Search results for: 3D smart network composite structures
9767 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5509766 Design and Implementation of Campus Wireless Networking for Sharing Resources in Federal Polytechnic Bauchi, Bauchi State, Nigeria
Authors: Hassan Abubakar
Abstract:
This paper will serve as a guide to good design and implementation of wireless networking for campus institutions in Nigeria. It can be implemented throughout the primary, secondary and tertiary institutions. This paper describe the some technical functions, standard configurations and layouts of the 802.11 wireless LAN(Local Area Network) that can be implemented across the campus network. The paper also touches upon the wireless infrastructure standards involved with enhanced services, such as voice over wireless and wireless guest hotspot. The paper also touch the benefits derived from implementing campus wireless network and share some lights on how to arrive at the success in increasing the performance of wireless and using the campus wireless to share resources like software applications, printer and documents.Keywords: networking, standards, wireless local area network (WLAN), radio frequency (RF), campus
Procedia PDF Downloads 4169765 Node Optimization in Wireless Sensor Network: An Energy Approach
Authors: Y. B. Kirankumar, J. D. Mallapur
Abstract:
Wireless Sensor Network (WSN) is an emerging technology, which has great invention for various low cost applications both for mass public as well as for defence. The wireless sensor communication technology allows random participation of sensor nodes with particular applications to take part in the network, which results in most of the uncovered simulation area, where fewer nodes are located at far distances. The drawback of such network would be that the additional energy is spent by the nodes located in a pattern of dense location, using more number of nodes for a smaller distance of communication adversely in a region with less number of nodes and additional energy is again spent by the source node in order to transmit a packet to neighbours, thereby transmitting the packet to reach the destination. The proposed work is intended to develop Energy Efficient Node Placement Algorithm (EENPA) in order to place the sensor node efficiently in simulated area, where all the nodes are equally located on a radial path to cover maximum area at equidistance. The total energy consumed by each node compared to random placement of nodes is less by having equal burden on fewer nodes of far location, having distributed the nodes in whole of the simulation area. Calculating the network lifetime also proves to be efficient as compared to random placement of nodes, hence increasing the network lifetime, too. Simulation is been carried out in a qualnet simulator, results are obtained on par with random placement of nodes with EENP algorithm.Keywords: energy, WSN, wireless sensor network, energy approach
Procedia PDF Downloads 3129764 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1289763 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.Keywords: policy monitoring, water management, social network, stakeholder, shemiranat
Procedia PDF Downloads 2749762 Exploring Research Trends and Topics in Intervention on Metabolic Syndrome Using Network Analysis
Authors: Lee Soo-Kyoung, Kim Young-Su
Abstract:
This study established a network related to metabolic syndrome intervention by conducting a social network analysis of titles, keywords, and abstracts, and it identified emerging topics of research. It visualized an interconnection between critical keywords and investigated their frequency of appearance to construe the trends in metabolic syndrome intervention measures used in studies conducted over 38 years (1979–2017). It examined a collection of keywords from 8,285 studies using text rank analyzer, NetMiner 4.0. The analysis revealed 5 groups of newly emerging keywords in the research. By examining the relationship between keywords with reference to their betweenness centrality, the following clusters were identified. Thus if new researchers refer to existing trends to establish the subject of their study and the direction of the development of future research on metabolic syndrome intervention can be predicted.Keywords: intervention, metabolic syndrome, network analysis, research, the trend
Procedia PDF Downloads 2019761 Topographic and Thermal Analysis of Plasma Polymer Coated Hybrid Fibers for Composite Applications
Authors: Hande Yavuz, Grégory Girard, Jinbo Bai
Abstract:
Manufacturing of hybrid composites requires particular attention to overcome various critical weaknesses that are originated from poor interfacial compatibility. A large number of parameters have to be considered to optimize the interfacial bond strength either to avoid flaw sensitivity or delamination that occurs in composites. For this reason, surface characterization of reinforcement phase is needed in order to provide necessary data to drive an assessment of fiber-matrix interfacial compatibility prior to fabrication of composite structures. Compared to conventional plasma polymerization processes such as radiofrequency and microwave, dielectric barrier discharge assisted plasma polymerization is a promising process that can be utilized to modify the surface properties of carbon fibers in a continuous manner. Finding the most suitable conditions (e.g., plasma power, plasma duration, precursor proportion) for plasma polymerization of pyrrole in post-discharge region either in the presence or in the absence of p-toluene sulfonic acid monohydrate as well as the characterization of plasma polypyrrole coated fibers are the important aspects of this work. Throughout the current investigation, atomic force microscopy (AFM) and thermogravimetric analysis (TGA) are used to characterize plasma treated hybrid fibers (CNT-grafted Toray T700-12K carbon fibers, referred as T700/CNT). TGA results show the trend in the change of decomposition process of deposited polymer on fibers as a function of temperature up to 900 °C. Within the same period of time, all plasma pyrrole treated samples began to lose weight with relatively fast rate up to 400 °C which suggests the loss of polymeric structures. The weight loss between 300 and 600 °C is attributed to evolution of CO2 due to decomposition of functional groups (e.g. carboxyl compounds). With keeping in mind the surface chemical structure, the higher the amount of carbonyl, alcohols, and ether compounds, the lower the stability of deposited polymer. Thus, the highest weight loss is observed in 1400 W 45 s pyrrole+pTSA.H2O plasma treated sample probably because of the presence of less stable polymer than that of other plasma treated samples. Comparison of the AFM images for untreated and plasma treated samples shows that the surface topography may change on a microscopic scale. The AFM image of 1800 W 45 s treated T700/CNT fiber possesses the most significant increase in roughening compared to untreated T700/CNT fiber. Namely, the fiber surface became rougher with ~3.6 fold that of the T700/CNT fiber. The increase observed in surface roughness compared to untreated T700/CNT fiber may provide more contact points between fiber and matrix due to increased surface area. It is believed to be beneficial for their application as reinforcement in composites.Keywords: hybrid fibers, surface characterization, surface roughness, thermal stability
Procedia PDF Downloads 2339760 Optimal Scheduling of Trains in Complex National Scale Railway Networks
Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna
Abstract:
Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.Keywords: mixed integer programming, optimization, railway network, train scheduling
Procedia PDF Downloads 1589759 Structural, Optical and Electrical Thin-Film Characterization Using Graphite-Bioepoxy Composite Materials
Authors: Anika Zafiah M. Rus, Nur Munirah Abdullah, M. F. L. Abdullah
Abstract:
The fabrication and characterization of composite films of graphite- bioepoxy is described. Free-standing thin films of ~0.1 mm thick are prepared using a simple solution mixing with mass proportion of 7/3 (bioepoxy/graphite) and drop casting at room temperature. Fourier transform infra-red spectroscopy (FTIR) and Ultraviolet-visible (UV-vis) spectrophotometer are performed to evaluate the changes in chemical structure and adsorption spectra arising with the increasing of graphite weight loading (wt.%) into the biopolymer matrix. The morphologic study shows a homogeneously dispersed and strong particle bonding between the graphite and the bioepoxy, with conductivity of the film 103 S/m, confirming the efficiency of the processes.Keywords: absorbance peak, biopolymer, graphite- bioepoxy composites, particle bonding
Procedia PDF Downloads 5169758 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 4039757 Quantifying the Second-Level Digital Divide on Sub-National Level with a Composite Index
Authors: Vladimir Korovkin, Albert Park, Evgeny Kaganer
Abstract:
The paper studies the second-level digital divide (the one defined by the way how digital technology is used in everyday life) between regions of the Russian Federation. The paper offers a systemic review of literature on the measurement of the digital divide; based upon this it suggests a composite Digital Life Index, that captures the complex multi-dimensional character of the phenomenon. The model of the index studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. Regression analysis is used to determine the relative importance of factors like income, human capital, and policy in determining the digital divide. The result of the analysis suggests that the digital divide is driven more by the differences in demand (defined by consumer competencies) than in supply; the role of income is insignificant, and the quality of human capital is the key determinant of the divide. The paper advances the existing methodological literature on the issue and can also inform practical decision-making regarding the strategies of national and regional digital development.Keywords: digital transformation, second-level digital divide, composite index, digital policy, regional development, Russia
Procedia PDF Downloads 1869756 Participation, Network, Women’s Competency, and Government Policy Affecting on Community Development
Authors: Nopsarun Vannasirikul
Abstract:
The purposes of this research paper were to study the current situations of community development, women’s potentials, women’s participation, network, and government policy as well as to study the factors influencing women’s potentials, women’s participation, network, and government policy that have on the community development. The population included the women age of 18 years old who were living in the communities of Bangkok areas. This study was a mix research method of quantitative and qualitative method. A simple random sampling method was utilized to obtain 400 sample groups from 50 districts of Bangkok and to perform data collection by using questionnaire. Also, a purposive sampling method was utilized to obtain 12 informants for an in-depth interview to gain an in-sight information for quantitative method.Keywords: community development, participation, network, women’s right, management
Procedia PDF Downloads 1739755 A Review of In-Vehicle Network for Cloud Connected Vehicle
Authors: Hanbhin Ryu, Ilkwon Yun
Abstract:
Automotive industry targets to provide an improvement in safety and convenience through realizing fully autonomous vehicle. For partially realizing fully automated driving, Current vehicles already feature varieties of advanced driver assistance system (ADAS) for safety and infotainment systems for the driver’s convenience. This paper presents Cloud Connected Vehicle (CCV) which connected vehicles with cloud data center via the access network to control the vehicle for achieving next autonomous driving form and describes its features. This paper also describes the shortcoming of the existing In-Vehicle Network (IVN) to be a next generation IVN of CCV and organize the 802.3 Ethernet, the next generation of IVN, related research issue to verify the feasibility of using Ethernet. At last, this paper refers to additional considerations to adopting Ethernet-based IVN for CCV.Keywords: autonomous vehicle, cloud connected vehicle, ethernet, in-vehicle network
Procedia PDF Downloads 4799754 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 2739753 Rumour Containment Using Monitor Placement and Truth Propagation
Authors: Amrah Maryam
Abstract:
The emergence of online social networks (OSNs) has transformed the way we pursue and share information. On the one hand, OSNs provide great ease for the spreading of positive information while, on the other hand, they may also become a channel for the spreading of malicious rumors and misinformation throughout the social network. Thus, to assure the trustworthiness of OSNs to its users, it is of vital importance to detect the misinformation propagation in the network by placing network monitors. In this paper, we aim to place monitors near the suspected nodes with the intent to limit the diffusion of misinformation in the social network, and then we also detect the most significant nodes in the network for propagating true information in order to minimize the effect of already diffused misinformation. Thus, we initiate two heuristic monitor placement using articulation points and truth propagation using eigenvector centrality. Furthermore, to provide real-time workings of the system, we integrate both the monitor placement and truth propagation entities as well. To signify the effectiveness of the approaches, we have carried out the experiment and evaluation of Stanford datasets of online social networks.Keywords: online social networks, monitor placement, independent cascade model, spread of misinformation
Procedia PDF Downloads 1619752 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data
Authors: Tapan Jain, Davender Singh Saini
Abstract:
Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network
Procedia PDF Downloads 6159751 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method
Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis
Abstract:
Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses
Procedia PDF Downloads 1329750 Inverted Umbrella-type Chiral Non-coplanar Ferrimagnetic Structure in Co(NO₃)₂
Authors: O. Maximova, I. L. Danilovich, E. B. Deeva, K. Y. Bukhteev, A. A. Vorobyova, I. V. Morozov, O. S. Volkova, E. A. Zvereva, I. V. Solovyev, S. A. Nikolaev, D. Phuyal, M. Abdel-Hafiez, Y. C. Wang, J. Y. Lin, J. M. Chen, D. I. Gorbunov, K. Puzniak, B. Lake, A. N. Vasiliev
Abstract:
The low-dimensional magnetic systems tend to reveal exotic spin liquid ground states or form peculiar types of long-range order. Among systems of vivid interest are those characterized by the triangular motif in two dimensions. The realization of either ordered or disordered ground state in a triangular, honeycomb, or kagome lattices is are dictated by the competition of exchange interactions, also being sensitive to anisotropy and the spin value of magnetic ions. While the low-spin Heisenberg systems may arrive at a spin liquid long-range entangled quantum state with emergent gauge structures, the high-spin Ising systems may establish the rigid non-collinear structures. This study presents the case of chiral non-coplanar inverted umbrella-type ferrimagnet formed in cobalt nitrate Co(NO₃)₂ below TKeywords: chiral magnetic structures, low dimensional magnetic systems, umbrella-type ferrimagnets, chiral non-coplanar magnetic structures
Procedia PDF Downloads 1259749 Wave Propagation In Functionally Graded Lattice Structures Under Impact Loads
Authors: Mahmood Heshmati, Farhang Daneshmand
Abstract:
Material scientists and engineers have introduced novel materials with complex geometries due to the recent technological advances and promotion of manufacturing methods. Among them, lattice structures with graded architectures denoted by functionally graded porous materials (FGPMs) have been developed to optimize the structural response. FGPMs are achieved by tailoring the size and density of the internal pores in one or more directions that lead to the desired mechanical properties and structural responses. Also, FGPMs provide more flexible transition and the possibility of designing and fabricating structural elements with complex and variable properties. In this paper, wave propagation in lattice structures with functionally graded (FG) porosity is investigated in order to examine the ability of shock absorbing effect. The behavior of FG porous beams with different porosity distributions under impact load and the effects of porosity distribution and porosity content on the wave speed are studied. Important conclusions are made, along with a discussion of the future scope of studies on FGPMs structures.Keywords: functionally graded, porous materials, wave propagation, impact load, finite element
Procedia PDF Downloads 919748 Security Threats on Wireless Sensor Network Protocols
Authors: H. Gorine, M. Ramadan Elmezughi
Abstract:
In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issues of security in wireless sensor networks in an attempt to encourage more research into this area.Keywords: wireless sensor networks, network security, light weight encryption, threats
Procedia PDF Downloads 5279747 Isogeometric Topology Optimization in Cracked Structures Design
Authors: Dongkyu Lee, Thanh Banh Thien, Soomi Shin
Abstract:
In the present study, the isogeometric topology optimization is proposed for cracked structures through using Solid Isotropic Material with Penalization (SIMP) as a design model. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B-spline basis functions. The mathematical formulation of topology optimization problem solving minimum structural compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to strain energy of cracked structure are proposed in terms of design density variables. Numerical examples demonstrate interactions of topology optimization to structures design with cracks.Keywords: topology optimization, isogeometric, NURBS, design
Procedia PDF Downloads 4929746 PBI Based Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells
Authors: Kwangwon Seo, Haksoo Han
Abstract:
Al-Si was synthesized and introduced in poly 2,2’-m-(phenylene)-5,5’-bibenzimidazole (PBI). As a result, a series of five Al-Si/PBI composite (ASPBI) membranes (0, 3, 6, 9, and 12 wt.%) were developed and characterized for application in high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). The chemical and morphological structure of ASPBI membranes were analyzed by Fourier transform infrared spectroscopy, X-ray diffractometer and scanning electron microscopy. According to the doping level test and thermogravimetric analysis, as the concentration of Al-Si increased, the doping level increased up to 475%. Moreover, the proton conductivity, current density at 0.6V, and maximum power density of ASPBI membranes increased up to 0.31 Scm-1, 0.320 Acm-2, and 0.370 Wcm-2, respectively, because the increased concentration of Al-Si allows the membranes to hold more PA. Alternatively, as the amount of Al-Si increased, the tensile strength of PA-doped and -undoped membranes decreased. This was resulted by both excess PA and aggregation, which can cause serious degradation of the membrane and induce cracks. Moreover, the PA-doped and -undoped ASPBI12 had the lowest tensile strength. The improved performances of ASPBI membranes imply that ASPBI membranes are possible candidates for HT-PEMFC applications. However, further studies searching to improve the compatibility between PBI matrix and inorganic and optimize the loading of Al-Si should be performed.Keywords: composite membrane, high temperature polymer electrolyte membrane fuel cell, membrane electrode assembly, polybenzimidazole, polymer electrolyte membrane, proton conductivity
Procedia PDF Downloads 5289745 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers
Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz
Abstract:
In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber
Procedia PDF Downloads 2979744 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization
Authors: Hebberly Ahatlan
Abstract:
The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, IT/OT convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.Keywords: digitalization, IT/OT convergence, semantic interoperability, VPP, energy blockchain
Procedia PDF Downloads 1839743 On the Seismic Response of Collided Structures
Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos
Abstract:
This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.Keywords: nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions
Procedia PDF Downloads 5939742 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3539741 Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field
Authors: M. Kalbac, T. Verhagen, K. Drogowska, J. Vejpravova
Abstract:
One- and two-dimensional carbon nano structures with sp2 hybridization of carbon atoms (single walled carbon nano tubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper, we present a comparative study of graphene and single-wall carbon nano tubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nano structures induced by a strong magnetic field.Keywords: carbon nano structures, magnetic field, raman spectroscopy, spectro-microscopy
Procedia PDF Downloads 2729740 Evaluating Cognition and Movement Coordination of Adolescents with Intellectual Disabilities through Ball Games
Authors: Wann-Yun Shieh, Hsin-Yi Kathy Cheng, Yan-Ying Ju, Yu-Chun Yu, Ya-Cheng Shieh
Abstract:
Adolescents who have intellectual disabilities often demonstrate maladaptive behaviors in their daily activities due to either physical abnormalities or neurological disorders. These adolescents commonly struggle with their cognition and movement coordination when it comes to executing tasks such as throwing or catching objects smoothly, quickly, and gracefully, in contrast to their typically developing peers. Simply measuring movement time and distance doesn't provide a comprehensive view of their performance challenges. In this study, a ball-playing approach was proposed to assess the cognition and movement coordination of adolescents with intellectual disabilities using a smart ball equipped with an embedded inertial sensor. Four distinct ball games were specifically designed for this smart ball: two focusing on lower limb activities (dribbling along a straight line and navigating a zigzag path) and two centered around upper limb tasks (picking up and throwing and catching the ball). The cognition and movement coordination of 25 adolescents with intellectual disabilities (average age 18.36 ± 2.46 years) with that of 25 typically developing adolescents (average age 18.36 ± 0.49 years) were compared in these four tests. The results clearly revealed significant differences in the cognition and movement coordination between the adolescents with intellectual disabilities and the typically developing adolescents. These differences encompassed aspects such as movement speed, hand-eye coordination, and control over objects across all the tests conducted.Keywords: cognition, intellectual disabilities, movement coordination, smart ball
Procedia PDF Downloads 749739 Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M
Authors: A. Yönetken, A. Erol, A. Yakar, G. Peşmen
Abstract:
The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.Keywords: composite, electroless nickel plating, powder metallurgy, sintering
Procedia PDF Downloads 2779738 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor
Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani
Abstract:
The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport
Procedia PDF Downloads 312