Search results for: hybrid capture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2942

Search results for: hybrid capture

1322 Forecasting Future Demand for Energy Efficient Vehicles: A Review of Methodological Approaches

Authors: Dimitrios I. Tselentis, Simon P. Washington

Abstract:

Considerable literature has been focused over the last few decades on forecasting the consumer demand of Energy Efficient Vehicles (EEVs). These methodological issues range from how to capture recent purchase decisions in revealed choice studies and how to set up experiments in stated preference (SP) studies, and choice of analysis method for analyzing such data. This paper reviews the plethora of published studies on the field of forecasting demand of EEVs since 1980, and provides a review and annotated bibliography of that literature as it pertains to this particular demand forecasting problem. This detailed review addresses the literature not only to Transportation studies, but specifically to the problem and methodologies around forecasting to the time horizons of planning studies which may represent 10 to 20 year forecasts. The objectives of the paper are to identify where existing gaps in literature exist and to articulate where promising methodologies might guide longer term forecasting. One of the key findings of this review is that there are many common techniques used both in the field of new product demand forecasting and the field of predicting future demand for EEV. Apart from SP and RP methods, some of these new techniques that have emerged in the literature in the last few decades are survey related approaches, product diffusion models, time-series modelling, computational intelligence models and other holistic approaches.

Keywords: demand forecasting, Energy Efficient Vehicles (EEVs), forecasting methodologies review, methodological approaches

Procedia PDF Downloads 489
1321 Contextual Senses of Ambiguous Words Based on Cognitive Semantics

Authors: Madhavi

Abstract:

All linguistic units are context-dependent. They occur in particular settings, from which they derive much of their import, and are recognized by speakers as distinct entities only through a process of abstraction. Most of the words have several concepts associated with them and convey a number of meanings in different contexts in any language. For instance, there are different uses of the word good as an adjective from English. The adjective good expresses many senses like (1) ‘high quality of someone or something’ (2) ‘efficient’ (3) ‘virtuous’ (4) ‘reliable’ etc. These senses will be analyzed by using cognitive semantics framework. The context has the power to insulate one meaning from all the other meanings in communication. This paper will provide a cognitive semantic analysis. The basic tenet of cognitive semantics is the sense of a word is the way we conceptualize it. Our conceptualization is based on the physical experience we go through. Cognitive semantics tries to capture this conceptualization in terms of some categories like schema, frame, and domain. Cognitive semantics is a subfield of cognitive linguistics. Cognitive linguistics studies the language creation, learning, and usage by the reference to human cognition. The semantic structure is conceptual structure which is related to the concepts which are the elements of reason and constitute the meanings of words and linguistic expressions. Cognitive semantics studies how our mind works for the meaning of any word and how it perceives meaning from the environment through senses and works to map with the knowledge which already exists in our mind through experience. In the present paper, the senses are further classified into some categories.

Keywords: cognitive, contexts, semantics, senses

Procedia PDF Downloads 219
1320 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry

Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn

Abstract:

The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.

Keywords: growth, partnership, selection criteria, value chain

Procedia PDF Downloads 133
1319 Hybrid Model for Measuring the Hedge Strategy in Exchange Risk in Information Technology Industry

Authors: Yi-Hsien Wang, Fu-Ju Yang, Hwa-Rong Shen, Rui-Lin Tseng

Abstract:

The business is notably related to the market risk according to the increase of liberalization of financial markets. Hence, the company usually utilized high financial leverage of derivatives to hedge the risk. When the company choose different hedging instruments to face a variety of exchange rate risk, we employ the Multinomial Logistic-AHP to analyze the impact of various derivatives. Hence, the research summarized the literature on relevant factors affecting managers selected exchange rate hedging instruments, using Multinomial Logistic Model and and further integrate AHP. Using Experts’ Questionnaires can test multi-level selection and hedging effect of different hedging instruments in order to calculate the hedging instruments and the multi-level factors of weights to understand the gap between the empirical results and practical operation. Finally, the Multinomial Logistic-AHP Model will sort the weights to analyze. The research findings can be a basis reference for investors in decision-making.

Keywords: exchange rate risk, derivatives, hedge, multinomial logistic-AHP

Procedia PDF Downloads 442
1318 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 246
1317 Hybrid Conductive Polymer Composites: Effect of Mixed Fillers and Polymer Blends on Pyroresistive Properties

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

High-density polyethylene (HDPE) filled with silver coated glass flakes (5µm) was investigated and the effect on PTC by addition of a second filler (100µm silver coated glass flake) or matrix (polypropylene elastomer) to the composite were examined. The addition of the secondary filler promoted the electrical properties of the composite. The bigger flakes acted like a bridge between the small flakes and this helped to enhance the electrical properties. The PTC behaviour of the composite was also improved by the addition of the bigger flakes due to the increase in separation distance between particles caused by the bigger flakes. Addition of small amount of polypropylene elastomer enhanced not only PTC effect but also improved substantially the flexibility of the composite as well as reduces the overall filler content. SEM images showed that the fillers were dispersed in the HDPE phase.

Keywords: positive temperature coefficient, conductive polymer composite, electrical conductivity, high density polyethylene

Procedia PDF Downloads 471
1316 New Product Development Typologies: An Analysis of Publications and Citations between 1992 and 2012

Authors: Ana Paula Vilas Boas Viveiros Lopes, Marly Monteiro de Carvalho

Abstract:

The new product development for decades has favored companies that can put their products to market quickly and efficiently, providing sustainable competitive advantage difficult to be achieved by their competitors. This paper presents the outcomes of a systematic review of the literature relating to new product development that was published between 1992 and 2012. A hybrid methodological approach that combines bibliometrics, content analysis and semantic analysis was applied. The review discusses the publication patterns, focusing on aspects related to scientific collaboration. The results show that the main academic journal that discusses this theme is “Journal of Product Innovation Management”. Although the first paper relating to this theme was published in 1992, the number of publications on the subject only began to increase substantially in 1999. Most of the studies reviewed in this paper applied qualitative research methods, indicating that most of the research on the theme is still in an exploratory phase.

Keywords: project type, project typology, new product development, sustainable competitive advantage

Procedia PDF Downloads 448
1315 Correlation Test of Psychomotor Vigilance Test Fatigue Scores on Sleep Quality at Home in Oil and Gas Tanker Driver: A Diagnostic Study

Authors: Pandega Gama Mahardika, Muhammad Rifki Al Iksan, Datuk Fachrul Razy

Abstract:

Oil And Gas Tanker Driver is a high-risk jobdesc. drivers drive with sleep circadian rhythm disturbances. Therefore, FAMOUS (Fatigue Management Online Ultimate System) conducted a diagnostic test on the effectiveness and accuracy of the Psychomotor vigilance test (PVT) in the field to capture the fatigue level of Oil And Gas Tanker Driver. Fatigue examination with the PVP method for 3 minutes using the Pertamina FAMOUS system (Fatigue Management Online Ultimate System). The research sample was Oil And Gas Tanker Driver Elnusa petrofin drivers as many as 2205 people. PVT is categorical data that states a driver has a low or high fatigue level. The quality of sleep at home was recorded by filling in a score of 1 = not well, 2 = not well, 3 = well, per person. A total of 1852 (84%) driver had a low fatigue level, while 353 (16%) driver had a high fatigue level. Poor sleep quality was experienced by 68 (79%) driver who had a high fatigue level. Oil And Gas Tanker Driver who slept soundly at home as many as 1804 (87%) had a low fatigue level. The correlation coefficient of sleep quality home and fatigue level is significant because it shows a probability value of 0.00 (p <5%). Fatigue level can be diagnosed through examining sleep quality, using FAMOUS Program for occupational medicine, particularly in the oil and gas sector.

Keywords: psychomotor vigilance test, fatigue, sleep, oil and gas tanker driver drivers, pertamina FAMOUS

Procedia PDF Downloads 91
1314 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia

Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca

Abstract:

This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.

Keywords: transshipment model, mixed integer programming, saving algorithm, dry freight transportation

Procedia PDF Downloads 230
1313 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland

Authors: Ahmed Aisa, Tariq Iqbal

Abstract:

This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.

Keywords: water heating, thermal storage, capital cost solar, consumption

Procedia PDF Downloads 431
1312 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 337
1311 A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest

Authors: Amri Yusoff, Shahrizuan Shafiril, Ashardi Abas, Norma Che Yusoff

Abstract:

Nowadays, illegal logging has been causing much effect to our forest. Some of it causes a flash flood, avalanche, global warming, and etc. This comprehensibly makes us wonder why, what, and who has made it happened. Often, it already has been too late after we have known the cause of it. Even the Malaysian Royal Belum forest has not been spared from land clearing or illegal activity by the natives although this area has been gazetted as a protected area preserved for future generations. Furthermore, because of its sizeable and wide area, these illegal activities are difficult to monitor and to maintain. A critical action must be called upon to prevent all of these unhealthy activities from recurrence. Therefore, a remote monitoring device must be developed in order to capture critical real-time data such as temperature, humidity, gaseous, fire, and rain detection which indicates the current and preserved natural state and habitat in the forest. Besides, this device location can be detected via GPS by showing the latitudes and longitudes of its current location and then to be transmitted by SMS via GSM system. All of its readings will be sent in real-time for data management and analysis. This result will be benefited to the monitoring bodies or relevant authority in keeping the forest in the natural habitat. Furthermore, this research is to gather a unified data and then will be analysed for its comparison with an existing method.

Keywords: remote monitoring system, forest data, GSM, GPS, wireless sensor

Procedia PDF Downloads 417
1310 A Comparative Analysis of Courtship among Non-Mainstream Gays and Lesbians

Authors: Marian Ubaldo, Venise Gonzales, Aileen Lovendino

Abstract:

In response to an identified need in the psychological literature for current research on topics related to same-sex lived experiences, the study aims to give knowledge about Non-mainstream Gay and Non-mainstream Lesbian, or those homosexuals who do not conform with norms, in relation to courtship than to focus on heterosexuals’ courtship. Moreover, the aim of this study is to explore the experience of courtship as it is mediated by the personal meanings that Non-mainstream Homosexuals attribute to it. Also, a comparison of courtship between Non-mainstream Gays and Non-mainstream Lesbians covers the study. A total of ten self-identified Non-mainstream gay and lesbian participated in the study and was interviewed with an open ended question. Interpretative Phenomenological Analysis was used in the study to capture the quality and texture of individual lived experiences. The results revealed similarities and differences in the lived experiences of Non-mainstream Gays and Lesbians when compared. The research findings have found that the research participants lived experiences in relation with Courtship are somehow similar and only differ in terms of sexual attraction. Non-mainstream Gays tend to follow a more sexual dating script while Non-mainstream Lesbians builds relationship through friendship or follows a ‘friendship’ script. Findings were compared with literature on dating and relationships with a large population of Gays and Lesbians to identify points of consistency and inconsistency. The implication of the results and recommendation for future researcher were given.

Keywords: non-mainstream gays, non-mainstream lesbian, courtship, heteronormativity, dating script

Procedia PDF Downloads 181
1309 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 134
1308 Climate Change and Its Impact on Water Security and Health in Coastal Community: A Gender Outlook

Authors: Soorya Vennila

Abstract:

The present study answers the questions; how does climate change affect the water security in drought prone Ramanathapuram district? and what has water insecurity done to the health of the coastal community? The study area chosen is Devipattinam in Ramanathapuram district. Climate change evidentially wreaked havoc on the community with saltwater intrusion, water quality degradation, water scarcity and its eventual economic, social like power inequality within family and community and health hazards. The climatological data such as rainfall, minimum temperature and maximum temperature were statistically analyzed for trend using Mann-Kendall test. The test was conducted for 14 years (1989-2002) of rainfall data, maximum and minimum temperature and the data were statistically analyzed. At the outset, the water quality samples were collected from Devipattinam to test its physical and chemical parameters and their spatial variation. The results were derived as shown in ARC GIS. Using the water quality test water quality index were framed. And finally, key Informant interview, questionnaire were conducted to capture the gender perception and problem. The data collected were thereafter interpreted using SPSS software for recommendations and suggestions to overcome water scarcity and health problems.

Keywords: health, watersecurity, water quality, climate change

Procedia PDF Downloads 78
1307 Evaluation Framework for Investments in Rail Infrastructure Projects

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Transport infrastructures are high-cost, long-term investments that serve as vital foundations for the operation of a region or nation and are essential to a country’s or business’s economic development and prosperity, by improving well-being and generating jobs and income. The development of appropriate financing options is of key importance in the decision making process in order develop viable transport infrastructures. The development of transport infrastructure has increasingly been shifting toward alternative methods of project financing such as Public Private Partnership (PPPs) and hybrid forms. In this paper, a methodological decision-making framework based on the evaluation of the financial viability of transportation infrastructure for different financial schemes is presented. The framework leads to an assessment of the financial viability which can be achieved by performing various financing scenarios analyses. To illustrate the application of the proposed methodology, a case study of rail transport infrastructure financing scenario analysis in Greece is developed.

Keywords: rail transport infrastructure, financial viability, scenario analysis, rail project feasibility

Procedia PDF Downloads 278
1306 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber

Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik

Abstract:

Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150 °C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150 °C to 40 °C. The pressure drop was increased with increasing of a liquid-gas ratio, but not as much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.

Keywords: desulphurization, absorption, flue gas, modeling

Procedia PDF Downloads 399
1305 Innovative Tool for Improving Teaching and Learning

Authors: Izharul Haq

Abstract:

Every one of us seek to aspire to gain quality education. The biggest stake holders are students who labor through years acquiring knowledge and skill to help them prepare for their career. Parents spend a fortune on their children’s education. Companies spend billions of dollars to enhance standards by developing new education products and services. Quality education is the golden key to a long lasting prosperity for the individual and the nation. But unfortunately, education standards are continuously deteriorating and it has become a global phenomenon. Unfortunately, teaching is often described as a ‘popularity contest’ and those teachers who are usually popular with students are often those who compromise teaching to appease students. Such teachers also ‘teach-to-the-test’ ensuring high test scores. Such teachers, hence, receive good student rating. Teachers who are conscientious, rigorous and thorough are often the victims of good appraisal. Government and private organizations are spending billions of dollars trying to capture the characteristics of a good teacher. But the results are still vague and inconclusive. At present there is no objective way to measure teaching effectiveness. In this paper we present an innovative method to objectively measure teaching effectiveness using a new teaching tool (TSquare). The TSquare tool used in the study is practical, easy to use, cost effective and requires no special equipment to implement. Hence it has a global appeal for poor and the rich countries alike.

Keywords: measuring teaching effectiveness, quality in education, student learning, teaching styles

Procedia PDF Downloads 296
1304 An Inviscid Compressible Flow Solver Based on Unstructured OpenFOAM Mesh Format

Authors: Utkan Caliskan

Abstract:

Two types of numerical codes based on finite volume method are developed in order to solve compressible Euler equations to simulate the flow through forward facing step channel. Both algorithms have AUSM+- up (Advection Upstream Splitting Method) scheme for flux splitting and two-stage Runge-Kutta scheme for time stepping. In this study, the flux calculations differentiate between the algorithm based on OpenFOAM mesh format which is called 'face-based' algorithm and the basic algorithm which is called 'element-based' algorithm. The face-based algorithm avoids redundant flux computations and also is more flexible with hybrid grids. Moreover, some of OpenFOAM’s preprocessing utilities can be used on the mesh. Parallelization of the face based algorithm for which atomic operations are needed due to the shared memory model, is also presented. For several mesh sizes, 2.13x speed up is obtained with face-based approach over the element-based approach.

Keywords: cell centered finite volume method, compressible Euler equations, OpenFOAM mesh format, OpenMP

Procedia PDF Downloads 319
1303 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization

Authors: Zhiyan Meng, Dan Liu, Jintao Meng

Abstract:

Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.

Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model

Procedia PDF Downloads 30
1302 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload

Authors: V. Vicente E. Mujica, Gustavo Gonzalez

Abstract:

The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.

Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation

Procedia PDF Downloads 271
1301 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant

Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu

Abstract:

The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.

Keywords: air conditioning, solar energy, performance, energy saving

Procedia PDF Downloads 146
1300 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 210
1299 Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells

Authors: Zakaria Ahmed, Khaled Charradi, Sherif M. A. S. Keshk, Radhouane Chtourou

Abstract:

Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes.

Keywords: SPEEK, sepiolite clay, LDH clay, proton exchange membrane

Procedia PDF Downloads 123
1298 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
1297 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
1296 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: nickel doped cobalt sulfide, counter electrodes, dye-sensitized solar cells, quasi-solid state electrolyte, hybrid organic-inorganic materials

Procedia PDF Downloads 760
1295 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector

Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi

Abstract:

In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.

Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture

Procedia PDF Downloads 432
1294 An Approach to Integrated Water Resources Management, a Plan for Action to Climate Change in India

Authors: H. K. Ramaraju

Abstract:

World is in deep trouble and deeper denial. Worse, the denial is now entirely on the side of action. It is well accepted that climate change is a reality. Scientists say we need to cap temperature increases at 2°C to avoid catastrophe, which means capping emissions at 450 ppm .We know global average temperatures have already increased by 0.8°C and there is enough green house gas in the atmosphere to lead to another 0.8°C increase. There is still a window of opportunity, a tiny one, to tackle the crisis. But where is the action? In the 1990’s, when the world did even not understand, let alone accept, the crises, it was more willing to move to tackle climate change. Today we are in reverse in gear. The rich world has realized it is easy to talk big, but tough to take steps to actually reduce emissions. The agreement was that these countries would reduce so that the developing World could increase. Instead, between 1990 and 2006, their carbon dioxide emissions increased by a whopping 14.5 percent, even green countries of Europe are unable to match words with action. Stop deforestation and take a 20 percent advantage in our carbon balance sheet, with out doing anything at home called REDD (reducing emissions from deforestation and forest degradation) and push for carbon capture and storage (CCS) technologies. There are warning signs elsewhere and they need to be read correctly and acted up on , if not the cases like flood –act of nature or manmade disaster. The full length paper orient in proper understanding of the issues and identifying the most appropriate course of action.

Keywords: catastrophe, deforestation, emissions, waste water

Procedia PDF Downloads 287
1293 Integration of Multi Effect Desalination with Solid Oxide Fuel Cell/Gas Turbine Power Cycle

Authors: Mousa Meratizaman, Sina Monadizadeh, Majid Amidpour

Abstract:

One of the most favorable thermal desalination methods used widely today is Multi Effect Desalination. High energy consumption in this method causes coupling it with high temperature power cycle like gas turbine. This combination leads to higher energy efficiency. One of the high temperature power systems which have cogeneration opportunities is Solid Oxide Fuel Cell / Gas Turbine. Integration of Multi Effect Desalination with Solid Oxide Fuel Cell /Gas Turbine power cycle in a range of 300-1000 kW is considered in this article. The exhausted heat of Solid Oxide Fuel Cell /Gas Turbine power cycle is used in Heat Recovery Steam Generator to produce needed motive steam for Desalination unit. Thermodynamic simulation and parametric studies of proposed system are carried out to investigate the system performance.

Keywords: solid oxide fuel cell, thermodynamic simulation, multi effect desalination, gas turbine hybrid cycle

Procedia PDF Downloads 379