Search results for: artificial microRNA approach
13903 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach
Authors: Kristina Pflug, Markus Busch
Abstract:
Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology
Procedia PDF Downloads 12413902 Teachers’ Reactions, Learning, Organizational Support, and Use of Lesson Study for Transformative Assessment
Authors: Melaku Takele Abate, Abbi Lemma Wodajo, Adula Bekele Hunde
Abstract:
This study aimed at exploring mathematics teachers' reactions, learning, school leaders’ support, and use of the Lesson Study for Transformative Assessment (LSforTA) program ideas in practice. The LSforTA program was new, and therefore, a local and grounded approach was needed to examine teachers’ knowledge and skills acquired using LSforTA. So, a design-based research approach was selected to evaluate and refine the LSforTA approach. The results showed that LSforTA increased teachers' knowledge and use of different levels of mathematics assessment tasks. The program positively affected teachers' practices of transformative assessment and enhanced their knowledge and skills in assessing students in a transformative way. The paper concludes how the LSforTA procedures were adapted in response to this evaluation and provides suggestions for future development and research.Keywords: classroom assessment, feedback practices, lesson study, mathematics, design-based research
Procedia PDF Downloads 5513901 A Religious Book Translation by Pragmatic Approach: The Vajrachedika-Prajna-Paramita Sutra
Authors: Yoon-Cheol Park
Abstract:
This research focuses on examining the Chinese character-Korean language translation of the Vajrachedika-prajna-paramita sutra by a pragmatic approach. The background of this research is that there were no previous researches which looked into the Vajrachedika-prajna-paramita translation by pragmatic approach until now. Even though it is composed of conversational structures between Buddha and his disciple unlike other Buddhist sutras, most of its translation could find the traces to have pursued literal translation and still has now overlooked pragmatic elements in it. Accordingly, it is meaningful to examine the messages through speaker and hearer relation and between speaker intention and utterance meaning. Practically, the Vajrachedika-prajna-paramita sutra includes pragmatic elements, such as speech acts, presupposition, conversational implicature, the cooperative principle and politeness. First, speech acts in its sutra text show the translation to reveal obvious performance meanings of language to the target text. And presupposition in their dialogues is conveyed by paraphrasing or substituting abstruse language with easy expressions. Conversational implicature in utterances makes it possible to understand the meanings of holy words by relying on utterance contexts. In particular, relevance results in an increase of readability in the translation owing to previous utterance contexts. Finally, politeness in the target text is conveyed with natural stylistics through the honorific system of the Korean language. These elements mean that the pragmatic approach can function as a useful device in conveying holy words in a specific, practical and direct way depending on utterance contexts. Therefore, we expect that taking a pragmatic approach in translating the Vajrachedika-prajna-paramita sutra will provide a theoretical foundation for seeking better translation methods than the literal translations of the past. And it implies that the translation of Buddhist sutra needs to convey messages by translation methods which take into account the characteristic of sutra text like the Vajrachedika-prajna-paramita.Keywords: buddhist sutra, Chinese character-Korean language translation, pragmatic approach, utterance context
Procedia PDF Downloads 40213900 Towards an Indigenous Language Policy for National Integration
Authors: Odoh Dickson Akpegi
Abstract:
The paper is about the need for an indigenous language in order to meaningfully harness both our human and material resources for the nation’s integration. It then examines the notty issue of the national language question and advocates a piece meal approach in solving the problem. This approach allows for the development and use of local languages in minority areas, especially in Benue State, as a way of preparing them for consideration as possible replacement for English language as Nigeria’s national or official language. Finally, an arrangement to follow to prepare the languages for such competition at the national level is presented.Keywords: indigenous language, English language, official language, National integration
Procedia PDF Downloads 56013899 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach
Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.Keywords: CO2 emissions, performance based design, optimization, sustainable design
Procedia PDF Downloads 40613898 Sustainable Approach in Textile and Apparel Industry: Case Study Applied to a Medium Enterprise
Authors: Maged Kamal
Abstract:
Previous research papers have suggested that enhancing the environmental performance in textiles and apparel industry would affect positively on the overall enterprise competitiveness. However, there is a gap in the literature regarding simplifying the available theory to get it practically implemented with more confidence of the expected results, especially for small and medium enterprises. The aim of this paper is to simplify and best use of the concerned international norms to produce a systematic approach that could be used as a guideline for practical application of the main sustainable principles in medium size textile business. The increasing in efficiency which has been resulted from the implementation of the suggested approach/model originated from reduction in raw materials usage, energy, and water savings, in addition to the risk reduction for the people and the environment. The practical case study has been implemented in a textile factory producing knitted fabrics, readymade garments, dyed and printed fabrics. The results were analyzed to examine the effect of the suggested change on the enterprise profitability.Keywords: apparel industry, environmental management, sustainability, textiles
Procedia PDF Downloads 29013897 Transforming Breast Density Measurement with Artificial Intelligence: Population-Level Insights from BreastScreen NSW
Authors: Douglas Dunn, Ricahrd Walton, Matthew Warner-Smith, Chirag Mistry, Kan Ren, David Roder
Abstract:
Introduction: Breast density is a risk factor for breast cancer, both due to increased fibro glandular tissue that can harbor malignancy and the masking of lesions on mammography. Therefore, evaluation of breast density measurement is useful for risk stratification on an individual and population level. This study investigates the performance of Lunit INSIGHT MMG for automated breast density measurement. We analyze the reliability of Lunit compared to breast radiologists, explore density variations across the BreastScreen NSW population, and examine the impact of breast implants on density measurements. Methods: 15,518 mammograms were utilized for a comparative analysis of intra- and inter-reader reliability between Lunit INSIGHT MMG and breast radiologists. Subsequently, Lunit was used to evaluate 624,113 mammograms for investigation of density variations according to age and birth country, providing insights into diverse population subgroups. Finally, we compared breast density in 4,047 clients with implants to clients without implants, controlling for age and birth country. Results: Inter-reader variability between Lunit and Breast Radiologists weighted kappa coefficient was 0.72 (95%CI 0.71-0.73). Highest breast densities were seen in women with a North-East Asia background, whilst those of Aboriginal background had the lowest density. Across all backgrounds, density was demonstrated to reduce with age, though at different rates according to country of birth. Clients with implants had higher density relative to the age-matched no-implant strata. Conclusion: Lunit INSIGHT MMG demonstrates reasonable inter- and intra-observer reliability for automated breast density measurement. The scale of this study is significantly larger than any previous study assessing breast density due to the ability to process large volumes of data using AI. As a result, it provides valuable insights into population-level density variations. Our findings highlight the influence of age, birth country, and breast implants on density, emphasizing the need for personalized risk assessment and screening approaches. The large-scale and diverse nature of this study enhances the generalisability of our results, offering valuable information for breast cancer screening programs internationally.Keywords: breast cancer, screening, breast density, artificial intelligence, mammography
Procedia PDF Downloads 313896 Integrating Inference, Simulation and Deduction in Molecular Domain Analysis and Synthesis with Peculiar Attention to Drug Discovery
Authors: Diego Liberati
Abstract:
Standard molecular modeling is traditionally done through Schroedinger equations via the help of powerful tools helping to manage them atom by atom, often needing High Performance Computing. Here, a full portfolio of new tools, conjugating statistical inference in the so called eXplainable Artificial Intelligence framework (in the form of Machine Learning of understandable rules) to the more traditional modeling and simulation control theory of mixed dynamic logic hybrid processes, is offered as quite a general purpose even if making an example to a popular chemical physics set of problems.Keywords: understandable rules ML, k-means, PCA, PieceWise Affine Auto Regression with eXogenous input
Procedia PDF Downloads 2913895 Progressive Participatory Observation Applied to Priority Neighbourhoods
Authors: Serge Rohmer
Abstract:
This paper proposes a progressive participatory observation that can be used as a sociological investigation within communities. The usefulness of participant observation in sociological projects is first asserted, particularly in an urban context. Competencies, know-how and interpersonal skills are then explained before to detail the progressive approach, consisting of four levels of observation. The progressive participatory observation is applied to an experimental project to set up a permaculture urban micro-farm with residents of a priority neighbourhood. Feedback on the experiment has identified several key recommendations for implementing the approach.Keywords: participatory observation, observation scale, priority neighbourhood, urban sociology
Procedia PDF Downloads 2613894 Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition
Authors: Zainab A. Bu Sinnah, David I. Graham
Abstract:
The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations.Keywords: Lattice Boltzmann method, single relaxation time, pulsatile flow, moment based boundary condition
Procedia PDF Downloads 23113893 A Socio-Technical Approach to Cyber-Risk Assessment
Authors: Kitty Kioskli, Nineta Polemi
Abstract:
Evaluating the levels of cyber-security risks within an enterprise is most important in protecting its information system, services and all its digital assets against security incidents (e.g. accidents, malicious acts, massive cyber-attacks). The existing risk assessment methodologies (e.g. eBIOS, OCTAVE, CRAMM, NIST-800) adopt a technical approach considering as attack factors only the capability, intention and target of the attacker, and not paying attention to the attacker’s psychological profile and personality traits. In this paper, a socio-technical approach is proposed in cyber risk assessment, in order to achieve more realistic risk estimates by considering the personality traits of the attackers. In particular, based upon principles from investigative psychology and behavioural science, a multi-dimensional, extended, quantifiable model for an attacker’s profile is developed, which becomes an additional factor in the cyber risk level calculation.Keywords: attacker, behavioural models, cyber risk assessment, cybersecurity, human factors, investigative psychology, ISO27001, ISO27005
Procedia PDF Downloads 16513892 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 29213891 A Non-parametric Clustering Approach for Multivariate Geostatistical Data
Authors: Francky Fouedjio
Abstract:
Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.Keywords: clustering, geostatistics, multivariate data, non-parametric
Procedia PDF Downloads 47713890 The Significance of a Well-Defined Systematic Approach in Risk Management for Construction Projects within Oil Industry
Authors: Batool Ismaeel, Umair Farooq, Saad Mushtaq
Abstract:
Construction projects in the oil industry can be very complex, having unknown outcomes and uncertainties that cannot be easily predicted. Each project has its unique risks generated by a number of factors which, if not controlled, will impact the successful completion of the project mainly in terms of schedule, cost, quality, and safety. This paper highlights the historic risks associated with projects in the south and east region of Kuwait Oil Company (KOC) collated from the company’s lessons learned database. Starting from Contract Award through to handover of the project to the Asset owner, the gaps in project execution in terms of managing risk will be brought to discussion and where a well-defined systematic approach in project risk management reflecting many claims, change of scope, exceeding budget, delays in engineering phase as well as in the procurement and fabrication of long lead items should be adopted. This study focuses on a proposed feasible approach in risk management for engineering, procurement and construction (EPC) level projects including the various stakeholders involved in executing the works from International to local contractors and vendors in KOC. The proposed approach covers the areas categorized into organizational, design, procurement, construction, pre-commissioning, commissioning and project management in which the risks are identified and require management and mitigation. With the effective deployment and implementation of the proposed risk management system and the consideration of it as a vital key in achieving the project’s target, the outcomes will be more predictable in the future, and the risk triggers will be managed and controlled. The correct resources can be allocated on a timely basis for the company for avoiding any unpredictable outcomes during the execution of the project. It is recommended in this paper to apply this risk management approach as an integral part of project management and investigate further in the future, the effectiveness of this proposed system for newly awarded projects and compare the same with those projects of similar budget/complexity that have not applied this approach to risk management.Keywords: construction, project completion, risk management, uncertainties
Procedia PDF Downloads 15313889 Supporting Women's Economic Development in Rural Papua New Guinea
Authors: Katja Mikhailovich, Barbara Pamphilon
Abstract:
Farmer training in Papua New Guinea has focused mainly on technology transfer approaches. This has primarily benefited men and often excluded women whose literacy, low education and role in subsistence crops has precluded participation in formal training. The paper discusses an approach that uses both a brokerage model of agricultural extension to link smallholders with private sector agencies and an innovative family team’s approach that aims to support the economic empowerment of women in families and encourages sustainable and gender equitable farming and business practices.Keywords: women, economic development, agriculture, training
Procedia PDF Downloads 39113888 Multiscale Modeling of Damage in Textile Composites
Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese
Abstract:
Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites
Procedia PDF Downloads 35413887 Information and Cooperativity in Fiction: The Pragmatics of David Baboulene’s “Knowledge Gaps”
Authors: Cara DiGirolamo
Abstract:
In his 2017 Ph.D. thesis, script doctor David Baboulene presented a theory of fiction in which differences in the knowledge states between participants in a literary experience, including reader, author, and characters, create many story elements, among them suspense, expectations, subtext, theme, metaphor, and allegory. This theory can be adjusted and modeled by incorporating a formal pragmatic approach that understands narrative as a speech act with a conversational function. This approach requires both the Speaker and the Listener to be understood as participants in the discourse. It also uses theories of cooperativity and the QUD to identify the existence of implicit questions. This approach predicts that what an effective literary narrative must do: provide a conversational context early in the story so the reader can engage with the text as a conversational participant. In addition, this model incorporates schema theory. Schema theory is a cognitive model for learning and processing information about the world and transforming it into functional knowledge. Using this approach can extend the QUD model. Instead of describing conversation as a form of information gathering restricted to question-answer sets, the QUD can include knowledge modeling and understanding as a possible outcome of a conversation. With this model, Baboulene’s “Knowledge Gaps” can provide real insight into storytelling as a conversational move, and extend the QUD to be able to simply and effectively apply to a more diverse set of conversational interactions and also to narrative texts.Keywords: literature, speech acts, QUD, literary theory
Procedia PDF Downloads 813886 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes
Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje
Abstract:
The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR
Procedia PDF Downloads 15813885 Big Classes, Bigger Ambitions: A Participatory Approach to the Multiple-Choice Exam
Authors: Melanie Adrian, Elspeth McCulloch, Emily-Jean Gallant
Abstract:
Resources -financial, physical, and human- are increasingly constrained in higher education. University classes are getting bigger, and the concomitant grading burden on faculty is growing rapidly. Multiple-choice exams are seen by some as one solution to these changes. How much students retain, however, and what their testing experience is, continues to be debated. Are multiple-choice exams serving students well, or are they bearing the burden of these developments? Is there a way to address both the resource constraints and make these types of exams more meaningful? In short, how do we engender evaluation methods for large-scale classes that provide opportunities for heightened student learning and enrichment? The following article lays out a testing approach we have employed in four iterations of the same third-year law class. We base our comments in this paper on our initial observations as well as data gathered from an ethics-approved study looking at student experiences. This testing approach provides students with multiple opportunities for revision (thus increasing chances for long term retention), is both individually and collaboratively driven (thus reflecting the individual effort and group effort) and is automatically graded (thus draining limited institutional resources). We found that overall students appreciated the approach and found it more ‘humane’, that it notably reduced pre-exam and intra-exam stress levels, increased ease, and lowered nervousness.Keywords: exam, higher education, multiple-choice, law
Procedia PDF Downloads 12813884 25 Years of the Neurolinguistic Approach: Origin, Outcomes, Expansion and Current Experiments
Authors: Steeve Mercier, Joan Netten, Olivier Massé
Abstract:
The traditional lack of success of most Canadian students in the regular French program in attaining the ability to communicate spontaneously led to the conceptualization of a modified program. This program, called Intensive French, introduced and evaluated as an experiment in several school districts, formed the basis for the creation of a more effective approach for the development of skills in a second/foreign language and literacy: the Neurolinguistic Approach (NLA).The NLA expresses the major change in the understanding of how communication skills are developed: learning to communicate spontaneously in a second language depends on the reuse of structures in a variety of cognitive situations to express authentic messages rather than on knowledge of the way a language functions. Put differently, it prioritises the acquisition of implicit competence over the learning of grammatical knowledge. This is achieved by the adoption of a literacy-based approach and an increase in intensity of instruction.Besides having strong support empirically from numerous experiments, the NLA has sound theoretical foundation, as it conforms to research in neurolinguistics. The five pedagogical principles that define the approach will be explained, as well as the differences between the NLA and the paradigm on which most current resources and teaching strategies are based. It is now 25 years since the original research occurred. The use of the NLA, as it will be shown, has expanded widely. With some adaptations, it is used for other languages and in other milieus. In Canada, classes are offered in mandarin, Ukrainian, Spanish and Arabic, amongst others. It has also been used in several indigenous communities, such as to restore the use of Mohawk, Cri and Dene. Its use has expanded throughout the world, as in China, Japan, France, Germany, Belgium, Poland, Russia, as well as Mexico. The Intensive French program originally focussed on students in grades 5 or 6 (ages 10 -12); nowadays, the programs based on the approach include adults, particularly immigrants entering new countries. With the increasing interest in inclusion and cultural diversity, there is a demand for language learning amongst pre-school and primary children that can be successfully addressed by the NLA. Other current experiments target trilingual schools and work with Inuit communities of Nunavik in the province of Quebec.Keywords: neuroeducation, neurolinguistic approach, literacy, second language acquisition, plurilingualism, foreign language teaching and learning
Procedia PDF Downloads 7313883 Whether Chaos Theory Could Reconstruct the Ancient Societies
Authors: Zahra Kouzehgari
Abstract:
Since the early emergence of chaos theory in the 1970s in mathematics and physical science, it has increasingly been developed and adapted in social sciences as well. The non-linear and dynamic characteristics of the theory make it a useful conceptual framework to interpret the complex social systems behavior. Regarding chaotic approach principals, sensitivity to initial conditions, dynamic adoption, strange attractors and unpredictability this paper aims to examine whether chaos approach could interpret the ancient social changes. To do this, at first, a brief history of the chaos theory, its development and application in social science as well as the principals making the theory, then its application in archaeological since has been reviewed. The study demonstrates that although based on existing archaeological records reconstruct the whole social system of the human past, the non-linear approaches in studying social complex systems would be of a great help in finding general order of the ancient societies and would enable us to shed light on some of the social phenomena in the human history or to make sense of them.Keywords: archaeology, non-linear approach, chaos theory, ancient social systems
Procedia PDF Downloads 28313882 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.Keywords: CNC machining, six sigma, surface roughness, Taguchi methodology
Procedia PDF Downloads 24213881 Optimization of the Numerical Fracture Mechanics
Authors: H. Hentati, R. Abdelmoula, Li Jia, A. Maalej
Abstract:
In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time.Keywords: fracture mechanics, optimization, variation approach, mechanic
Procedia PDF Downloads 60613880 Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media
Authors: Karen B. Ghazaryan
Abstract:
Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out.Keywords: surface shear waves, magneto-electro-elastic composites, piezoactive crystals, functionally graded elastic materials
Procedia PDF Downloads 21513879 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution
Authors: Nikolay P. Brayanov, Anna V. Stoynova
Abstract:
Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.Keywords: embedded code generation, embedded C code quality, embedded systems, model-based development
Procedia PDF Downloads 24413878 Advancements in AI Training and Education for a Future-Ready Healthcare System
Authors: Shamie Kumar
Abstract:
Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.Keywords: artificial intelligence, training, radiology, education, learning
Procedia PDF Downloads 8513877 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow
Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite
Abstract:
The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms
Procedia PDF Downloads 42013876 Characteristic Function in Estimation of Probability Distribution Moments
Authors: Vladimir S. Timofeev
Abstract:
In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation
Procedia PDF Downloads 50413875 The Impact of Female Education on Fertility: A Natural Experiment from Egypt
Authors: Fatma Romeh, Shiferaw Gurmu
Abstract:
This paper examines the impact of female education on fertility, using the change in length of primary schooling in Egypt in 1988-89 as the source of exogenous variation in schooling. In particular, beginning in 1988, children had to attend primary school for only five years rather than six years. This change was applicable to all individuals born on or after October 1977. Using a nonparametric regression discontinuity approach, we compare education and fertility of women born just before and after October 1977. The results show that female education significantly reduces the number of children born per woman and delays the time until first birth. Applying a robust regression discontinuity approach, however, the impact of education on the number of children is no longer significant. The impact on the timing of first birth remained significant under the robust approach. Each year of female education postponed childbearing by three months, on average.Keywords: Egypt, female education, fertility, robust regression discontinuity
Procedia PDF Downloads 33813874 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic
Procedia PDF Downloads 20