In particular urban green infrastructures, including green roofs, play a key role in tackling environmental, social and economic problems. The starting point was an extensive literature review on 1. research developments on the benefits (environmental, economic and social) and implications of green roofs; 2. sustainability assessment and applied methodologies; 3. specific indicators to measure impacts on urban sustainability. Through this review, the appropriate qualitative and quantitative characteristics that are part of the complex 'green roof' system were identified, as studies that holistically capture its multifunctional nature are still lacking. So, this paper aims to find a method to improve community participation in green roof initiatives and support local governance processes in developing efficient proposals to achieve better sustainability and resilience of cities. To this aim, the multidimensional indicator-based framework, presented by Tapia in 2021, has been tested for the first time in the case of a green roof in the city of Madrid. The framework's set of indicators was implemented with other indicators such as those of waste management and circularity (OECD Inventory of Circular Economy indicators) and sustainability performance. The specific indicators to be used in the case study were decided after a consultation phase with relevant stakeholders. Data on the community's willingness to participate in green roof implementation initiatives were collected through interviews and online surveys with a heterogeneous sample of citizens. The results of the application of the framework suggest how the different aspects of sustainability influence the choice of a green roof and provide input on the main mechanisms involved in citizens' willingness to participate in such initiatives.

Keywords: urban agriculture, green roof, urban sustainability, indicators, multi-criteria analysis

Procedia PDF Downloads 71
1152 Conflation Methodology Applied to Flood Recovery

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: community resilience, conflation, flood risk, nuisance flooding

Procedia PDF Downloads 101
1151 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.

Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity

Procedia PDF Downloads 69
1150 1D/3D Modeling of a Liquid-Liquid Two-Phase Flow in a Milli-Structured Heat Exchanger/Reactor

Authors: Antoinette Maarawi, Zoe Anxionnaz-Minvielle, Pierre Coste, Nathalie Di Miceli Raimondi, Michel Cabassud

Abstract:

Milli-structured heat exchanger/reactors have been recently widely used, especially in the chemical industry, due to their enhanced performances in heat and mass transfer compared to conventional apparatuses. In our work, the ‘DeanHex’ heat exchanger/reactor with a 2D-meandering channel is investigated both experimentally and numerically. The square cross-sectioned channel has a hydraulic diameter of 2mm. The aim of our study is to model local physico-chemical phenomena (heat and mass transfer, axial dispersion, etc.) for a liquid-liquid two-phase flow in our lab-scale meandering channel, which represents the central part of the heat exchanger/reactor design. The numerical approach of the reactor is based on a 1D model for the flow channel encapsulated in a 3D model for the surrounding solid, using COMSOL Multiphysics V5.5. The use of the 1D approach to model the milli-channel reduces significantly the calculation time compared to 3D approaches, which are generally focused on local effects. Our 1D/3D approach intends to bridge the gap between the simulation at a small scale and the simulation at the reactor scale at a reasonable CPU cost. The heat transfer process between the 1D milli-channel and its 3D surrounding is modeled. The feasibility of this 1D/3D coupling was verified by comparing simulation results to experimental ones originated from two previous works. Temperature profiles along the channel axis obtained by simulation fit the experimental profiles for both cases. The next step is to integrate the liquid-liquid mass transfer model and to validate it with our experimental results. The hydrodynamics of the liquid-liquid two-phase system is modeled using the ‘mixture model approach’. The mass transfer behavior is represented by an overall volumetric mass transfer coefficient ‘kLa’ correlation obtained from our experimental results in the millimetric size meandering channel. The present work is a first step towards the scale-up of our ‘DeanHex’ expecting future industrialization of such equipment. Therefore, a generalized scaled-up model of the reactor comprising all the transfer processes will be built in order to predict the performance of the reactor in terms of conversion rate and energy efficiency at an industrial scale.

Keywords: liquid-liquid mass transfer, milli-structured reactor, 1D/3D model, process intensification

Procedia PDF Downloads 129