Search results for: linear electro-optic (LEO) effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17366

Search results for: linear electro-optic (LEO) effect

15746 The Effect of Season, Fire and Slope Position on Seriphium plumosum L. Forage Quality in South African Grassland Communities

Authors: Hosia T. Pule, Julius T. Tjelele, Michelle J. Tedder, Dawood Hattas

Abstract:

Acceptability of plant material to herbivores is influenced by, among other factors; nutrients, plant secondary metabolites and growth stage of the plants. However, the effect of these factors on Seriphium plumosum L. acceptability to livestock is still not clearly understood, despite its importance in managing its encroachment in grassland communities. The study used 2 x 2 x 2 factorial analysis of variance to investigate the effect of season (wet and dry), fire, slope position (top and bottom) and their interaction on Seriphium plumosum chemistry. We tested the hypothesis that S. plumosum chemistry varies temporally, spatially and pre- and post-fire treatment. Seriphium plumosum edible material was collected during the wet and dry season from burned and unburned areas on both top and bottom slopes before being analysed for protein (CP) content, neutral detergent fibre (NDF), total phenolics (TP) and condensed tannins (CT). Season had a significant effect on S. plumosum protein content, neutral detergent fibre, total phenolics and condensed tannins. Fire had a significant effect on CP. Interaction of season x fire had a significant effect on NDF and CP (p < 0.05). Seriphium plumosum in the wet season (6.69% ± 0.20 (SE)) had significantly higher CP than in the dry season (5.22% ± 0.13). NDF was significantly higher (58.01% ± 0.41) in the dry season than in the wet season (53.17% ± 0.34), while TP were significantly higher in the dry season (14.44 mg/gDw ± 1.03) than in the wet season (11.08 mg/gDw ± 1.07). CT in the wet season were significantly higher (1.56 mg/gDw ± 0.13) than in the dry season (1 mg/gDw ± 0.03). CP was significantly higher in burned (6. 31 % ± 0.22) than in unburned S. plumosum edible material (5.60 % ± 0.15). Seriphium plumosum CP was significantly higher in wet season x burned (7.34 % ± 0.31) than wet season x unburned (6.08 % ± 0.20) material and dry season x burned (5.34 % ± 0.18) and unburned (5.09 % ± 0.18) material were similar. NDF was similar in dry season x burned (58.31% ± 0.54) and dry season x unburned (57.69 % ± 0.62) material and significantly higher than similar wet season x burned (52.43% ± 0.45) and wet season x post-unburned (53.88% ± 0.47) material. This study suggests integrating fire, browsers, and supplements as encroacher S. plumosum control agents, especially in the wet season, following fire due to high S. plumosum CP content.

Keywords: acceptability, chemistry, edible material, encroachment, phenolics, tannins

Procedia PDF Downloads 156
15745 The Effect of Values on Social Innovativeness in Nursing and Medical Faculty Students

Authors: Betül sönmez, Fatma Azizoğlu, S. Bilge Hapçıoğlu, Aytolan Yıldırım

Abstract:

Background: Social innovativeness contains the procurement of a sustainable benefit for a number of problems from working conditions to education, social development, health, and from environmental control to climate change, as well as the development of new social productions and services. Objectives: This study was conducted to determine the correlation between the social innovation tendency of nursing and medical faculty students and value types. Methods and participants: The population of this correlational study consisted of third-year students studying at a medical faculty and a nursing faculty in a public university in Istanbul. Ethics committee approval and permission from the school administrations were obtained in order to conduct the study and voluntary participation of the students in the study was ensured. 524 questionnaires were obtained with a total return rate of 57.1% (65.0% in nurse student and 52.1% in physic students). The data of the study were collected by using the Portrait Values Questionnaire and a questionnaire containing the Social Innovativeness Scale. Results: The effect of the subscale scores of Portrait Values Questionnaire on the total score of Social Innovativeness Scale was 26.6%. In the model where a significance was determined (F=37.566; p<0.01), the highest effect was observed in the subscale of universalism. The effect of subscale scores obtained from the Portrait Values Questionnaire, as well as age, gender and number of siblings was 25% on the Social Innovativeness in nursing students and 30.8% in medical faculty students. In both models where a significance was determined (p<0.01), the nursing students had the values of power, universalism and kindness, whereas the medical faculty students had the values of self-direction, stimulation, hedonism and universalism showed the highest effect in both models. Conclusions: Universalism is the value with the highest effect upon the social innovativeness in both groups, which is an expected result by the nature of professions. The effect of the values of independent thinking and self-direction, as well as openness to change involving quest for innovation (stimulation), which are observed in medical faculty students, also supports the literature of innovative behavior. These results are thought to guide educators and administrators in terms of developing socially innovative behaviors.

Keywords: social innovativeness, portrait values questionnaire, nursing students, medical faculty students

Procedia PDF Downloads 320
15744 A Relationship Model That Illustrates the Effect of Humorous Packaging Designs on Brand Awareness and Brand Attitude

Authors: Shu-Yuan Lin, Tung-Chin Chou

Abstract:

As products become increasingly similar in competitive markets, achieving product segmentation and differentiation through packaging design has become the primary task when designing retail product packaging. When the main focus of brand marketing is no longer the product itself, emotional marketing, such as the use of humorous packaging designs, may be employed to successfully promote the brand. Such efforts will capture the hearts of consumers, generate discussions, and allow the brand to leave a deep impression in consumers. In this study, snack packaging was used to develop a relationship model that illustrated the effect of humorous packaging designs on brand awareness and brand attitude. The study was divided into three stages: In the first stage, in-depth interviews and focus group interviews were conducted with experts to construct 24 indicators for assessing humorous packaging designs. In the second stage, survey questionnaires were distributed to a young consumer group; the results showed that the group had a high and low product involvement with chocolate and dried shredded squid, respectively. Humorous packaging designs were subsequently created for two snack types to produce a study sample of 12 different packaging. In the third stage, packaging designs were evaluated by obtaining scores for the consumers’ brand awareness, brand attitude, and perceived effects of the packaging designs. Finally, a relationship model was developed to show the effect of humorous packaging designs on brand awareness and brand attitude, confirming that two perceived effects of humorous packaging designs (i.e., ‘pleasant and emotionally healing’ and ‘connected to people’s daily life’) exhibited a significant and positive effect on ‘perceived brand value,’ where the effect of ‘pleasant and emotionally healing’ was the most significant. In addition, ‘pleasant and emotionally healing’ exerted a significant and positive effect on ‘brand purchase intention.’ Furthermore, packaging designs with humorous elements helped foster brand awareness.

Keywords: brand awareness, brand attitude, humorous design, packaging design

Procedia PDF Downloads 224
15743 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency

Authors: M. Mohan, J. P. Roise, G. P. Catts

Abstract:

Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.

Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker

Procedia PDF Downloads 336
15742 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach

Authors: Dhawal Ladani

Abstract:

Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.

Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube

Procedia PDF Downloads 305
15741 Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters

Authors: Andrej Pilipović, Branislav Kovačević, Marina Milović, Lazar Kesić, Saša Pekeč, Leopold Poljaković-Pajnik, Saša Orlović

Abstract:

The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions.

Keywords: clones, net photosynthesis, WUE, transpiration, stomatal conductance, SPAD

Procedia PDF Downloads 63
15740 Relationship between Employee Welfare Practices and Performance of Non-Governmental Organizations in Kenya

Authors: Protus A. Lumiti, Susan O. Wekesa, Mary Omondi

Abstract:

Performance is a key pillar to the accomplishment of the goals of all organizations, whether private, public or non- profit. Employees are the intellectual assets of the organization and they are an avenue to the achievement of competitive advantage. An employee welfare service in an organization is vital in fostering employee motivation and improving their productivity. In view of this, the main goal of this research was to determine the relationship between employee welfare practices and the performance of non-governmental organizations in Kenya. The study was guided by four objectives, namely: to establish, determine, evaluate and assess the relationship between employee welfare practices and the performance of non-governmental organizations in Kenya. The study utilized a survey design using both qualitative and quantitative approaches. In this study, a purposive, stratified and simple random sampling technique was used to arrive at a sample of 355 respondents who comprised senior managers, middle level managers and operational employees out of the targeted population of 14,283 employees of non-governmental organizations working in Nairobi County. The primary data collection tools were questionnaires supplemented by an interview schedule, while secondary data was obtained from reviewed journals, published books and articles. Data analysis was done using Statistical Packages for Social Sciences Software version 23. The study utilized multiple linear regression and a structural equation model. The findings of the study were that: employee welfare practices had a positive and significant relationship with the performance of Non-governmental organizations in Kenya. In addition, there was also a linear relationship between the independent variables and the dependent variable and the study concluded that there was a relationship between the predictor variable and the dependent variable of the study. The study recommended that management of No-governmental organization boards in Kenya should come up with a comprehensive policy document on employee welfare practices in order to enhance the performance of non-governmental organizations in Kenya.

Keywords: employee, economic, performance, welfare

Procedia PDF Downloads 179
15739 Synthesis and Characterization of High-Aspect-Ratio Hematite Nanostructures for Solar Water Splitting

Authors: Paula Quiterio, Arlete Apolinario, Celia T. Sousa, Joao Azevedo, Paula Dias, Adelio Mendes, Joao P. Araujo

Abstract:

Nowadays one of the mankind's greatest challenges has been the supply of low-cost and environmentally friendly energy sources as an alternative to non-renewable fossil fuels. Hydrogen has been considered a promising solution, representing a clean and low-cost fuel. It can be produced directly from clean and abundant resources, such as sunlight and water, using photoelectrochemical cells (PECs), in a process that mimics the nature´s photosynthesis. Hematite (alpha-Fe2O3) has attracted considerable attention as a promising photoanode for solar water splitting, due to its high chemical stability, nontoxicity, availability and low band gap (2.2 eV), which allows reaching a high thermodynamic solar-to-hydrogen efficiency of 16.8 %. However, the main drawbacks of hematite such as the short hole diffusion length and the poor conductivity that lead to high electron-hole recombination result in significant PEC efficiency losses. One strategy to overcome these limitations and to increase the PEC efficiency is to use 1D nanostructures, such as nanotubes (NTs) and nanowires (NWs), which present high aspect ratios and large surface areas providing direct pathways for electron transport up to the charge collector and minimizing the recombination losses. In particular, due to the ultrathin walls of the NTs, the holes can reach the surface faster than in other nanostructures, representing a key factor for the NTs photoresponse. In this work, we prepared hematite NWs and NTs, respectively by hydrothermal process and electrochemical anodization. For hematite NWs growing, we studied the effect of variable hydrothermal conditions, different annealing temperatures and time, and the use of Ti and Sn dopants on the morphology and PEC performance. The crystalline phase characterization by X-ray diffraction was crucial to distinguish the formation of hematite and other iron oxide phases, alongside its effect on the photoanodes conductivity and consequent PEC efficiency. The conductivity of the as-prepared NWs is very low, in the order of 10-5 S cm-1, but after doping and annealing optimization it increased by a factor of 105. A high photocurrent density of 1.02 mA cm-2 at 1.45 VRHE was obtained under simulated sunlight, which is a very promising value for this kind of hematite nanostructures. The stability of the photoelectrodes was also tested, presenting good stability after several J-V measurements over time. The NTs, synthesized by fast anodizations with potentials ranging from 20-100 V, presented a linear growth of the NTs pore walls, with very low thicknesses from 10 - 18 nm. These preliminary results are also very promising for the use of hematite photoelectrodes on PEC hydrogen applications.

Keywords: hematite, nanotubes, nanowires, photoelectrochemical cells

Procedia PDF Downloads 228
15738 Addressing Public Concerns about Radiation Impacts by Looking Back in Nuclear Accidents Worldwide

Authors: Du Kim, Nelson Baro

Abstract:

According to a report of International Atomic Energy Agency (IAEA), there are approximately 437 nuclear power stations are in operation in the present around the world in order to meet increasing energy demands. Indeed, nearly, a third of the world’s energy demands are met through nuclear power because it is one of the most efficient and long-lasting sources of energy. However, there are also consequences when a major event takes place at a nuclear power station. Over the past years, a few major nuclear accidents have occurred around the world. According to a report of International Nuclear and Radiological Event Scale (INES), there are six nuclear accidents that are considered to be high level (risk) of the events: Fukushima Dai-chi (Level 7), Chernobyl (Level 7), Three Mile Island (Level 5), Windscale (Level 5), Kyshtym (Level 6) and Chalk River (Level 5). Today, many people still have doubt about using nuclear power. There is growing number of people who are against nuclear power after the serious accident occurred at the Fukushima Dai-chi nuclear power plant in Japan. In other words, there are public concerns about radiation impacts which emphasize Linear-No-Threshold (LNT) Issues, Radiation Health Effects, Radiation Protection and Social Impacts. This paper will address those keywords by looking back at the history of these major nuclear accidents worldwide, based on INES. This paper concludes that all major mistake from nuclear accidents are preventable due to the fact that most of them are caused by human error. In other words, the human factor has played a huge role in the malfunction and occurrence of most of those events. The correct handle of a crisis is determined, by having a good radiation protection program in place, it’s what has a big impact on society and determines how acceptable people are of nuclear.

Keywords: linear-no-threshold (LNT) issues, radiation health effects, radiation protection, social impacts

Procedia PDF Downloads 243
15737 Analysis of a Strengthening of a Building Reinforced Concrete Structure

Authors: Nassereddine Attari

Abstract:

Each operation to strengthen or repair requires special consideration and requires the use of methods, tools and techniques appropriate to the situation and specific problems of each of the constructs. The aim of this paper is to study the pathology of building of reinforced concrete towards the earthquake and the vulnerability assessment using a non-linear Pushover analysis and to develop curves for a medium capacity building in order to estimate the damaged condition of the building.

Keywords: pushover analysis, earthquake, damage, strengthening

Procedia PDF Downloads 428
15736 Surface and Subsurface Characterization of a Fault along Boso-Boso River, Rizal

Authors: Marco Jan Rafael C. Sicam, Maria Daniella C. Yambao

Abstract:

The Philippines is a tectonically active archipelagic country situated near the Circum-Pacific Belt. Hence, seismic hazard assessments are important in the nation-building. In 2014, the Philippines Institute of Volcanology and Seismology (PHIVOLCS) mapped a 12-km NW-trending unnamed active fault near Boso-Boso River, Rizal. Given the limited nature of their technical report, they would like to further consolidate relevant data about this fault. As such, this study aims to characterize the surface and subsurface expression of the fault along Boso-Boso River using rangefront morphology, structural criteria, and ground penetrating radar. This fault is subdivided into two segments: the first segment located in the city of Antipolo is mainly manifested in the upper Kinabuan Formation and terminating near Mt. Qutago, and the second segment in Baras, Pinugay, Rizal cuts through recent fluvial deposits and to the Guadalupe Formation. IfSAR-derived DTM data reveals the morphological expression of the fault defined by offset streams and ridges, linear sidehill valleys, and linear valleys. Fault gouges, fault breccia, transtentional flower structures, slickensides, and other shear sense markers observed in the units of the upper Cretaceous Kinabuan Formation indicate a sinistral sense of displacement. GPR radargram profiles revealed the presence of displacement in reflectors at 3-5 meters below the surface which may be suggestive of the fault within the area. Finally, the fault in Boso-Boso river may be a segment of the larger sinistral Montalban Fault in the north or largely affected by the movement from the Marikina Valley Fault System.

Keywords: NW unnamed fault, range-front morphology, shear sense markers, ground penetrating radar, boso-boso river, antipolo

Procedia PDF Downloads 60
15735 Rare Differential Diagnostic Dilemma

Authors: Angelis P. Barlampas

Abstract:

Theoretical background Disorders of fixation and rotation of the large intestine, result in the existence of its parts in ectopic anatomical positions. In case of symptomatology, the clinical picture is complicated by the possible symptomatology of the neighboring anatomical structures and a differential diagnostic problem arises. Target The purpose of this work is to demonstrate the difficulty of revealing the real cause of abdominal pain, in cases of anatomical variants and the decisive contribution of imaging and especially that of computed tomography. Methods A patient came to the emergency room, because of acute pain in the right hypochondrium. Clinical examination revealed tenderness in the gallbladder area and a positive Murphy's sign. An ultrasound exam depicted a normal gallbladder and the patient was referred for a CT scan. Results Flexible, unfixed ascending colon and cecum, located in the anatomical region of the right mesentery. Opacities of the surrounding peritoneal fat and a small linear concentration of fluid can be seen. There was an appendix of normal anteroposterior diameter with the presence of air in its lumen and without clear signs of inflammation. There was an impression of possible inflammatory swelling at the base of the appendix, (DD phenomenon of partial volume; e.t.c.). Linear opacities of the peritoneal fat in the region of the second loop of the duodenum. Multiple diverticula throughout the colon. Differential Diagnosis The differential diagnosis includes the following: Inflammation of the base of the appendix, diverticulitis of the cecum-ascending colon, a rare case of second duodenal loop ulcer, tuberculosis, terminal ileitis, pancreatitis, torsion of unfixed cecum-ascending colon, embolism or thrombosis of a vascular intestinal branch. Final Diagnosis There is an unfixed cecum-ascending colon, which is exhibiting diverticulitis.

Keywords: unfixed cecum-ascending colon, abdominal pain, malrotation, abdominal CT, congenital anomalies

Procedia PDF Downloads 55
15734 Effect of TPA and HTLV-1 Tax on BRCA-1 and ERE Controlled Genes Expression

Authors: Azhar Jabareen, Mahmoud Huleihel

Abstract:

BRCA-1 is a multifunctional tumor suppressor, whose expression is activated by the estrogen (E2)-liganded ERα receptor. The activated ERα is a transcriptional factor which activates various genes either by direct binding to the DNA at E2-responsive elements (EREs) and indirectly associated with a range of alternative non-ERE elements. Interference with BRCA-1 expression and/or functions leads to high risk of breast or/and ovarian cancer. Our lab investigated the involvement of Human T-cell leukemia Virus Type 1 (HTLV-1) in breast cancer, since HTLV-1 Tax was found to strongly inhibit BRCA-1 expression. In addition, long exposure of 12-O-tetradecanoylphorbol-13-acetate (TPA), which is one of the stress-inducing agents activated the HTLV-1 promoter. So here the involvement of TPA in breast cancer had been examined by testing the effect of TPA on BRCA-1 and ERE expression. The results showed that TPA activated both BRCA-1 and ERE expression. In the 12 hours TPA activated the tow promoters more than others time, and after 24 hours the level of the tow promoters was decreased. Tax inhibited BRCA-1 expression but did not succeed to inhibit the effect of TPA. Then the activation of the two promoters was not through ERα pathway because TPA had no effect on ERα binding to the two promoters of the BRCA-1 and ERE. Also, the activation was not via nuclear factor kappa B (NF-κB) pathway because when the inhibitory of NF-κB had been added to the TPA, it still activated the tow promoters. However, it seems that 53BP1 may be involved in TPA activation of these promoters because ectopic high expression of 53BP1 significantly reduced the TPA activity. In addition, in the presence of Bisindolylmaleimide-I (BI)- the inhibitor of Protein Kinase C (PKC)- there was no activation for the two promoters, so the PKC is agonized BRCA-1 and ERE activation.

Keywords: BRCA-1, ERE, HTLV-1, TPA

Procedia PDF Downloads 246
15733 Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault

Authors: Yingxin Hui

Abstract:

Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage.

Keywords: bridge engineering, seismic response feature, across faults, rupture directivity effect, fling step

Procedia PDF Downloads 429
15732 Enhanced Anti-Obesity Effect of Soybean by Fermentation with Lactobacillus plantarum P1201 in 3T3-L1 Adipocyte

Authors: Chengliang Xie, Jinhyun Ryu, Hyun Joon Kim, Gyeong Jae Cho, Wan Sung Choi, Sang Soo Kang, Kye Man Cho, Dong Hoon Lee

Abstract:

Obesity has become a global health problem and a source of major metabolic diseases like type-2 diabetes, hypertension, heart disease, nonalcoholic fatty liver and cancer. Synthetic anti-obesity drugs are effective but very costly and with undesirable side effects, so natural products such as soybean are needed as an alternative for obesity treatment. Lactobacillus Plantarum P1201is a probiotic bacterial strain reported to produce conjugated linoleic acid (CLA) and increase the ratio of aglycone-isoflavone of soybean, both of which have anti-obesity effect. In this study, the anti-obesity effect of the fermented soybean extract with P1201 (FSE) will be evaluated compared with that of the soybean extract (SE) by 3T3-L1 cells as an in vitro model of adipogenesis. 3T3-L1 cells were treated with SE and FSE during the nine days of the differentiation, lipid accumulation was evaluated by oil-red staining and triglyceride content and the mRNA expression level of adipogenic or lipogenic genes were analyzed by RT-PCR and qPCR. The results showed that formation of lipid droplets in differentiated 3T3-L1 cells was inhibited and triglyceride content was reduced by 23.1% after treated with 1000 μg/mL of FSE compared with control. For SE-treated groups, no delipidating effect was observed. The effect of FSE on adipogenesis inhibition can be attributed to the down-regulation of mRNA expressionof CCAAT/enhancer binding protein (C/EBP-α), lipoprotein lipase (LPL), adiponectin, adipocyte fatty acid-binding protein (aP2), fatty acid synthesis (FAS) and CoA carboxylase (ACC). Our results demonstrated that the anti-obesity effect of soybean can be improved by fermentation with P1201, and P1201can be used as a potential probiotic bacterial strain to produce natural anti-obesity food.

Keywords: fermentation, Lactobacillus plantarum P1201, obesity, soybean

Procedia PDF Downloads 332
15731 Comparison of Mini-BESTest versus Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

Authors: R. Harihara Prakash, Shweta R. Parikh, Sangna S. Sheth

Abstract:

The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with Parkinson's Disease (PD) of varying severity. Evaluation were done to obtain (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity & specificity of separating people with or without postural response deficits. Methods and Material: Seventy-seven(77) people with Parkinson's Disease were tested for balance deficits using the Berg Balance Scale, Mini-BESTest. Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity scales were used for classification. Materials used in this study were case record sheet, chair without arm rests or wheels, Incline ramp, stopwatch, a box, 3 meter distance measured out and marked on the floor with tape [from chair]. Statistical analysis used: Multiple Linear regression was carried out of UPDRS jointly on the two scores for the Berg and Mini-BESTest. Receiver operating characteristic curves for classifying people into two groups based on a threshold for the H&Y score, to discriminate between mild PD versus more severe PD.Correlation co-efficient to find relativeness between the two variables. Results: The Mini-BESTest is highly correlated with the Berg (r = 0.732,P < 0.001), but avoids the ceiling compression effect of the Berg for mild PD (skewness −0.714 Berg, −0.512 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score (P < 0.001 Mini-BESTest versus P = 0.72 Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC).

Keywords: balance, berg balance scale, MINI BESTest, parkinson's disease

Procedia PDF Downloads 392
15730 Effect of Stiffeners on the Behavior of Slender Built up Steel I-Beams

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

This paper presents the effect of stiffeners on the behavior of slender steel I-beams. Nonlinear three dimensional finite element models are developed to represent the stiffened steel I-beams. The well established finite element (ANSYS 13.0) program is used to simulate the geometric and material nonlinear nature of the problem. Verification is achieved by comparing the obtained numerical results with the results of previous published experimental work. The parameters considered in the analysis are the horizontal stiffener's position and the horizontal stiffener's dimensions as well as the number of vertical stiffeners. The studied dimensions of the horizontal stiffeners include the stiffener width, the stiffener thickness and the stiffener length. The results of the achieved numerical parametric study for slender steel I-beams show the significant effect of stiffeners on the beam behavior and its failure load.

Keywords: beams, local buckling, slender, stiffener, thin walled section

Procedia PDF Downloads 278
15729 Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number

Authors: A. Nourbakhsh

Abstract:

A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the center line (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the center line. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow.

Keywords: suspensions, Poiseuille flow, effective viscosity, Reynolds number

Procedia PDF Downloads 353
15728 Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine

Authors: Hany El Said Fawaz

Abstract:

This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75.

Keywords: wind turbine, flanged diffuser, expansion angle, diffuser length

Procedia PDF Downloads 246
15727 Magnetohydrodynamic Flow of Viscoelastic Nanofluid and Heat Transfer over a Stretching Surface with Non-Uniform Heat Source/Sink and Non-Linear Radiation

Authors: Md. S. Ansari, S. S. Motsa

Abstract:

In this paper, an analysis has been made on the flow of non-Newtonian viscoelastic nanofluid over a linearly stretching sheet under the influence of uniform magnetic field. Heat transfer characteristics is analyzed taking into the effect of nonlinear radiation and non-uniform heat source/sink. Transport equations contain the simultaneous effects of Brownian motion and thermophoretic diffusion of nanoparticles. The relevant partial differential equations are non-dimensionalized and transformed into ordinary differential equations by using appropriate similarity transformations. The transformed, highly nonlinear, ordinary differential equations are solved by spectral local linearisation method. The numerical convergence, error and stability analysis of iteration schemes are presented. The effects of different controlling parameters, namely, radiation, space and temperature-dependent heat source/sink, Brownian motion, thermophoresis, viscoelastic, Lewis number and the magnetic force parameter on the flow field, heat transfer characteristics and nanoparticles concentration are examined. The present investigation has many industrial and engineering applications in the fields of coatings and suspensions, cooling of metallic plates, oils and grease, paper production, coal water or coal–oil slurries, heat exchangers’ technology, and materials’ processing and exploiting.

Keywords: magnetic field, nonlinear radiation, non-uniform heat source/sink, similar solution, spectral local linearisation method, Rosseland diffusion approximation

Procedia PDF Downloads 371
15726 The Effect of Conservative Tillage on Physical Properties of Soil and Yield of Rainfed Wheat

Authors: Abolfazl Hedayatipoor, Mohammad Younesi Alamooti

Abstract:

In order to study the effect of conservative tillage on a number of physical properties of soil and the yield of rainfed wheat, an experiment in the form of a randomized complete block design (RCBD) with three replications was conducted in a field in Aliabad County, Iran. The study treatments included: T1) Conventional method, T2) Combined moldboard plow method, T3) Chisel-packer method, and T4) Direct planting method. During early October, the study soil was prepared based on these treatments in a field which was used for rainfed wheat farming in the previous year. The apparent specific gravity of soil, weighted mean diameter (WMD) of soil aggregates, soil mechanical resistance, and soil permeability were measured. Data were analyzed in MSTAT-C. Results showed that the tillage practice had no significant effect on grain yield (p < 0.05). Soil permeability was 10.9, 16.3, 15.7 and 17.9 mm/h for T1, T2, T3 and T4, respectively.

Keywords: rainfed agriculture, conservative tillage, energy consumption, wheat

Procedia PDF Downloads 204
15725 Simple Finite-Element Procedure for Modeling Crack Propagation in Reinforced Concrete Bridge Deck under Repetitive Moving Truck Wheel Loads

Authors: Rajwanlop Kumpoopong, Sukit Yindeesuk, Pornchai Silarom

Abstract:

Modeling cracks in concrete is complicated by its strain-softening behavior which requires the use of sophisticated energy criteria of fracture mechanics to assure stable and convergent solutions in the finite-element (FE) analysis particularly for relatively large structures. However, for small-scale structures such as beams and slabs, a simpler approach relies on retaining some shear stiffness in the cracking plane has been adopted in literature to model the strain-softening behavior of concrete under monotonically increased loading. According to the shear retaining approach, each element is assumed to be an isotropic material prior to cracking of concrete. Once an element is cracked, the isotropic element is replaced with an orthotropic element in which the new orthotropic stiffness matrix is formulated with respect to the crack orientation. The shear transfer factor of 0.5 is used in parallel to the crack plane. The shear retaining approach is adopted in this research to model cracks in RC bridge deck with some modifications to take into account the effect of repetitive moving truck wheel loads as they cause fatigue cracking of concrete. First modification is the introduction of fatigue tests of concrete and reinforcing steel and the Palmgren-Miner linear criterion of cumulative damage in the conventional FE analysis. For a certain loading, the number of cycles to failure of each concrete or RC element can be calculated from the fatigue or S-N curves of concrete and reinforcing steel. The elements with the minimum number of cycles to failure are the failed elements. For the elements that do not fail, the damage is accumulated according to Palmgren-Miner linear criterion of cumulative damage. The stiffness of the failed element is modified and the procedure is repeated until the deck slab fails. The total number of load cycles to failure of the deck slab can then be obtained from which the S-N curve of the deck slab can be simulated. Second modification is the modification in shear transfer factor. Moving loading causes continuous rubbing of crack interfaces which greatly reduces shear transfer mechanism. It is therefore conservatively assumed in this study that the analysis is conducted with shear transfer factor of zero for the case of moving loading. A customized FE program has been developed using the MATLAB software to accomodate such modifications. The developed procedure has been validated with the fatigue test of the 1/6.6-scale AASHTO bridge deck under the applications of both fixed-point repetitive loading and moving loading presented in the literature. Results are in good agreement both experimental vs. simulated S-N curves and observed vs. simulated crack patterns. Significant contribution of the developed procedure is a series of S-N relations which can now be simulated at any desired levels of cracking in addition to the experimentally derived S-N relation at the failure of the deck slab. This permits the systematic investigation of crack propagation or deterioration of RC bridge deck which is appeared to be useful information for highway agencies to prolong the life of their bridge decks.

Keywords: bridge deck, cracking, deterioration, fatigue, finite-element, moving truck, reinforced concrete

Procedia PDF Downloads 256
15724 Flexible Polyaniline-Based Composite Films for High-Performance Super Capacitors

Authors: A. Khosrozadeh, M. A. Darabi, M. Xing, Q. Wang

Abstract:

Fabrication of a high-performance supercapacitor (SC) using a flexible cellulose-based composite film of polyaniline (PANI), reduced graphene oxide (RGO), and silver nanowires (AgNWs) is reported. The flexibility, high capacitive behaviour, and cyclic stability of the entire device make it a good candidate for wearable SCs. The results show that a capacitance as high as 73.4 F/g (1.6 F/cm2) at a discharge rate of 1.1 A/g is achieved by the device. In addition, the SC demonstrates a power density up to 468.8 W/kg and an energy density up to 5.1 wh/kg. The flexibility of the composite film is attributed to the binding effect of cellulose fibers as well as reinforcing effect of AgNWs. The excellent electrochemical performance of the device is found to be owing to the synergistic effect between PANI/RGO/AgNWs ternary in a cushiony cellulose matrix and porous structure of the composite.

Keywords: cellulose, polyaniline, reduced graphene oxide, silver, super capacitor

Procedia PDF Downloads 427
15723 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms

Authors: Saurav S. Rath, Birendra K. David

Abstract:

Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.

Keywords: computational fluid dynamics, morphology, quality-by-design, rheology

Procedia PDF Downloads 268
15722 Positive effect of Cu2+ and Ca2+ on the Thermostability of Bambara Groundnut Peroxidase A6, and its Catalytic Efficiency Toward the Oxidation of 3,3,5,5 -Tetramethyl Benzidine

Authors: Yves Mann Elate Lea Mbassi, Marie Solange Evehe Bebandoue, Wilfred Fon Mbacham

Abstract:

Improving the catalytic performance of enzymes has been a long-standing theme of analytical biochemistry research. Induction of peroxidase activity by metals is a common reaction in higher plants. We thought that this increase in peroxidase activity may be due, on the one hand, to the stimulation of the gene expression of these enzymes but also to a modification of their chemical reactivity following the binding of some metal ions on their active site. We tested the effect of some metal salts (MgCl₂, MnCl₂, ZnCl₂, CaCl₂ and CuSO₄) on the activity and thermostability of peroxidase A6, a thermostable peroxidase that we discovered and purified in a previous study. The chromogenic substrate used was 3,3′,5,5′-tetramethylbenzidine. Of all the metals tested for their effect on A6, only magnesium and copper had a significant effect on the activity of the enzyme at room temperature. The Mann-Whitney test shows a slight inhibitory effect of activity by the magnesium salt (P = 0.043), while the activity of the enzyme is 5 times higher in the presence of the copper salt (P = 0.002). Moreover, the thermostability of peroxidase A6 is increased when calcium and copper salts are present. The activity in the presence of CaCl₂ is 8 times higher than the residual activity of the enzyme alone after incubation at 80°C for 10 min and 35 times higher in the presence of CuSO4 under the same conditions. In addition, manganese and zinc salts slightly reduce the thermostability of the enzyme. The activity and structural stability of peroxidase A6 can clearly be activated by Cu₂+, which therefore enhance the oxidation of 3,3′,5,5′-tetramethylbenzidine, which was used in this study as a chromogenic substrate. Ca₂+ likely has a more stabilizing function for the catalytic site.

Keywords: peroxidase activity, copper ions, calcium ions, thermostability

Procedia PDF Downloads 71
15721 The role of Financial Development and Institutional Quality in Promoting Sustainable Development through Tourism Management

Authors: Hashim Zameer

Abstract:

Effective tourism management plays a vital role in promoting sustainability and supporting ecosystems. A common principle that has been in practice over the years is “first pollute and then clean,” indicating countries need financial resources to promote sustainability. Financial development and the tourism management both seems very important to promoting sustainable development. However, without institutional support, it is very difficult to succeed. In this context, it seems prominently significant to explore how institutional quality, tourism development, and financial development could promote sustainable development. In the past, no research explored the role of tourism development in sustainable development. Moreover, the role of financial development, natural resources, and institutional quality in sustainable development is also ignored. In this regard, this paper aims to investigate the role of tourism development, natural resources, financial development, and institutional quality in sustainable development in China. The study used time-series data from 2000–2021 and employed the Bayesian linear regression model because it is suitable for small data sets. The robustness of the findings was checked using a quantile regression approach. The results reveal that an increase in tourism expenditures stimulates the economy, creates jobs, encourages cultural exchange, and supports sustainability initiatives. Moreover, financial development and institution quality have a positive effect on sustainable development. However, reliance on natural resources can result in negative economic, social, and environmental outcomes, highlighting the need for resource diversification and management to reinforce sustainable development. These results highlight the significance of financial development, strong institutions, sustainable tourism, and careful utilization of natural resources for long-term sustainability. The study holds vital insights for policy formulation to promote sustainable tourism.

Keywords: sustainability, tourism development, financial development, institutional quality

Procedia PDF Downloads 79
15720 Analytical Study of the Structural Response to Near-Field Earthquakes

Authors: Isidro Perez, Maryam Nazari

Abstract:

Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.

Keywords: near-field, pulse, pushover, time-history

Procedia PDF Downloads 146
15719 The Effect of Applying Surgical Safety Checklist on Surgical Team’s Knowledge and Performance in Operating Room

Authors: Soheir Weheida, Amal E. Shehata, Samira E. Aboalizm

Abstract:

The aim of this study was to examine the effect of surgical safety checklist on surgical team’s knowledge and performance in operating room. Subjects: A convenience sample 151 (48 head nurse, 45 nurse, 37 surgeon and 21 anesthesiologist) which available in operating room at two different hospitals was included in the study. Setting: The study was carried out at operating room in Menoufia University and Shebin Elkom Teaching Hospitals, Egypt. Tools: I: Surgical safety: Surgical team knowledge assessment structure interview schedule. II: WHO surgical safety observational Checklist. III: Post Surgery Culture Survey scale. Results: There was statistical significant improvement of knowledge mean score and performance about surgical safety especially in post and follow up than pre intervention, before patients entering the operating, before induction of anesthesia, skin incision and post skin closure and before patient leaves operating room, P values (P < 0.001). Improvement of communication post intervention than pre intervention between surgical team’s (4.74 ± 0.540). About two thirds (73.5 %) of studied sample strongly agreed on surgical safety in operating room. Conclusions: Implementation of surgical safety checklist has a positive effect on improving knowledge, performance and communication between surgical teams and these seems to have a positive effect on improve patient safety in the operating room.

Keywords: knowledge, operating room, performance, surgical safety checklist

Procedia PDF Downloads 334
15718 Assessment of Bio-Control Quality of Ethanolic Extracts of Some Tropical Plants on Fruit Rot Pathogens of Pineapple Fruits in Ado Ekiti

Authors: J. Y. Ijato, A. Adewumi, H. O Yakubu, O. O. Olajide, B. O. Ojo, B. A. Adanikin

Abstract:

Post-harvest fruit rot pathogens are one of the major factors that are responsible for food security challenges in developing countries like Nigeria. These pathogens also cause fruit food poisoning. Biocidal effects of ethanolic extracts of Khaya grandifoliola, Hyptis suaveolens, Zingiber officinale, Calophyllum inophyllum, Datura stramonium on the mycelia growth of fungal rot pathogens of pineapple fruit was investigated, the ethanolic extracts of these test plants exhibited high significant inhibitory effects on the rot pathogens, the highest ethanolic extract inhibition of Zingiber officinale was on Aspergillus flavus (38.40%) at 1.0g/ml while the least inhibitory effect was on Aspergillus fumigatus (23.10%) at 1.0g/ml, the highest ethanol extract inhibition of Datura stramonium was on Aspergillus tubingensis (24.00%) at 1.0g/ml while the least inhibitory effect was 10.00% on Colletotrichum fruticola at 1.0g/ml, the highest ethanol extract inhibition of Calophyllum inophyllum was on Trichoderma harzianum (18.50%) at 1.0g/ml while the least inhibitory effect was on Aspergillus flavus (15.00%) at 1.0g/ml, the highest ethanol extract inhibition of Hyptis suaveolens was on Aspergillus fumigatus (35.00%) at 1.0g/ml while the least inhibitory effect was on Aspergillus niger (20.00%) at 1.0g/ml, the highest ethanol extract inhibition of Khaya grandifoliola was on Aspergillus flavus (35.00%) at 1.00g/ml while the least inhibitory effect was on Aspergillus fumigates (22.00%) at 1.0g/ml, the antifungal capacity of these test plant extracts on rot causing fungi on pineapple fruit reveals the possibility of their use by farmers and fruit traders as alternative to chemical fungicide that portends great threat to human and environmental health.

Keywords: fruit rot, pathogens, plant extracts, pineapple, food poisoning

Procedia PDF Downloads 108
15717 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations

Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood

Abstract:

A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.

Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange

Procedia PDF Downloads 320