Search results for: temporal resolution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2434

Search results for: temporal resolution

814 Optimal Perturbation in an Impulsively Blocked Channel Flow

Authors: Avinash Nayak, Debopam Das

Abstract:

The current work implements the variational principle to find the optimum initial perturbation that provides maximum growth in an impulsively blocked channel flow. The conventional method for studying temporal stability has always been through modal analysis. In most of the transient flows, this modal analysis is still followed with the quasi-steady assumption, i.e. change in base flow is much slower compared to perturbation growth rate. There are other studies where transient analysis on time dependent flows is done by formulating the growth of perturbation as an initial value problem. But the perturbation growth is sensitive to the initial condition. This study intends to find the initial perturbation that provides the maximum growth at a later time. Here, the expression of base flow for blocked channel is derived and the formulation is based on the two dimensional perturbation with stream function representing the perturbation quantity. Hence, the governing equation becomes the Orr-Sommerfeld equation. In the current context, the cost functional is defined as the ratio of disturbance energy at a terminal time 'T' to the initial energy, i.e. G(T) = ||q(T)||2/||q(0)||2 where q is the perturbation and ||.|| defines the norm chosen. The above cost functional needs to be maximized against the initial perturbation distribution. It is achieved with the constraint that perturbation follows the basic governing equation, i.e. Orr-Sommerfeld equation. The corresponding adjoint equation is derived and is solved along with the basic governing equation in an iterative manner to provide the initial spatial shape of the perturbation that provides the maximum growth G (T). The growth rate is plotted against time showing the development of perturbation which achieves an asymptotic shape. The effects of various parameters, e.g. Reynolds number, are studied in the process. Thus, the study emphasizes on the usage of optimal perturbation and its growth to understand the stability characteristics of time dependent flows. The assumption of quasi-steady analysis can be verified against these results for the transient flows like impulsive blocked channel flow.

Keywords: blocked channel flow, calculus of variation, hydrodynamic stability, optimal perturbation

Procedia PDF Downloads 421
813 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails

Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan

Abstract:

In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.

Keywords: laser cladding, residual stress, neutron diffraction, HAZ

Procedia PDF Downloads 273
812 Harmful Algal Blooming Micro-Algae in Kenya’s Coastal Waters

Authors: Nancy Awuor Oduor, Nils Moosdorf

Abstract:

Harmful Algal Blooms (HABs) are a threat to coastal water quality, marine biodiversity, and human health. The attention on HABs and associated phycotoxins is still very low in tropical coastal developing countries despite the high dependence of local communities on coastal and marine resources for food and livelihoods and the growing evidence of the global increase in HABs frequency, toxicity, and geographical expansion. Lack of HABs monitoring thus creates a high risk of exposure due to uncertainty. This study assessed the spatial and temporal variability and effects of potential HAB-forming species in Kenya’s coastal waters. The preliminary results from 463 sampled collected over a series of 10 coastal surveys conducted over 267 Km of Kenya’s coastline between August 2021 and July 2022 revealed the presence of 87 potential algal blooming species belonging to 47 genera dominated by species capable of producing toxins, causing physical harm and high biomass at 41, 31 and 21 % respectively. The taxonomic composition was also dominated by dinoflagellates at 47%, followed by diatoms, cyanobacteria, and silicoflagellates at 39, 12, and 2%, respectively. About 92 % of the toxin-producing species were established in the creek waters. However, there were no significant variations established in species richness between the dry and wet seasons. Paralytic Shellfish Poisoning (PSP) toxin-producing dinoflagellates Alexandrium spp., Aphanizomenon spp., Gonyaulax spp., Gymnodinium spp., and Brachydinium capitatum, and Amnesic Shellfish Poisoning (ASP) Toxin producing diatoms Amphora spp., Nitzschia spp. and Pseudo-nitzschia spp. Frequented the area in low cell densities ranging between 5 and 1500 cells/L. However, no domoic acid (DA) and saxitoxins (SXTs) were detected during the July surveys. This does not mean that the toxins are absent in the area, and longer studies are recommended.

Keywords: harmful algal blooms, phycotoxins, saxitoxin, domoic acid, Kenya

Procedia PDF Downloads 63
811 Application of Numerical Modeling and Field Investigations for Groundwater Recharge Characterization at Abydos Archeological Site, Sohag, Egypt

Authors: Sherif A. Abu El-Magd, Ahmed M. Sefelnasr, Ahmed M. Masoud

Abstract:

Groundwater modeling is the way and tool for assessing and managing groundwater resources efficiently. The present work was carried out in the ancient Egyptian archeological site (Abydos) fromDynastyIandII.Theareaislocated about 13km west of the River Nilecourse, Upper Egypt. The main problem in this context is that the ground water level rise threatens and damages fragile carvings and paintings of the ancient buildings. The main objective of the present work is to identify the sources of the groundwater recharge in the site, further more, equally important there is to control the ground water level rise. Numerical modeling combined with field water level measurements was implemented to understand the ground water recharge sources. However, building a conceptual model was an important step in the groundwater modeling to phase to satisfy the modeling objectives. Therefore, boreholes, crosssections, and a high-resolution digital elevation model were used to construct the conceptual model. To understand the hydrological system in the site, the model was run under both steady state and transient conditions. Then, the model was calibrated agains the observation of the water level measurements. Finally, the results based on the modeling indicated that the groundwater recharge is originating from an indirect flow path mainly from the southeast. Besides, there is a hydraulic connection between the surface water and groundwater in the study site. The decision-makers and archeologyists could consider the present work to understand the behavior of groundwater recharge and water table level rise.

Keywords: numerical modeling, archeological site, groundwater recharge, egypt

Procedia PDF Downloads 123
810 Aesthetic Preference and Consciousness in African Theatre: A Performance Appraisal of Tyrone Terrence's a Husband's Wife

Authors: Oluwatayo Isijola

Abstract:

The destructive influence of Europe on Africa has also taken a tow on the aesthetic essence of the African Art, which centres on morality and value for human life. In a parallel vein, the adverse turn of this influence on the dramaturgy of some contemporary African plays, poses impedance to audience consciousness in performance engagements. Through the spectrum of African Aesthetics, this study attempts a performance appraisal of A Husband’s wife; an unpublished play written by Tyrone Terence for the African audience. The researcher proffers two variant textual interpretations of the play to evaluate performance engagement in its default realistic mode, which holds an unresolved 'Medean-impulse', and another wherein the resolution is treated to a paradigm shift for aesthetic preference. The investigation employs the mixed method, which combines the quantitative and qualitative methodologies. Keen observation on the reactions and responses of audience members that were engaged in both performances, and on-the-spot interview with selected audience members, were the primary sources for the qualitative data. However, quantitative data was captured in an on-the-spot survey with the instrument of the questionnaire served to a sample population of the audience. The study observes that the preference for African aesthetics as exemplified in the second performance which deployed a paradigm shift did enhance audience consciousness. Hinging on performance aesthetic theory, the paper recommends that all such African plays bestowed with the shortcoming of African aesthetics, should be appropriately treated to paradigm shifts for performance engagement, in the interest of enhancing audience consciousness in the Nigerian Theatre.

Keywords: African aesthetics, audience consciousness, paradigm shift, median-impulse

Procedia PDF Downloads 332
809 Traumatic Chiasmal Syndrome Following Traumatic Brain Injury

Authors: Jiping Cai, Ningzhi Wangyang, Jun Shao

Abstract:

Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality that leads to structural and functional damage in several parts of the brain, such as cranial nerves, optic nerve tract or other circuitry involved in vision and occipital lobe, depending on its location and severity. As a result, the function associated with vision processing and perception are significantly affected and cause blurred vision, double vision, decreased peripheral vision and blindness. Here two cases complaining of monocular vision loss (actually temporal hemianopia) due to traumatic chiasmal syndrome after frontal head injury were reported, and were compared the findings with individual case reports published in the literature. Reported cases of traumatic chiasmal syndrome appear to share some common features, such as injury to the frontal bone and fracture of the anterior skull base. The degree of bitemporal hemianopia and visual loss acuity have a variable presentation and was not necessarily related to the severity of the craniocerebral trauma. Chiasmal injury may occur even in the absence bony chip impingement. Isolated bitemporal hemianopia is rare and clinical improvement usually may not occur. Mechanisms of damage to the optic chiasm after trauma include direct tearing, contusion haemorrhage and contusion necrosis, and secondary mechanisms such as cell death, inflammation, edema, neurogenesis impairment and axonal damage associated with TBI. Beside visual field test, MRI evaluation of optic pathways seems to the strong objective evidence to demonstrate the impairment of the integrity of visual systems following TBI. Therefore, traumatic chiasmal syndrome should be considered as a differential diagnosis by both neurosurgeons and ophthalmologists in patients presenting with visual impairment, especially bitemporal hemianopia after head injury causing frontal and anterior skull base fracture.

Keywords: bitemporal hemianopia, brain injury, optic chiasma, traumatic chiasmal syndrome.

Procedia PDF Downloads 79
808 Neutron Irradiated Austenitic Stainless Steels: An Applied Methodology for Nanoindentation and Transmission Electron Microscopy Studies

Authors: P. Bublíkova, P. Halodova, H. K. Namburi, J. Stodolna, J. Duchon, O. Libera

Abstract:

Neutron radiation-induced microstructural changes cause degradation of mechanical properties and the lifetime reduction of reactor internals during nuclear power plant operation. Investigating the effects of neutron irradiation on mechanical properties of the irradiated material (hardening, embrittlement) is challenging and time-consuming. Although the fast neutron spectrum has the major influence on microstructural properties, the thermal neutron effect is widely investigated owing to Irradiation-Assisted Stress Corrosion Cracking firstly observed in BWR stainless steels. In this study, 300-series austenitic stainless steels used as material for NPP's internals were examined after neutron irradiation at ~ 15 dpa. Although several nanoindentation experimental publications are available to determine the mechanical properties of ion irradiated materials, less is available on neutron irradiated materials at high dpa tested in hot-cells. In this work, we present particular methodology developed to determine the mechanical properties of neutron irradiated steels by nanoindentation technique. Furthermore, radiation-induced damage in the specimens was investigated by High Resolution - Transmission Electron Microscopy (HR-TEM) that showed the defect features, particularly Frank loops, cavity microstructure, radiation-induced precipitates and radiation-induced segregation. The results of nanoindentation measurements and associated nanoscale defect features showed the effect of irradiation-induced hardening. We also propose methodologies to optimized sample preparation for nanoindentation and microscotructural studies.

Keywords: nanoindentation, thermal neutrons, radiation hardening, transmission electron microscopy

Procedia PDF Downloads 158
807 Monitoring Urban Green Space Cover Change Using GIS and Remote Sensing in Two Rapidly Urbanizing Cities, Debre Berhan and Debre Markos, Ethiopia

Authors: Alemaw Kefale, Aramde Fetene, Hayal Desta

Abstract:

Monitoring the amount of green space in urban areas is important for ensuring sustainable development and proper management. The study analyzed changes in urban green space coverage over the past 20 years in two rapidly urbanizing cities in Ethiopia, Debre Berhan and Debre Markos, using GIS and remote sensing. The researchers used Landsat 5 and 8 data with a spatial resolution of 30 m to determine different land use and land cover classes, including urban green spaces, barren and croplands, built-up areas, and water bodies. The classification accuracy ranged between 90% and 91.4%, with a Kappa Statistic of 0.85 to 0.88. The results showed that both cities experienced significant decreases in vegetation cover in their urban cores between 2000 and 2020, with radical changes observed from green spaces and croplands to built-up areas. In Debre Berhan, barren and croplands decreased by 32.96%, while built-up and green spaces increased by 357.9% and 37.4%, respectively, in 2020. In Debre Markos, built-up areas increased by 224.2%, while green spaces and barren and croplands decreased by 41% and 5.71%, respectively. The spatial structure of cities and planning policies were noticed as the major factors for big green cover change. Thus it has an implication for other rapidly urbanized cities in Africa and Asia. Overall, rapid urbanization threatens green spaces and agricultural areas, highlighting the need for ecological-based spatial planning in rapidly urbanizing cities.

Keywords: green space coverage, GIS and remote sensing, Landsat, LULC, Ethiopia

Procedia PDF Downloads 56
806 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 425
805 Leadership, Resource Based Conflicts and Its Resolution Practices among the Pastoral Groups in Eastern Ethiopia

Authors: Bamlaku Tadesse Mengistu

Abstract:

Resource-based inter-ethnic conflicts are common in eastern Ethiopia among the Afar, Ittu-Oromo, and Issa-Somali pastoral groups. The qualitative data required for the study were collected from community leaders, ordinary members of the communities, and administrative and political bodies at various levels through one-on-one interviews, focus group discussions and field observations. The quantitative data were also collected through a household survey from the 128 households drawn from the three districts of Meiso-Mullu, Meiso, and Amibara. This research tried to assess the triggering factors of inter-ethnic violent conflicts and tensions observed and other motivating factors that encourage the rival groups to instigate the recent conflicts. The research revealed some of the triggering factors that instigate violent conflicts among the rival groups such as the bad actions of conflict entrepreneurs/rent seekers, the incidence of plunder (banditry), the encroachment of farmers’ to pastoral lands/vice versa, the destruction of farmers’ crops by pastoralists’ livestock, and among others. The roles of conflict entrepreneurs such as low and medium level administrators/leaders, illicit arms traffickers, local level elites, and among others are very much significant in fueling up inter-ethnic conflicts and tensions. Leaders of various levels wrongly agitate the politicization of ethnicity and ethnic identity as well as regional boundaries as they are political boundaries rather than administrative boundaries.

Keywords: eastern ethiopia, resource competition, ethnic conflict, AFAR, ISSA and ITTU.

Procedia PDF Downloads 155
804 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: synthetic aperture radar, calibration, corner reflector, KOMPSAT-5

Procedia PDF Downloads 272
803 Comparison of Effects over the Autonomic Nervous System When Using Force Training and Interval Training in Indoor Cycling with University Students

Authors: Daniel Botero, Oscar Rubiano, Pedro P. Barragan, Jaime Baron, Leonardo Rodriguez Perdomo, Jaime Rodriguez

Abstract:

In the last decade interval training (IT) has gained importance when is compare with strength training (ST). However, there are few studies analyzing the impact of these training over the autonomic nervous system (ANS). This work has aimed to compare the activity of the autonomic nervous system, when is expose to an IT or ST indoor cycling mode. After approval by the ethics committee, a cross-over clinical trial with 22 healthy participants (age 21 ± 3 years) was implemented. The selection of participants for the groups with sequence force-interval (F-I) and interval-force (I-F) was made randomly with assignation of 11 participants for each group. The temporal series of heart rate was obtained before and after each training using the POLAR TEAM® heart monitor. The evaluation of the ANS was performed with spectral analysis of the heart rate variability (HRV) using the fast Fourier transform (Kubios software). A training of 8 weeks in each sequence (4 weeks with each training) with an intermediate period of two weeks of washout was implemented for each group. The power parameter of the HRV in the low frequency band (LF = 0.04-0.15Hz related to the sympathetic nervous system), high frequency (HF = 0.15-0.4Hz, related to the parasympathetic) and LF/HF (with reference to a modulation of parasympathetic over the sympathetic), were calculated. Afterward, the difference between the parameters before and after was realized. Then, to evaluate statistical differences between each training was implemented the method of Wellek (Wellek and Blettner, 2012, Medicine, 109 (15), 276-81). To determine the difference of effect over parasympathetic when FT and IT are used, the T test is implemented obtaining a T value of 0.73 with p-value ≤ 0.1. For the sympathetic was obtained a T of 0.33 with p ≤ 0.1 and for LF/HF the T was 1.44 with a p ≥ 0.1. Then, the carry over effect was evaluated and was not present. Significant changes over autonomic activity with strength or interval training were not observed. However, a modulation of the parasympathetic over the sympathetic can be observed. Probably, these findings should be explained because the sample is little and/or the time of training was insufficient to generate changes.

Keywords: autonomic nervous, force training, indoor cycling, interval training

Procedia PDF Downloads 225
802 Coherent All-Fiber and Polarization Maintaining Source for CO2 Range-Resolved Differential Absorption Lidar

Authors: Erwan Negre, Ewan J. O'Connor, Juha Toivonen

Abstract:

The need for CO2 monitoring technologies grows simultaneously with the worldwide concerns regarding environmental challenges. To that purpose, we developed a compact coherent all-fiber ranged-resolved Differential Absorption Lidar (RR-DIAL). It has been designed along a tunable 2x1fiber optic switch set to a frequency of 1 Hz between two Distributed FeedBack (DFB) lasers emitting in the continuous-wave mode at 1571.41 nm (absorption line of CO2) and 1571.25 nm (CO2 absorption-free line), with linewidth and tuning range of respectively 1 MHz and 3 nm over operating wavelength. A three stages amplification through Erbium and Erbium-Ytterbium doped fibers coupled to a Radio Frequency (RF) driven Acousto-Optic Modulator (AOM) generates 100 ns pulses at a repetition rate from 10 to 30 kHz with a peak power up to 2.5 kW and a spatial resolution of 15 m, allowing fast and highly resolved CO2 profiles. The same afocal collection system is used for the output of the laser source and the backscattered light which is then directed to a circulator before being mixed with the local oscillator for heterodyne detection. Packaged in an easily transportable box which also includes a server and a Field Programmable Gate Array (FPGA) card for on-line data processing and storing, our setup allows an effective and quick deployment for versatile in-situ analysis, whether it be vertical atmospheric monitoring, large field mapping or sequestration site continuous oversight. Setup operation and results from initial field measurements will be discussed.

Keywords: CO2 profiles, coherent DIAL, in-situ atmospheric sensing, near infrared fiber source

Procedia PDF Downloads 128
801 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 277
800 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: climate, reanalysis, renewable energy, solar radiation

Procedia PDF Downloads 209
799 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors

Authors: Radhamanohar Aepuru, R. V. Mangalaraja

Abstract:

Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.

Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors

Procedia PDF Downloads 129
798 English Writing Anxiety in Debate Writing among Japanese Senior High School EFL Learners: Sources, Effects and Implication

Authors: Maria Lita Sudo

Abstract:

The debate is an effective tool in cultivating critical thinking skills in English classes. It involves writing evidence-based arguments about a resolution in a form of constructive speech and oral discussion using constructive speech, which will then be attacked and defended. In the process of writing, EFL learners may experience anxiety, an emotional problem that affects writing achievement and cognitive processing. Thus, this study explored the sources and effect of English writing anxiety in the context of debate writing with a view to providing EFL teachers pedagogical suggestions in alleviating English writing anxiety in debate writing. The participants of this study are 95 Japanese senior high school EFL learners and 3 Japanese senior high school English teachers. In selecting the participants, opportunity sampling was employed and consent from Japanese English teachers was sought. Data were collected thru (1) observation (2) open-ended questionnaire and (3) semi-structured interview. This study revealed that not all teachers of English in the context of this study recognize the existence of English writing anxiety among their students and that the very nature of the debate, in general, may also be a source of English writing anxiety in the context of debate writing. The interview revealed that English writing anxiety affects students’ ability to retrieve L2 vocabulary. Further, this study revealed different sources of writing anxiety in debate writing, which can be categorized into four main categories: (1) L2 linguistic ability-related factors (2) instructional –related factors, (3) interpersonal-related factors, and (4) debate- related factors. Based on the findings, recommendations for EFL teachers and EFL learners in managing writing anxiety in debate writing are provided.

Keywords: debate, EFL learners, English writing anxiety, sources

Procedia PDF Downloads 137
797 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation

Authors: Sikander Nawaz Khan

Abstract:

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.

Keywords: disaster mitigation, GIS, GPS, remote sensing

Procedia PDF Downloads 481
796 Drama Education: Towards Building Multicultural Adolescent Peer Relationships

Authors: Tahnee West

Abstract:

Drama education is increasingly understood as a useful tool in promoting positive social change and cultural awareness. The effects of both positive and negative peer relationships are also a researched facet of education systems. Despite this, very little research has been conducted in the intersection of these two areas, even given current, significant public interest surrounding multicultural relationships. This research addresses a problem faced by educators and students: facilitating meaningful multicultural relationships. The research explores the following question in an Australian context: in what ways does Drama education affect peer relationships between culturally diverse students? In doing so, the study explores the various challenges and experiences of a multicultural group of adolescents, in terms of forming and maintaining effective intercultural friendships, while participating in a series of drama workshops. The project presents a starting point for providing educators with strategies for inclusivity and relationship development amongst diverse student populations. Findings show that Drama education can positively affect culturally diverse young people’s peer relationships; interactions between participants and data collected in focus groups throughout the eight-week Drama program show a steady improvement in sense of trust, support, tolerance, empathy, familiarity with other participants, and enjoyment. Data also points to a positive correlation between the Drama activities and improved conflict resolution and communication skills, as well as an improved understanding of the other participants’ cultures. Diversities and commonalities within the group were explored, with similarities encouraging social cohesion, and decreasing cultural ‘cliques’.

Keywords: cultural diversity, drama education, friendship, multicultural, peer relationships

Procedia PDF Downloads 143
795 Thin Films of Glassy Carbon Prepared by Cluster Deposition

Authors: Hatem Diaf, Patrice Melinon, Antonio Pereira, Bernard Moine, Nicholas Blanchard, Florent Bourquard, Florence Garrelie, Christophe Donnet

Abstract:

Glassy carbon exhibits excellent biological compatibility with live tissues meaning it has high potential for applications in life science. Moreover, glassy carbon has interesting properties including 'high temperature resistance', hardness, low density, low electrical resistance, low friction, and low thermal resistance. The structure of glassy carbon has long been a subject of debate. It is now admitted that glassy carbon is 100% sp2. This term is a little bit confusing as long sp2 hybridization defined from quantum chemistry is related to both properties: threefold configuration and pi bonding (parallel pz orbitals). Using plasma laser deposition of carbon clusters combined with pulsed nano/femto laser annealing, we are able to synthesize thin films of glassy carbon of good quality (probed by G band/ D disorder band ratio in Raman spectroscopy) without thermal post annealing. A careful inspecting of Raman signal, plasmon losses and structure performed by HRTEM (High Resolution Transmission Electron Microscopy) reveals that both properties (threefold and pi orbitals) cannot coexist together. The structure of the films is compared to models including schwarzites based from negatively curved surfaces at the opposite of onions or fullerene-like structures with positively curved surfaces. This study shows that a huge collection of porous carbon named vitreous carbon with different structures can coexist.

Keywords: glassy carbon, cluster deposition, coating, electronic structure

Procedia PDF Downloads 319
794 The Vulnerability of Climate Change to Farmers, Fishermen and Herdsmen in Nigeria

Authors: Nasiru Medugu Idris

Abstract:

This research is aimed at assessing the vulnerability of climate change to rural communities (farmers, herdsmen and fishermen) in Nigeria with the view to study the underlying causes and degree of vulnerability to climate change and examine the conflict between farmers and herdsmen as a result of climate change. This research employed the use of quantitative and qualitative means of data gathering techniques as well as physical observations. Six states (Kebbi, Adamawa, Nasarawa, Osun, Ebonyi, and Akwa Ibom) have been selected on the ground that they are key food production areas in the country and are therefore essential to continual food security in the country. So also, they also double as fishing communities in order to aid the comprehensive study of all the effects on climate on farmers and fishermen alike. Community focus group discussions were carried out in the various states for an interactive session and also to have firsthand information on their level of awareness on climate change. Climate data from the Nigerian Meteorological Agency over the past decade were collected for the purpose of analyzing trends in climate. The study observed that the level of vulnerability of rural dwellers most especially farmers, herdsmen and fishermen to climate change is very high due to their socioeconomic, ethnic and historical perspective of their trend. The study, therefore, recommends that urgent step needs to be put in place to help control natural hazards and man-made disasters and serious measures are also needed in order to minimize severe societal, economic and political crises; some of which may either escalate to violent conflicts or could be avoided by efforts of conflict resolution and prevention by the initiation of a process of de-escalation. So this study has recommended the best-fit adaptive and mitigation measures to climate change vulnerability in rural communities of Nigeria.

Keywords: adaptation, farmers, fishermen, herdsmen

Procedia PDF Downloads 191
793 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 218
792 Planktivorous Fish Schooling Responses to Current at Natural and Artificial Reefs

Authors: Matthew Holland, Jason Everett, Martin Cox, Iain Suthers

Abstract:

High spatial-resolution distribution of planktivorous reef fish can reveal behavioural adaptations to optimise the balance between feeding success and predator avoidance. We used a multi-beam echosounder to record bathymetry and the three-dimensional distribution of fish schools associated with natural and artificial reefs. We utilised generalised linear models to assess the distribution, orientation, and aggregation of fish schools relative to the structure, vertical relief, and currents. At artificial reefs, fish schooled more closely to the structure and demonstrated a preference for the windward side, particularly when exposed to strong currents. Similarly, at natural reefs fish demonstrated a preference for windward aspects of bathymetry, particularly when associated with high vertical relief. Our findings suggest that under conditions with stronger current velocity, fish can exercise their preference to remain close to structure for predator avoidance, while still receiving an adequate supply of zooplankton delivered by the current. Similarly, when current velocity is low, fish tend to disperse for better access to zooplankton. As artificial reefs are generally deployed with the goal of creating productivity rather than simply attracting fish from elsewhere, we advise that future artificial reefs be designed as semi-linear arrays perpendicular to the prevailing current, with multiple tall towers. This will facilitate the conversion of dispersed zooplankton into energy for higher trophic levels, enhancing reef productivity and fisheries.

Keywords: artificial reef, current, forage fish, multi-beam, planktivorous fish, reef fish, schooling

Procedia PDF Downloads 158
791 A 3D Numerical Environmental Modeling Approach For Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design

Authors: J. X. Dong, C. J. An, Z. Chen, E. H. Owens, M. C. Boufadel, E. Taylor, K. Lee

Abstract:

Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to the ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental mesoscale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to those obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.

Keywords: dissolved petroleum hydrocarbons, environmental multimedia model, finite volume method, sensitivity analysis, total petroleum hydrocarbons

Procedia PDF Downloads 217
790 Development and Validation of Selective Methods for Estimation of Valaciclovir in Pharmaceutical Dosage Form

Authors: Eman M. Morgan, Hayam M. Lotfy, Yasmin M. Fayez, Mohamed Abdelkawy, Engy Shokry

Abstract:

Two simple, selective, economic, safe, accurate, precise and environmentally friendly methods were developed and validated for the quantitative determination of valaciclovir (VAL) in the presence of its related substances R1 (acyclovir), R2 (guanine) in bulk powder and in the commercial pharmaceutical product containing the drug. Method A is a colorimetric method where VAL selectively reacts with ferric hydroxamate and the developed color was measured at 490 nm over a concentration range of 0.4-2 mg/mL with percentage recovery 100.05 ± 0.58 and correlation coefficient 0.9999. Method B is a reversed phase ultra performance liquid chromatographic technique (UPLC) which is considered superior in technology to the high-performance liquid chromatography with respect to speed, resolution, solvent consumption, time, and cost of analysis. Efficient separation was achieved on Agilent Zorbax CN column using ammonium acetate (0.1%) and acetonitrile as a mobile phase in a linear gradient program. Elution time for the separation was less than 5 min and ultraviolet detection was carried out at 256 nm over a concentration range of 2-50 μg/mL with mean percentage recovery 100.11±0.55 and correlation coefficient 0.9999. The proposed methods were fully validated as per International Conference on Harmonization specifications and effectively applied for the analysis of valaciclovir in pure form and tablets dosage form. Statistical comparison of the results obtained by the proposed and official or reported methods revealed no significant difference in the performance of these methods regarding the accuracy and precision respectively.

Keywords: hydroxamic acid, related substances, UPLC, valaciclovir

Procedia PDF Downloads 247
789 Mapping Soils from Terrain Features: The Case of Nech SAR National Park of Ethiopia

Authors: Shetie Gatew

Abstract:

Current soil maps of Ethiopia do not represent accurately the soils of Nech Sar National Park. In the framework of studies on the ecology of the park, we prepared a soil map based on field observations and a digital terrain model derived from SRTM data with a 30-m resolution. The landscape comprises volcanic cones, lava and basalt outflows, undulating plains, horsts, alluvial plains and river deltas. SOTER-like terrain mapping units were identified. First, the DTM was classified into 128 terrain classes defined by slope gradient (4 classes), relief intensity (4 classes), potential drainage density (2 classes), and hypsometry (4 classes). A soil-landscape relation between the terrain mapping units and WRB soil units was established based on 34 soil profile pits. Based on this relation, the terrain mapping units were either merged or split to represent a comprehensive soil and terrain map. The soil map indicates that Leptosols (30 %), Cambisols (26%), Andosols (21%), Fluvisols (12 %), and Vertisols (9%) are the most widespread Reference Soil Groups of the park. In contrast, the harmonized soil map of Africa derived from the FAO soil map of the world indicates that Luvisols (70%), Vertisols (14%) and Fluvisols (16%) would be the most common Reference Soil Groups. However, these latter mapping units are not consistent with the topography, nor did we find such extensive areas occupied by Luvisols during the field survey. This case study shows that with the now freely available SRTM data, it is possible to improve current soil information layers with relatively limited resources, even in a complex terrain like Nech Sar National Park.

Keywords: andosols, cambisols, digital elevation model, leptosols, soil-landscaps relation

Procedia PDF Downloads 105
788 Monitoring Spatial Distribution of Blue-Green Algae Blooms with Underwater Drones

Authors: R. L. P. De Lima, F. C. B. Boogaard, R. E. De Graaf-Van Dinther

Abstract:

Blue-green algae blooms (cyanobacteria) is currently a relevant ecological problem that is being addressed by most water authorities in the Netherlands. These can affect recreation areas by originating unpleasant smells and toxins that can poison humans and animals (e.g. fish, ducks, dogs). Contamination events usually take place during summer months, and their frequency is increasing with climate change. Traditional monitoring of this bacteria is expensive, labor-intensive and provides only limited (point sampling) information about the spatial distribution of algae concentrations. Recently, a novel handheld sensor allowed water authorities to quicken their algae surveying and alarm systems. This study converted the mentioned algae sensor into a mobile platform, by combining it with an underwater remotely operated vehicle (also equipped with other sensors and cameras). This provides a spatial visualization (mapping) of algae concentrations variations within the area covered with the drone, and also in depth. Measurements took place in different locations in the Netherlands: i) lake with thick silt layers at the bottom, very eutrophic former bottom of the sea and frequent / intense mowing regime; ii) outlet of waste water into large reservoir; iii) urban canal system. Results allowed to identify probable dominant causes of blooms (i), provide recommendations for the placement of an outlet, day-night differences in algae behavior (ii), or the highlight / pinpoint higher algae concentration areas (iii). Although further research is still needed to fully characterize these processes and to optimize the measuring tool (underwater drone developments / improvements), the method here presented can already provide valuable information about algae behavior and spatial / temporal variability and shows potential as an efficient monitoring system.

Keywords: blue-green algae, cyanobacteria, underwater drones / ROV / AUV, water quality monitoring

Procedia PDF Downloads 207
787 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE

Authors: Serin Darwish, Hakim Saibi, Amir Gabr

Abstract:

The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.

Keywords: Al-Ain, arid region, groundwater, microgravity

Procedia PDF Downloads 152
786 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques

Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani

Abstract:

One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.

Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis

Procedia PDF Downloads 137
785 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network

Authors: Parisa Mansour

Abstract:

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.

Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence

Procedia PDF Downloads 65