Search results for: energy and water consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16925

Search results for: energy and water consumption

695 Computational Approach to Identify Novel Chemotherapeutic Agents against Multiple Sclerosis

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disorder, of the central nervous system (CNS). In the present scenario, the current therapies either do not halt the progression of the disease or have side effects which limit the usage of current Disease Modifying Therapies (DMTs) for a longer period of time. Therefore, keeping the current treatment failure schema, we are focusing on screening novel analogues of the available DMTs that specifically bind and inhibit the Sphingosine1-phosphate receptor1 (S1PR1) thereby hindering the lymphocyte propagation toward CNS. The novel drug-like analogs molecule will decrease the frequency of relapses (recurrence of the symptoms associated with MS) with higher efficacy and lower toxicity to human system. In this study, an integrated approach involving ligand-based virtual screening protocol (Ultrafast Shape Recognition with CREDO Atom Types (USRCAT)) to identify the non-toxic drug like analogs of the approved DMTs were employed. The potency of the drug-like analog molecules to cross the Blood Brain Barrier (BBB) was estimated. Besides, molecular docking and simulation using Auto Dock Vina 1.1.2 and GOLD 3.01 were performed using the X-ray crystal structure of Mtb LprG protein to calculate the affinity and specificity of the analogs with the given LprG protein. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has a higher hypothetical affinity, also has greater negative value. Further, the non-specific ligands were screened out using the structural filter proposed by Baell and Holloway. Based on the USRCAT, Lipinski’s values, toxicity and BBB analysis, the drug-like analogs of fingolimod and BG-12 showed that RTL and CHEMBL1771640, respectively are non-toxic and permeable to BBB. The successful docking and DSX analysis showed that RTL and CHEMBL1771640 could bind to the binding pocket of S1PR1 receptor protein of human with greater affinity than as compared to their parent compound (Fingolimod). In this study, we also found that all the drug-like analogs of the standard MS drugs passed the Bell and Holloway filter.

Keywords: antagonist, binding affinity, chemotherapeutics, drug-like, multiple sclerosis, S1PR1 receptor protein

Procedia PDF Downloads 251
694 A Study of the Prevalence of Trichinellosis in Domestic and Wild Animals for the Region of Sofia, Bulgaria

Authors: Valeria Dilcheva, Svetlozara Petkova, Ivelin Vladov

Abstract:

Nemathodes of the genus Trichinella are zoonotic parasites with a cosmopolitan distribution. More than 100 species of mammals, birds and reptiles are involved in the natural cycle of this nematode. At present, T. spiralis, T. pseudospiralis, and T. britovi have been found in Bulgaria. The existence of natural wildlife and domestic reservoirs of Trichinella spp. can be a serious threat to human health. Three trichinella isolates caused human trichinella infection outbreaks from three regions of Sofia City Province were used for the research: sample No. 1 - Ratus norvegicus, sample No. 2 – domestic pig (Sus scrofa domestica), sample No. 3 - domestic pig (Sus scrofa domestica). Trichinella larvae of the studied species were isolated via digestive method (pepsin, hydrochloric acid, water) at 37ºC by standard procedure and were determined by gender (male and female) based on their morphological characteristics. As a reference trichinella species were used: T. spiralis, T. pseudospiralis, T. nativa and T. britovi. Single male and female larvae of the three isolates were crossed with single male and female larvae of the reference trichinella species as well as reciprocally. As a result of cross-breeding, offspring of muscular larvae with T. spiralis and T. britovi were obtained, while in experiments with T. pseudospiralis and T. nativa, trichinella larvae were not found in the laboratory mice. The results obtained in the control groups indicate that the trichinella larvae used from the isolates and the four trichinella species are infective. Also, the infective ability of the F1 offspring from the successful cross-breeding between isolates and reference species was investigated. Through the data obtained in the experiment was found that isolates No. 1 and No. 2 belong to the species T. spiralis, and isolate No. 3 belongs to the species T. britovi. The results were confirmed by PCR and real-time PCR analysis. Thus the presence and circulation of the species T. spiralis and T. britovi in Bulgaria was confirmed. Probably the rodents (rats) are involved in the distribution of T. spiralis in urban environment. The species T. britovi found in a domestic pig speaks of some contact with wild animals for which T. britovi is characteristic. The probable reason is that a large number of farmers in Bulgaria practice the free-range breeding of domestic pigs. Part of the farmers also used as food for domestic pigs waste products from the game (foxes, jackals, bears, wolves) and probably thus the infection was obtained. The distribution range of trichinella species in Bulgaria is not strictly outlined. It is believed that T. spiralis is most common in domestic animals and T. britovi and T. pseudospiralis are characteristic of wildlife. To answer the question whether wild and synanthropic animals are infected with the same or different trichinella species, which species predominate in nature and what their distribution among different hosts is, further research is required.

Keywords: cross-breeding, Sofia, trichinellosis, Trichinella britovi, Trichinella spiralis

Procedia PDF Downloads 181
693 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 119
692 A Vaccination Program to Control an Outbreak of Acute Hepatitis A among MSM in Taiwan, 2016

Authors: Ying-Jung Hsieh, Angela S. Huang, Chu-Ming Chiu, Yu-Min Chou, Chin-Hui Yang

Abstract:

Background and Objectives: Hepatitis A is primarily acquired by the fecal-oral route through person-to-person contact or ingestion of contaminated food or water. During 2010 to 2014, an average of 83 cases of locally-acquired disease was reported to Taiwan’s notifiable disease system. Taiwan Centers for Disease Control (TCDC) identified an outbreak of acute hepatitis A which began in June 2015. Of the 126 cases reported in 2015, 103 (82%) cases were reported during June–December and 95 cases (92%) of them were male. The average age of all male cases was 31 years (median, 29 years; range, 15–76 years). Among the 95 male cases, 49 (52%) were also infected with HIV, and all reported to have had sex with other men. To control this outbreak, TCDC launched a free hepatitis A vaccination program in January 2016 for close contacts of confirmed hepatitis A cases, including family members, sexual partners, and household contacts. Effect of the vaccination program was evaluated. Methods: All cases of hepatitis A reported to the National Notifiable Disease Surveillance System were included. A case of hepatitis A was defined as a locally-acquired disease in a person who had acute clinical symptoms include fever, malaise, loss of appetite, nausea or abdominal discomfort compatible with hepatitis, and tested positive for anti-HAV IgM during June 2015 to June 2016 in Taiwan. The rate of case accumulation was calculated using a simple regression model. Results: During January–June 2016, there were 466 cases of hepatitis A reported; of the 243 (52%) who were also infected with HIV, 232 (95%) had a history of having sex with men. Of the 346 cases that were followed up, 259 (75%) provided information on contacts but only 14 (5%) of them provided the name of their sexual partners. Among the 602 contacts reported, 349 (58%) were family members, 14 (2%) were sexual partners, and 239 (40%) were other household contacts. Among the 602 contacts eligible for free hepatitis A vaccination, 440 (73%) received the vaccine. There were 87 (25%) cases that refused to disclose their close contacts. The average case accumulation rate during January–June 2016 was 21.7 cases per month, which was 6.8 times compared to the average case accumulation rate during June–December 2015 of 3.2 cases per month. Conclusions: Despite vaccination program aimed to provide free hepatitis A vaccine to close contacts of hepatitis A patients, the outbreak continued and even gained momentum in transmission. Refusal by hepatitis A patients to provide names of their close contacts and rejection of contacts to take the hepatitis A vaccine may have contributed to the poor effect of the program. Targeted vaccination efforts of all MSM may be needed to control the outbreak among this population in the short term. In the long term, universal vaccination program is needed to prevent the infection of hepatitis A.

Keywords: hepatitis A, HIV, men who have sex with men, vaccination

Procedia PDF Downloads 251
691 Long-Term Economic-Ecological Assessment of Optimal Local Heat-Generating Technologies for the German Unrefurbished Residential Building Stock on the Quarter Level

Authors: M. A. Spielmann, L. Schebek

Abstract:

In order to reach the long-term national climate goals of the German government for the building sector, substantial energetic measures have to be executed. Historically, those measures were primarily energetic efficiency measures at the buildings’ shells. Advanced technologies for the on-site generation of heat (or other types of energy) often are not feasible at this small spatial scale of a single building. Therefore, the present approach uses the spatially larger dimension of a quarter. The main focus of the present paper is the long-term economic-ecological assessment of available decentralized heat-generating (CHP power plants and electrical heat pumps) technologies at the quarter level for the German unrefurbished residential buildings. Three distinct terms have to be described methodologically: i) Quarter approach, ii) Economic assessment, iii) Ecological assessment. The quarter approach is used to enable synergies and scaling effects over a single-building. For the present study, generic quarters that are differentiated according to significant parameters concerning their heat demand are used. The core differentiation of those quarters is made by the construction time period of the buildings. The economic assessment as the second crucial parameter is executed with the following structure: Full costs are quantized for each technology combination and quarter. The investment costs are analyzed on an annual basis and are modeled with the acquisition of debt. Annuity loans are assumed. Consequently, for each generic quarter, an optimal technology combination for decentralized heat generation is provided in each year of the temporal boundaries (2016-2050). The ecological assessment elaborates for each technology combination and each quarter a Life Cycle assessment. The measured impact category hereby is GWP 100. The technology combinations for heat production can be therefore compared against each other concerning their long-term climatic impacts. Core results of the approach can be differentiated to an economic and ecological dimension. With an annual resolution, the investment and running costs of different energetic technology combinations are quantified. For each quarter an optimal technology combination for local heat supply and/or energetic refurbishment of the buildings within the quarter is provided. Coherently to the economic assessment, the climatic impacts of the technology combinations are quantized and compared against each other.

Keywords: building sector, economic-ecological assessment, heat, LCA, quarter level

Procedia PDF Downloads 220
690 Thermal Method Production of the Hydroxyapatite from Bone By-Products from Meat Industry

Authors: Agnieszka Sobczak-Kupiec, Dagmara Malina, Klaudia Pluta, Wioletta Florkiewicz, Bozena Tyliszczak

Abstract:

Introduction: Request for compound of phosphorus grows continuously, thus, it is searched for alternative sources of this element. One of these sources could be by-products from meat industry which contain prominent quantity of phosphorus compounds. Hydroxyapatite, which is natural component of animal and human bones, is leading material applied in bone surgery and also in stomatology. This is material, which is biocompatible, bioactive and osteoinductive. Methodology: Hydroxyapatite preparation: As a raw material was applied deproteinized and defatted bone pulp called bone sludge, which was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Hydroxyapatite was received in calcining process in chamber kiln with electric heating in air atmosphere in two stages. In the first stage, material was calcining in temperature 600°C within 3 hours. In the next stage unified material was calcining in three different temperatures (750°C, 850°C and 950°C) keeping material in maximum temperature within 3.0 hours. Bone sludge: Bone sludge was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Pork bones coming from the partition of meat were used as a raw material for the production of the protein hydrolysate. After disintegration, a mixture of bone pulp and water with a small amount of lactic acid was boiled at temperature 130-135°C and under pressure4 bar. After 3-3.5 hours boiled-out bones were separated on a sieve, and the solution of protein-fat hydrolysate got into a decanter, where bone sludge was separated from it. Results of the study: The phase composition was analyzed by roentgenographic method. Hydroxyapatite was the only crystalline phase observed in all the calcining products. XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Conclusion: The researches were shown that phosphorus content is around 12%, whereas, calcium content amounts to 28% on average. The conducted researches on bone-waste calcining at the temperatures of 750-950°C confirmed that thermal utilization of deproteinized bone-waste was possible. X-ray investigations were confirmed that hydroxyapatite is the main component of calcining products, and also XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Contents of calcium and phosphorus were distinctly increased with calcining temperature, whereas contents of phosphorus soluble in acids were decreased. It could be connected with higher crystallization degree of material received in higher temperatures and its stable structure. Acknowledgements: “The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER//037/481/L-5/13/NCBR/2014) for providing financial support to this project”.

Keywords: bone by-products, bone sludge, calcination, hydroxyapatite

Procedia PDF Downloads 283
689 Identification of Phenolic Compounds and Study the Antimicrobial Property of Eleaocarpus Ganitrus Fruits

Authors: Velvizhi Dharmalingam, Rajalaksmi Ramalingam, Rekha Prabhu, Ilavarasan Raju

Abstract:

Background: The use of herbal products for various therapeutic regimens has increased tremendously in the developing countries. Elaeocarpus ganitrus(Rudraksha) is a broad-leaved tree, belonging to the family Elaeocarpaceae found in tropical and subtropical areas. It is popular in an indigenous system of medicine like Ayurveda, Siddha, and Unani. According to Ayurvedic medicine, Rudraksha is used in the managing of blood pressure, asthma, mental disorders, diabetes, gynaecological disorders, neurological disorders such as epilepsy and liver diseases. Objectives: The present study aimed to study the physicochemical parameters of Elaeocarpus ganitrus(fruits) and identify the phenolic compounds (gallic acid, ellagic acid, and chebulinic acid). To estimate the microbial load and the antibacterial activity of extract of Elaeocarpus ganitrus for selective pathogens. Methodology: The dried powdered fruit of Elaeocarpus ganitrus was performed the physicochemical parameters (such as Loss on drying, Alcohol soluble extractive, Water soluble extractive, Total ash and Acid insoluble ash) and pH was measured. The dried coarse powdered fruit of Elaeocarpus ganitrus was extracted successively with hexane, chloroform, ethylacetate and aqueous alcohol by cold percolation method. Identification of phenolic compounds (gallic acid, ellagic acid, chebulinic acid) was done by HPTLC method and confirmed by co-TLC using different solvent system.The successive extracts of Elaeocarpus ganitrus and standards (like gallic acid, ellagic acid, and chebulinic acid) was approximately weighed and made up with alcohol. HPTLC (CAMAG) analysis was performed on a TLC over silica gel 60F254 precoated aluminium plate, layer thickness 0.2 mm (E.Merck, Germany) by using ATS4, Visualizer and Scanner with wavelength at 254 nm, 366 nm and derivatized with different reagents. The microbial load such as total bacterial count, total fungal count, Enterobacteria, Escherichia coli, Salmonella species, Staphylococcus aureus and Pseudomonas aeruginosa by serial dilution method and antibacterial activity of was measured by Kirby bauer method for selective pathogens. Results: The physicochemical parameter of Elaeocarpus ganitrus was studied for standardization of crude drug. Among all the successive extracts were identified with phenolic compounds and Elaeocarpus ganitrus extract having potent antibacterial activity against gram-positive and gram-negative bacteria.

Keywords: antimicrobial activity, Elaeocarpus ganitrus, HPTLC, phenolic compounds

Procedia PDF Downloads 339
688 Multiaxial Fatigue in Thermal Elastohydrodynamic Lubricated Contacts with Asperities and Slip

Authors: Carl-Magnus Everitt, Bo Alfredsson

Abstract:

Contact mechanics and tribology have been combined with fundamental fatigue and fracture mechanics to form the asperity mechanism which supplies an explanation for the surface-initiated rolling contact fatigue damage, called pitting or spalling. The cracks causing the pits initiates at one surface point and thereafter they slowly grow into the material before chipping of a material piece to form the pit. In the current study, the lubrication aspects on fatigue initiation are simulated by passing a single asperity through a thermal elastohydrodynamic lubricated, TEHL, contact. The physics of the lubricant was described with Reynolds equation and the lubricants pressure-viscosity relation was modeled by Roelands equation, formulated to include temperature dependence. A pressure dependent shear limit was incorporated. To capture the full phenomena of the sliding contact the temperature field was resolved through the incorporation of the energy flow. The heat was mainly generated due to shearing of the lubricant and from dry friction where metal contact occurred. The heat was then transported, and conducted, away by the solids and the lubricant. The fatigue damage caused by the asperities was evaluated through Findley’s fatigue criterion. The results show that asperities, in the size of surface roughness found in applications, may cause surface initiated fatigue damage and crack initiation. The simulations also show that the asperities broke through the lubricant in the inlet, causing metal to metal contact with high friction. When the asperities thereafter moved through the contact, the sliding provided the asperities with lubricant releasing the metal contact. The release of metal contact was possible due to the high viscosity the lubricant obtained from the high pressure. The metal contact in the inlet caused higher friction which increased the risk of fatigue damage. Since the metal contact occurred in the inlet it increased the fatigue risk more for asperities subjected to negative slip than positive slip. Therefore the fatigue evaluations showed that the asperities subjected to negative slip yielded higher fatigue stresses than the asperities subjected to positive slip of equal magnitude. This is one explanation for why pitting is more common in the dedendum than the addendum on pinion gear teeth. The simulations produced further validation for the asperity mechanism by showing that asperities cause surface initiated fatigue and crack initiation.

Keywords: fatigue, rolling, sliding, thermal elastohydrodynamic

Procedia PDF Downloads 116
687 Household Climate-Resilience Index Development for the Health Sector in Tanzania: Use of Demographic and Health Surveys Data Linked with Remote Sensing

Authors: Heribert R. Kaijage, Samuel N. A. Codjoe, Simon H. D. Mamuya, Mangi J. Ezekiel

Abstract:

There is strong evidence that climate has changed significantly affecting various sectors including public health. The recommended feasible solution is adopting development trajectories which combine both mitigation and adaptation measures for improving resilience pathways. This approach demands a consideration for complex interactions between climate and social-ecological systems. While other sectors such as agriculture and water have developed climate resilience indices, the public health sector in Tanzania is still lagging behind. The aim of this study was to find out how can we use Demographic and Health Surveys (DHS) linked with Remote Sensing (RS) technology and metrological information as tools to inform climate change resilient development and evaluation for the health sector. Methodological review was conducted whereby a number of studies were content analyzed to find appropriate indicators and indices for climate resilience household and their integration approach. These indicators were critically reviewed, listed, filtered and their sources determined. Preliminary identification and ranking of indicators were conducted using participatory approach of pairwise weighting by selected national stakeholders from meeting/conferences on human health and climate change sciences in Tanzania. DHS datasets were retrieved from Measure Evaluation project, processed and critically analyzed for possible climate change indicators. Other sources for indicators of climate change exposure were also identified. For the purpose of preliminary reporting, operationalization of selected indicators was discussed to produce methodological approach to be used in resilience comparative analysis study. It was found that household climate resilient index depends on the combination of three indices namely Household Adaptive and Mitigation Capacity (HC), Household Health Sensitivity (HHS) and Household Exposure Status (HES). It was also found that, DHS alone cannot complement resilient evaluation unless integrated with other data sources notably flooding data as a measure of vulnerability, remote sensing image of Normalized Vegetation Index (NDVI) and Metrological data (deviation from rainfall pattern). It can be concluded that if these indices retrieved from DHS data sets are computed and scientifically integrated can produce single climate resilience index and resilience maps could be generated at different spatial and time scales to enhance targeted interventions for climate resilient development and evaluations. However, further studies are need to test for the sensitivity of index in resilience comparative analysis among selected regions.

Keywords: climate change, resilience, remote sensing, demographic and health surveys

Procedia PDF Downloads 161
686 Evaluation of Simple, Effective and Affordable Processing Methods to Reduce Phytates in the Legume Seeds Used for Feed Formulations

Authors: N. A. Masevhe, M. Nemukula, S. S. Gololo, K. G. Kgosana

Abstract:

Background and Study Significance: Legume seeds are important in agriculture as they are used for feed formulations due to their nutrient-dense, low-cost, and easy accessibility. Although they are important sources of energy, proteins, carbohydrates, vitamins, and minerals, they contain abundant quantities of anti-nutritive factors that reduce the bioavailability of nutrients, digestibility of proteins, and mineral absorption in livestock. However, the removal of these factors is too costly as it requires expensive state-of-the-art techniques such as high pressure and thermal processing. Basic Methodologies: The aim of the study was to investigate cost-effective methods that can be used to reduce the inherent phytates as putative antinutrients in the legume seeds. The seeds of Arachis hypogaea, Pisum sativum and Vigna radiata L. were subjected to the single processing methods viz raw seeds plus dehulling (R+D), soaking plus dehulling (S+D), ordinary cooking plus dehulling (C+D), infusion plus dehulling (I+D), autoclave plus dehulling (A+D), microwave plus dehulling (M+D) and five combined methods (S+I+D; S+A+D; I+M+D; S+C+D; S+M+D). All the processed seeds were dried, ground into powder, extracted, and analyzed on a microplate reader to determine the percentage of phytates per dry mass of the legume seeds. Phytic acid was used as a positive control, and one-way ANOVA was used to determine the significant differences between the means of the processing methods at a threshold of 0.05. Major Findings: The results of the processing methods showed the percentage yield ranges of 39.1-96%, 67.4-88.8%, and 70.2-93.8% for V. radiata, A. hypogaea and P. sativum, respectively. Though the raw seeds contained the highest contents of phytates that ranged between 0.508 and 0.527%, as expected, the R+D resulted in a slightly lower phytate percentage range of 0.469-0.485%, while other processing methods resulted in phytate contents that were below 0.35%. The M+D and S+M+D methods showed low phytate percentage ranges of 0.276-0.296% and 0.272-0.294%, respectively, where the lowest percentage yield was determined in S+M+D of P. sativum. Furthermore, these results were found to be significantly different (p<0.05). Though phytates cause micronutrient deficits as they chelate important minerals such as calcium, zinc, iron, and magnesium, their reduction may enhance nutrient bioavailability since they cannot be digested by the ruminants. Concluding Statement: Despite the nutritive aspects of the processed legume seeds, which are still in progress, the M+D and S+M+D methods, which significantly reduced the phytates in the investigated legume seeds, may be recommended to the local farmers and feed-producing industries so as to enhance animal health and production at an affordable cost.

Keywords: anti-nutritive factors, extraction, legume seeds, phytate

Procedia PDF Downloads 20
685 Nanoliposomes in Photothermal Therapy: Advancements and Applications

Authors: Mehrnaz Mostafavi

Abstract:

Nanoliposomes, minute lipid-based vesicles at the nano-scale, show promise in the realm of photothermal therapy (PTT). This study presents an extensive overview of nanoliposomes in PTT, exploring their distinct attributes and the significant progress in this therapeutic methodology. The research delves into the fundamental traits of nanoliposomes, emphasizing their adaptability, compatibility with biological systems, and their capacity to encapsulate diverse therapeutic substances. Specifically, it examines the integration of light-absorbing materials, like gold nanoparticles or organic dyes, into nanoliposomal formulations, enabling their efficacy as proficient agents for photothermal treatment Additionally, this paper elucidates the mechanisms involved in nanoliposome-mediated PTT, highlighting their capability to convert light energy into localized heat, facilitating the precise targeting of diseased cells or tissues. This precise regulation of light absorption and heat generation by nanoliposomes presents a non-invasive and precisely focused therapeutic approach, particularly in conditions like cancer. The study explores advancements in nanoliposomal formulations aimed at optimizing PTT outcomes. These advancements include strategies for improved stability, enhanced drug loading, and the targeted delivery of therapeutic agents to specific cells or tissues. Furthermore, the paper discusses multifunctional nanoliposomal systems, integrating imaging components or targeting elements for real-time monitoring and improved accuracy in PTT. Moreover, the review highlights recent preclinical and clinical trials showcasing the effectiveness and safety of nanoliposome-based PTT across various disease models. It also addresses challenges in clinical implementation, such as scalability, regulatory considerations, and long-term safety assessments. In conclusion, this paper underscores the substantial potential of nanoliposomes in advancing PTT as a promising therapeutic approach. Their distinctive characteristics, combined with their precise ability to convert light into heat, offer a tailored and efficient method for treating targeted diseases. The encouraging outcomes from preclinical studies pave the way for further exploration and potential clinical applications of nanoliposome-based PTT.

Keywords: nanoliposomes, photothermal therapy, light absorption, heat conversion, therapeutic agents, targeted delivery, cancer therapy

Procedia PDF Downloads 97
684 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil

Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang

Abstract:

Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.

Keywords: catabolic gene, diesel, diversity, edaphic algae

Procedia PDF Downloads 276
683 Potential Impacts of Maternal Nutrition and Selection for Residual Feed Intake on Metabolism and Fertility Parameters in Angus Bulls

Authors: Aidin Foroutan, David S. Wishart, Leluo L. Guan, Carolyn Fitzsimmons

Abstract:

Maximizing efficiency and growth potential of beef cattle requires not only genetic selection (i.e. residual feed intake (RFI)) but also adequate nutrition throughout all stages of growth and development. Nutrient restriction during gestation has been shown to negatively affect post-natal growth and development as well as fertility of the offspring. This, when combined with RFI may affect progeny traits. This study aims to investigate the impact of selection for divergent genetic potential for RFI and maternal nutrition during early- to mid-gestation, on bull calf traits such as fertility and muscle development using multiple ‘omics’ approaches. Comparisons were made between High-diet vs. Low-diet and between High-RFI vs. Low-RFI animals. An epigenetics experiment on semen samples identified 891 biomarkers associated with growth and development. A gene expression study on Longissimus thoracis muscle, semimembranosus muscle, liver, and testis identified 4 genes associated with muscle development and immunity of which Myocyte enhancer factor 2A [MEF2A; induces myogenesis and control muscle differentiation] was the only differentially expressed gene identified in all four tissues. An initial metabolomics experiment on serum samples using nuclear magnetic resonance (NMR) identified 4 metabolite biomarkers related to energy and protein metabolism. Once all the biomarkers are identified, bioinformatics approaches will be used to create a database covering all the ‘omics’ data collected from this project. This database will be broadened by adding other information obtained from relevant literature reviews. Association analyses with these data sets will be performed to reveal key biological pathways affected by RFI and maternal nutrition. Through these association studies between the genome and metabolome, it is expected that candidate biomarker genes and metabolites for feed efficiency, fertility, and/or muscle development are identified. If these gene/metabolite biomarkers are validated in a larger animal population, they could potentially be used in breeding programs to select superior animals. It is also expected that this work will lead to the development of an online tool that could be used to predict future traits of interest in an animal given its measurable ‘omics’ traits.

Keywords: biomarker, maternal nutrition, omics, residual feed intake

Procedia PDF Downloads 185
682 Design, Construction, Validation And Use Of A Novel Portable Fire Effluent Sampling Analyser

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Current large scale fire tests focus on flammability and heat release measurements. Smoke toxicity isn’t considered despite it being a leading cause of death and injury in unwanted fires. A key reason could be that the practical difficulties associated with quantifying individual toxic components present in a fire effluent often require specialist equipment and expertise. Fire effluent contains a mixture of unreactive and reactive gases, water, organic vapours and particulate matter, which interact with each other. This interferes with the operation of the analytical instrumentation and must be removed without changing the concentration of the target analyte. To mitigate the need for expensive equipment and time-consuming analysis, a portable gas analysis system was designed, constructed and tested for use in large-scale fire tests as a simpler and more robust alternative to online FTIR measurements. The novel equipment aimed to be easily portable and able to run on battery or mains electricity; be able to be calibrated at the test site; be capable of quantifying CO, CO2, O2, HCN, HBr, HCl, NOx and SO2 accurately and reliably; be capable of independent data logging; be capable of automated switchover of 7 bubblers; be able to withstand fire effluents; be simple to operate; allow individual bubbler times to be pre-set; be capable of being controlled remotely. To test the analysers functionality, it was used alongside the ISO/TS 19700 Steady State Tube Furnace (SSTF). A series of tests were conducted to assess the validity of the box analyser measurements and the data logging abilities of the apparatus. PMMA and PA 6.6 were used to assess the validity of the box analyser measurements. The data obtained from the bench-scale assessments showed excellent agreement. Following this, the portable analyser was used to monitor gas concentrations during large-scale testing using the ISO 9705 room corner test. The analyser was set up, calibrated and set to record smoke toxicity measurements in the doorway of the test room. The analyser was successful in operating without manual interference and successfully recorded data for 12 of the 12 tests conducted in the ISO room tests. At the end of each test, the analyser created a data file (formatted as .csv) containing the measured gas concentrations throughout the test, which do not require specialist knowledge to interpret. This validated the portable analyser’s ability to monitor fire effluent without operator intervention on both a bench and large-scale. The portable analyser is a validated and significantly more practical alternative to FTIR, proven to work for large-scale fire testing for quantification of smoke toxicity. The analyser is a cheaper, more accessible option to assess smoke toxicity, mitigating the need for expensive equipment and specialist operators.

Keywords: smoke toxicity, large-scale tests, iso 9705, analyser, novel equipment

Procedia PDF Downloads 71
681 Regional Analysis of Freight Movement by Vehicle Classification

Authors: Katerina Koliou, Scott Parr, Evangelos Kaisar

Abstract:

The surface transportation of freight is particularly vulnerable to storm and hurricane disasters, while at the same time, it is the primary transportation mode for delivering medical supplies, fuel, water, and other essential goods. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The research investigation used Florida's statewide continuous-count station traffic volumes, where then compared between years, to identify locations where traffic was moving differently during the evacuation. The data was then used to identify days on which traffic was significantly different between years. While the literature on auto-based evacuations is extensive, the consideration of freight travel is lacking. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The goal of this research was to investigate the movement of vehicles by classification, with an emphasis on freight during two major evacuation events: hurricanes Irma (2017) and Michael (2018). The methodology of the research was divided into three phases: data collection and management, spatial analysis, and temporal comparisons. Data collection and management obtained continuous-co station data from the state of Florida for both 2017 and 2018 by vehicle classification. The data was then processed into a manageable format. The second phase used geographic information systems (GIS) to display where and when traffic varied across the state. The third and final phase was a quantitative investigation into which vehicle classifications were statistically different and on which dates statewide. This phase used a two-sample, two-tailed t-test to compare sensor volume by classification on similar days between years. Overall, increases in freight movement between years prevented a more precise paired analysis. This research sought to identify where and when different classes of vehicles were traveling leading up to hurricane landfall and post-storm reentry. Of the more significant findings, the research results showed that commercial-use vehicles may have underutilized rest areas during the evacuation, or perhaps these rest areas were closed. This may suggest that truckers are driving longer distances and possibly longer hours before hurricanes. Another significant finding of this research was that changes in traffic patterns for commercial-use vehicles occurred earlier and lasted longer than changes for personal-use vehicles. This finding suggests that commercial vehicles are perhaps evacuating in a fashion different from personal use vehicles. This paper may serve as the foundation for future research into commercial travel during evacuations and explore additional factors that may influence freight movements during evacuations.

Keywords: evacuation, freight, travel time, evacuation

Procedia PDF Downloads 63
680 A Prediction Method of Pollutants Distribution Pattern: Flare Motion Using Computational Fluid Dynamics (CFD) Fluent Model with Weather Research Forecast Input Model during Transition Season

Authors: Benedictus Asriparusa, Lathifah Al Hakimi, Aulia Husada

Abstract:

A large amount of energy is being wasted by the release of natural gas associated with the oil industry. This release interrupts the environment particularly atmosphere layer condition globally which contributes to global warming impact. This research presents an overview of the methods employed by researchers in PT. Chevron Pacific Indonesia in the Minas area to determine a new prediction method of measuring and reducing gas flaring and its emission. The method emphasizes advanced research which involved analytical studies, numerical studies, modeling, and computer simulations, amongst other techniques. A flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process releases emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the chemical composition of air and environment around the boundary layer mainly during transition season. Transition season in Indonesia is absolutely very difficult condition to predict its pattern caused by the difference of two air mass conditions. This paper research focused on transition season in 2013. A simulation to create the new pattern of the pollutants distribution is needed. This paper has outlines trends in gas flaring modeling and current developments to predict the dominant variables in the pollutants distribution. A Fluent model is used to simulate the distribution of pollutants gas coming out of the stack, whereas WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. Based on the running model, the most influence factor was wind speed. The goal of the simulation is to predict the new pattern based on the time of fastest wind and slowest wind occurs for pollutants distribution. According to the simulation results, it can be seen that the fastest wind (last of March) moves pollutants in a horizontal direction and the slowest wind (middle of May) moves pollutants vertically. Besides, the design of flare stack in compliance according to EPA Oil and Gas Facility Stack Parameters likely shows pollutants concentration remains on the under threshold NAAQS (National Ambient Air Quality Standards).

Keywords: flare motion, new prediction, pollutants distribution, transition season, WRF model

Procedia PDF Downloads 543
679 Assessment of Biofuel Feedstock Production on Arkansas State Highway Transportation Department's Marginalized Lands

Authors: Ross J. Maestas

Abstract:

Biofuels are derived from multiple renewable bioenergy feedstocks including animal fats, wood, starchy grains, and oil seeds. Transportation agencies have considered growing the latter two on underutilized and nontraditional lands that they manage, such as in the Right of Way (ROW), abandoned weigh stations, and at maintenance yards. These crops provide the opportunity to generate revenue or supplement fuel once converted and offer a solution to increasing fuel costs and instability by creating a ‘home-grown’ alternative. Biofuels are non-toxic, biodegradable, and emit less Green House Gasses (GHG) than fossil fuels, therefore allowing agencies to meet sustainability goals and regulations. Furthermore, they enable land managers to achieve soil erosion and roadside aesthetic strategies. The research sought to understand if the cultivation of a biofuel feedstock within the Arkansas State Highway Transportation Department’s (AHTD) managed and marginalized lands is feasible by identifying potential land areas and crops. To determine potential plots the parcel data was downloaded from Arkansas’s GIS office. ArcGIS was used to query the data for all variations of the names of property owned by AHTD and a KML file was created that identifies the queried parcel data in Google Earth. Furthermore, biofuel refineries in the state were identified to optimize the harvest to transesterification process. Agricultural data was collected from federal and state agencies and universities to assess various oil seed crops suitable for conversion and suited to grow in Arkansas’s climate and ROW conditions. Research data determined that soybean is the best adapted biofuel feedstock for Arkansas with camelina and canola showing possibilities as well. Agriculture is Arkansas’s largest industry and soybean is grown in over half of the state’s counties. Successful cultivation of a feedstock in the aforementioned areas could potentially offer significant employment opportunity for which the skilled farmers already exist. Based on compiled data, AHTD manages 21,489 acres of marginalized land. The result of the feasibility assessment offer suggestions and guidance should AHTD decide to further investigate this type of initiative.

Keywords: Arkansas highways, biofuels, renewable energy initiative, marginalized lands

Procedia PDF Downloads 321
678 Comparison of the Effect of Nano Calcium Carbonate and CaCO₃ on Egg Production, Egg Traits and Calcium Retention in Laying Japanese Quail

Authors: Farhad Ahmadi, Hammed Kimiaee

Abstract:

Context: This research study focuses on the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. The study aims to determine the impact of nano calcium carbonate (NCC) and calcium carbonate (CC) on these factors. Research Aim: The main objective of this research is to investigate the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. Specifically, the study aims to compare the effects of NCC and CC on these parameters. Methodology: The research was conducted using a total of 280 laying quail with an average age of 8 weeks. The quails were randomly distributed in a completely randomized design (CRD) with 7 treatments, 4 replications, and 10 quails in each pen. The study lasted for 90 days. The experimental diets included a control group (T1) with a basal diet consisting of 3.17% CaCO₃, and other groups supplemented with different levels (0.5%, 0.1%, and 0.15%) of either calcium carbonate (CC) or nano calcium carbonate (NCC). The quails had free access to water and feed throughout the study period. Findings: The results of the study showed that NCC at the levels of 0.1% and 0.15% (T6 and T7) improved eggshell thickness, shell thickness, and shell breaking strength compared to the control group. Although not statistically significant, there was an increasing trend in quail egg production and calcium retention in the calcareous shell of the egg in birds that consumed the experimental diets containing different levels of NCC compared to the control and other treatment groups. Theoretical Importance: This research contributes to our understanding of the effect of NCC and CC on egg production, egg traits, and calcium retention in laying Japanese quail. It highlights the potential benefits of using NCC as a calcium source in quail diets, specifically in improving the quantity and quality of eggs and calcium retention. Data Collection and Analysis Procedures: Quail egg production was recorded monthly for each treatment group. At the end of the study, a total of 40 eggs (10 eggs/replicate) from each treatment group were randomly selected for analysis. Parameters such as eggshell thickness, shell thickness, shell breaking strength, and calcium retention were measured. Statistical analysis was performed to compare the results between the different treatment groups. Questions Addressed: This research aimed to answer the following questions: What is the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail? How does nano calcium carbonate compare to calcium carbonate in terms of these parameters? Conclusion: In conclusion, this study suggests that NCC at the levels of 0.1% and 0.15% can improve the quantity and quality of eggs and calcium retention in laying Japanese quail. These findings highlight the potential benefits of using NCC as a calcium source in quail diets. Further research could be conducted to explore the mechanisms behind these improvements and optimize the dosage of NCC for maximum effect.

Keywords: egg, calcium, nanoparticles, retention

Procedia PDF Downloads 69
677 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia

Authors: Zelalem Teshager

Abstract:

The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.

Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions

Procedia PDF Downloads 49
676 Preliminary Seismic Vulnerability Assessment of Existing Historic Masonry Building in Pristina, Kosovo

Authors: Florim Grajcevci, Flamur Grajcevci, Fatos Tahiri, Hamdi Kurteshi

Abstract:

The territory of Kosova is actually included in one of the most seismic-prone regions in Europe. Therefore, the earthquakes are not so rare in Kosova; and when they occurred, the consequences have been rather destructive. The importance of assessing the seismic resistance of existing masonry structures has drawn strong and growing interest in the recent years. Engineering included those of Vulnerability, Loss of Buildings and Risk assessment, are also of a particular interest. This is due to the fact that this rapidly developing field is related to great impact of earthquakes on the socioeconomic life in seismic-prone areas, as Kosova and Prishtina are, too. Such work paper for Prishtina city may serve as a real basis for possible interventions in historic buildings as are museums, mosques, old residential buildings, in order to adequately strengthen and/or repair them, by reducing the seismic risk within acceptable limits. The procedures of the vulnerability assessment of building structures have concentrated on structural system, capacity, and the shape of layout and response parameters. These parameters will provide expected performance of the very important existing building structures on the vulnerability and the overall behavior during the earthquake excitations. The structural systems of existing historical buildings in Pristina, Kosovo, are dominantly unreinforced brick or stone masonry with very high risk potential from the expected earthquakes in the region. Therefore, statistical analysis based on the observed damage-deformation, cracks, deflections and critical building elements, would provide more reliable and accurate results for the regional assessments. The analytical technique was used to develop a preliminary evaluation methodology for assessing seismic vulnerability of the respective structures. One of the main objectives is also to identify the buildings that are highly vulnerable to damage caused from inadequate seismic performance-response. Hence, the damage scores obtained from the derived vulnerability functions will be used to categorize the evaluated buildings as “stabile”, “intermediate”, and “unstable”. The vulnerability functions are generated based on the basic damage inducing parameters, namely number of stories (S), lateral stiffness (LS), capacity curve of total building structure (CCBS), interstory drift (IS) and overhang ratio (OR).

Keywords: vulnerability, ductility, seismic microzone, ductility, energy efficiency

Procedia PDF Downloads 400
675 Investigations of the Service Life of Different Material Configurations at Solid-lubricated Rolling Bearings

Authors: Bernd Sauer, Michel Werner, Stefan Emrich, Michael Kopnarski, Oliver Koch

Abstract:

Friction reduction is an important aspect in the context of sustainability and energy transition. Rolling bearings are therefore used in many applications in which components move relative to each other. Conventionally lubricated rolling bearings are used in a wide range of applications, but are not suitable under certain conditions. Conventional lubricants such as grease or oil cannot be used at very high or very low temperatures. In addition, these lubricants evaporate at very low ambient pressure, e.g. in a high vacuum environment, making the use of solid lubricated bearings unavoidable. With the use of solid-lubricated bearings, predicting the service life becomes more complex. While the end of the service life of bearings with conventional lubrication is mainly caused by the failure of the bearing components due to material fatigue, solid-lubricated bearings fail at the moment when the lubrication layer is worn and the rolling elements come into direct contact with the raceway during operation. In order to extend the service life of these bearings beyond the service life of the initial coating, the use of transfer lubrication is recommended, in which pockets or sacrificial cages are used in which the balls run and can thus absorb the lubricant, which is then available for lubrication in tribological contact. This contribution presents the results of wear and service life tests on solid-lubricated rolling bearings with sacrificial cage pockets. The cage of the bearing consists of a polyimide (PI) matrix with 15% molybdenum disulfide (MoS2) and serves as a lubrication depot alongside the silver-coated balls. The bearings are tested under high vacuum (pE < 10-2 Pa) at a temperature of 300 °C on a four-bearing test rig. First, investigations of the bearing system within the bearing service life are presented and the torque curve, the wear mass and surface analyses are discussed. With regard to wear, it can be seen that the bearing rings tend to increase in mass over the service life of the bearing, while the balls and the cage tend to lose mass. With regard to the elementary surface properties, the surfaces of the bearing rings and balls are examined in terms of the mass of the elements on them. Furthermore, service life investigations with different material pairings are presented, whereby the focus here is on the service life achieved in addition to the torque curve, wear development and surface analysis. It was shown that MoS2 in the cage leads to a longer service life, while a silver (Ag) coating on the balls has no positive influence on the service life and even appears to reduce it in combination with MoS2.

Keywords: ball bearings, molybdenum disulfide, solid lubricated bearings, solid lubrication mechanisms

Procedia PDF Downloads 42
674 Stereological and Morphometric Evaluation of Wound Healing Burns Treated with Ulmo Honey (Eucryphia cordifolia) Unsupplemented and Supplemented with Ascorbic Acid in Guinea Pig (Cavia porcellus)

Authors: Carolina Schencke, Cristian Sandoval, Belgica Vasquez, Mariano Del Sol

Abstract:

Introduction: In a burn injury, the successful repair requires not only the participation of various cells, such as granulocytes and fibroblasts, but also of collagen, which plays a crucial role as a structural and regulatory molecule of scar tissue. Since honey and ascorbic acid have presented a great therapeutic potential to cellular and structural level, experimental studies have proposed its combination in the treatment of wounds. Aim: To evaluate stereological and morphometric parameters of healing wounds, caused by burns, treated with honey Ulmo (Eucryphia cordifolia) unsupplemented, comparing its effect with Ulmo honey supplemented with ascorbic acid. Materials and Methods: Fifteen healthy adult guinea pigs (Cavia porcellus) were used, of both sexes, average weight 450 g from the Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ) at the Universidad de La Frontera, Chile. The animals were divided at random into three groups: positive control (C+), honey only (H) and supplemented honey (SH) and were fed on pellets supplemented with ascorbic acid and water ad libitum, under ambient conditions controlled for temperature, ambient noise and a cycle of 12h light–darkness. The protocol for the experiment was approved by the Scientific Ethics Committee of the Universidad de La Frontera, Chile. The parameters measured were number density per area (NA), volume density (VV), and surface density (SV) of fibroblast; NA and VV of polymorphonuclear cells (PMN) and, evaluation of the content of collagen fibers in the scar dermis. One-way ANOVA was used for statistics analysis and its respective Post hoc tests. Results: The ANOVA analysis for NA, VV and SV of fibroblasts, NA and VV of PMN, and evaluation of collagen content, type I and III, showed that at least one group differs from other (P≤ 0.001). There were differences (P= 0.000) in NA of fibroblast between the groups [C+= 3599.560 mm-2 (SD= 764.461), H= 3355.336 mm-2 (SD= 699.443) and SH= 4253.025 mm-2 (SD= 1041.751)]. The VV and SV of fibroblast increased (P= 0.000) in the SH group [20.400% (SD= 5.897) and 100.876 mm2/mm3 (SD= 29.431), respectively], compared to the C+ [16.324% (SD= 7.719) and 81.676 mm2/mm3 (SD= 28.884), respectively). The mean values of NA and VV of PMN were higher (P= 0.000) in the H [756.875 mm-2 (SD= 516.489) and 2.686% (SD= 2.380), respectively) group. Regarding to the evaluation of the content of collagen fibers, type I and III, the one-way analysis of ANOVA showed a statistically significant difference (P< 0.05). The content of collagen fibers type I was higher in C+ (1988.292 μm2; SD= 1312.379), while the content of collagen fibers type III was higher in SH (1967.163 μm2; SD= 1047.944 μm2) group. Conclusions: The stereological results were correlated with the stage of healing observed for each group. These results suggest that the combination of honey with ascorbic acid potentiate the healing effect, where both participated synergistically.

Keywords: ascorbic acid, morphometry, stereology, Ulmo honey

Procedia PDF Downloads 270
673 Investigation of Mechanical and Tribological Property of Graphene Reinforced SS-316L Matrix Composite Prepared by Selective Laser Melting

Authors: Ajay Mandal, Jitendar Kumar Tiwari, N. Sathish, A. K. Srivastava

Abstract:

A fundamental investigation is performed on the development of graphene (Gr) reinforced stainless steel 316L (SS 316L) metal matrix composite via selective laser melting (SLM) in order to improve specific strength and wear resistance property of SS 316L. Firstly, SS 316L powder and graphene were mixed in a fixed ratio using low energy planetary ball milling. The milled powder is then subjected to the SLM process to fabricate composite samples at a laser power of 320 W and exposure time of 100 µs. The prepared composite was mechanically tested (hardness and tensile test) at ambient temperature, and obtained results indicate that the properties of the composite increased significantly with the addition of 0.2 wt. % Gr. Increment of about 25% (from 194 to 242 HV) and 70% (from 502 to 850 MPa) is obtained in hardness and yield strength of composite, respectively. Raman mapping and XRD were performed to see the distribution of Gr in the matrix and its effect on the formation of carbide, respectively. Results of Raman mapping show the uniform distribution of graphene inside the matrix. Electron back scatter diffraction (EBSD) map of the prepared composite was analyzed under FESEM in order to understand the microstructure and grain orientation. Due to thermal gradient, elongated grains were observed along the building direction, and grains get finer with the addition of Gr. Most of the mechanical components are subjected to several types of wear conditions. Therefore, it is very necessary to improve the wear property of the component, and hence apart from strength and hardness, a tribological property of composite was also measured under dry sliding condition. Solid lubrication property of Gr plays an important role during the sliding process due to which the wear rate of composite reduces up to 58%. Also, the surface roughness of worn surface reduces up to 70% as measured by 3D surface profilometry. Finally, it can be concluded that SLM is an efficient method of fabricating cutting edge metal matrix nano-composite having Gr like reinforcement, which was very difficult to fabricate through conventional manufacturing techniques. Prepared composite has superior mechanical and tribological properties and can be used for a wide variety of engineering applications. However, due to the unavailability of a considerable amount of literature in a similar domain, more experimental works need to perform, such as thermal property analysis, and is a part of ongoing study.

Keywords: selective laser melting, graphene, composite, mechanical property, tribological property

Procedia PDF Downloads 134
672 Comparative Study of Urban Structure between an Island-Type and a General-Type City

Authors: Tomoya Oshiro, Hiroko Ono

Abstract:

Japan's aging population is increasing due to the decrease in birthrate. It causes various problems like the decrease in the gross domestic product of the country. The reason is why the local government of Japan has been on the way to a sustainable city recently. Then it is essential to get control of an urban structure to make the compact city successful. There are many kinds of paper about the compact city; however, the paper about a compact city of the island-type city is less. The purpose of this study is to clarify difference of urban structure between an island-type and a general city type. The method which has conducted in this research has two steps. First of all, by using evaluation indexes in the handbook, we evaluated the urban structures among each same -population-class cities from 50,000 to 100,000 people. Next, to clear the difference about the urban structure and feature between island-type and general-type cities compare the radar chart which is composed with each evaluation indexes of urban structure. Moreover, in order to clarify the relationship between evaluation indexes and the place of residence by using GIS software to show up population density on the map. As a result of this research, the management of local government and the local economy in evaluation indexes are indicated to be negative point in comparison of island-type cities with general cities. However, evaluation indexes of safety/security and low-carbon/energy are proved to be positive point. The research to find the difference features of the island-type of urban structure proves that the management of local government or the local economy is negative point in these island-type cities. In addition, the public transportation coverage in Miyako Island, Sado Island, and Amakusa Island show low value compare with other islands and average value. Relationship between evaluation indexes of an urban structure and the place of residence prove that the place of residence is related to public transportation coverage. If the place of residence is spread out, the public transportation coverage will be decreased. The results of this research reveal that the finances in island-type cities are negative point compare to general cities. This problem is caused by declining population. In addition, the place of residence is related to the public transportation coverage. Even though, it needs a much money to increase the public transportation coverage. It is possibly to cause other problems furthermore the aspect of finance is influenced by that as well. The conclusion in this research suggests that it is important for creating the compact city in island-type cities that we first need to address solving the problems about the management of local government and the local economy.

Keywords: sustainable city, comparative analysis, geographic information system, urban structure

Procedia PDF Downloads 146
671 Mapping the Urban Catalytic Trajectory for 'Convention and Exhibition' Projects: A Case of India International Convention and Expo Centre, New Delhi

Authors: Bhavana Gulaty, Arshia Chaudhri

Abstract:

Great civic projects contribute integrally to a city, and every city undergoes a recurring cycle of urban transformations and regeneration by their insertion. The M.I.C.E. (Meetings, Incentives, Convention and Exhibitions) industry is the forbearer of one category of such catalytic civic projects. Through a specific focus on M.I.C.E. destinations, this paper illustrates the multifarious dimensions that urban catalysts impact the city on S.P.U.R. (Seed. Profile. Urbane. Reflections), the theoretical framework of this paper aims to unearth these dimensions in the realm of the COEX (Convention & Exhibition) biosphere. The ‘COEX Biosphere’ is the filter of such catalysts being ecosystems unto themselves. Like a ripple in water, the impact of these strategic interventions focusing on art, culture, trade, and promotion expands right from the trigger; the immediate context to the region and subsequently impacts the global scale. These ripples are known to bring about significant economic, social, and political and network changes. The COEX inventory in the Asian context has one such prominent addition; the proposed India International Convention and Exhibition Centre (IICC) at New Delhi. It is envisioned to be the largest facility in Asia currently and would position India on the global M.I.C.E map. With the first phase of the project scheduled to open for use in the end of 2019, this flagship project of the Government of India is projected to cater to a peak daily footfall of 3,20,000 visitors and estimated to generate 5,00,000 jobs. While the economic benefits are yet to manifest in real time and ‘Good design is good business’ holds true, for the urban transformation to be meaningful, the benefits have to go beyond just a balance sheet for the city’s exchequer. This aspect has been found relatively unexplored in research on these developments. The methodology for investigation will comprise of two steps. The first will be establishing an inventory of the global success stories and associated benefits of COEX projects over the past decade. The rationale for capping the timeframe is the significant paradigm shift that has been observed in their recent conceptualization; for instance ‘Innovation Districts’ conceptualised in the city of Albuquerque that converges into the global economy. The second step would entail a comparative benchmarking of the projected transformations by IICC through a toolkit of parameters. This is posited to yield a matrix that can form the test bed for mapping the catalytic trajectory for projects in the pipeline globally. As a ready reckoner, it purports to be a catalyst to substantiate decision making in the planning stage itself for future projects in similar contexts.

Keywords: catalysts, COEX, M.I.C.E., urban transformations

Procedia PDF Downloads 154
670 Generalized Up-downlink Transmission using Black-White Hole Entanglement Generated by Two-level System Circuit

Authors: Muhammad Arif Jalil, Xaythavay Luangvilay, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

Black and white holes form the entangled pair⟨BH│WH⟩, where a white hole occurs when the particle moves at the same speed as light. The entangled black-white hole pair is at the center with the radian between the gap. When the speed of particle motion is slower than light, the black hole is gravitational (positive gravity), where the white hole is smaller than the black hole. On the downstream side, the entangled pair appears to have a black hole outside the gap increases until the white holes disappear, which is the emptiness paradox. On the upstream side, when moving faster than light, white holes form times tunnels, with black holes becoming smaller. It will continue to move faster and further when the black hole disappears and becomes a wormhole (Singularity) that is only a white hole in emptiness (Emptiness). This research studies use of black and white holes generated by a two-level circuit for communication transmission carriers, in which high ability and capacity of data transmission can be obtained. The black and white hole pair can be generated by the two-level system circuit when the speech of a particle on the circuit is equal to the speed of light. The black hole forms when the particle speed has increased from slower to equal to the light speed, while the white hole is established when the particle comes down faster than light. They are bound by the entangled pair, signal and idler, ⟨Signal│Idler⟩, and the virtual ones for the white hole, which has an angular displacement of half of π radian. A two-level system is made from an electronic circuit to create black and white holes bound by the entangled bits that are immune or cloning-free from thieves. Start by creating a wave-particle behavior when its speed is equal to light black hole is in the middle of the entangled pair, which is the two bit gate. The required information can be input into the system and wrapped by the black hole carrier. A timeline (Tunnel) occurs when the wave-particle speed is faster than light, from which the entangle pair is collapsed. The transmitted information is safely in the time tunnel. The required time and space can be modulated via the input for the downlink operation. The downlink is established when the particle speed is given by a frequency(energy) form is down and entered into the entangled gap, where this time the white hole is established. The information with the required destination is wrapped by the white hole and retrieved by the clients at the destination. The black and white holes are disappeared, and the information can be recovered and used.

Keywords: cloning free, time machine, teleportation, two-level system

Procedia PDF Downloads 70
669 Increased Efficiency during Oxygen Carrier Aided Combustion of Municipal Solid Waste in an Industrial Scaled Circulating Fluidized Bed-Boiler

Authors: Angelica Corcoran, Fredrik Lind, Pavleta Knutsson, Henrik Thunman

Abstract:

Solid waste volumes are at current predominately deposited on landfill. Furthermore, the impending climate change requires new solutions for a sustainable future energy mix. Currently, solid waste is globally utilized to small extent as fuel during combustion for heat and power production. Due to its variable composition and size, solid waste is considered difficult to combust and requires a technology with high fuel flexibility. One of the commercial technologies used for combustion of such difficult fuels is circulating fluidized beds (CFB). In a CFB boiler, fine particles of a solid material are used as 'bed material', which is accelerated by the incoming combustion air that causes the bed material to fluidize. The chosen bed material has conventionally been silica sand with the main purpose of being a heat carrier, as it transfers heat released by the combustion to the heat-transfer surfaces. However, the release of volatile compounds occurs rapidly in comparison with the lateral mixing in the combustion chamber. To ensure complete combustion a surplus of air is introduced, which decreases the total efficiency of the boiler. In recent years, the concept of partly or entirely replacing the silica sand with an oxygen carrier as bed material has been developed. By introducing an oxygen carrier to the combustion chamber, combustion can be spread out both temporally and spatially in the boiler. Specifically, the oxygen carrier can take up oxygen from the combustion air where it is in abundance and release it to combustible gases where oxygen is in deficit. The concept is referred to as oxygen carrier aided combustion (OCAC) where the natural ore ilmenite (FeTiO3) has been the oxygen carrier used. The authors have validated the oxygen buffering ability of ilmenite during combustion of biomass in Chalmers 12-MWth CFB boiler in previous publications. Furthermore, the concept has been demonstrated on full industrial scale during combustion of municipal solid waste (MSW) in E.ON’s 75 MWth CFB boiler. The experimental campaigns have showed increased mass transfer of oxygen inside the boiler when combustion both biomass and MSW. As a result, a higher degree of burnout is achieved inside the combustion chamber and the plant can be operated at a lower surplus of air. Moreover, the buffer of oxygen provided by the oxygen carrier makes the system less sensitive to disruptions in operation. In conclusion, combusting difficult fuels with OCAC results in higher operation stability and an increase in boiler efficiency.

Keywords: OCAC, ilmenite, combustion, CFB

Procedia PDF Downloads 234
668 Temperature Dependent Magneto-Transport Properties of MnAl Binary Alloy Thin Films

Authors: Vineet Barwal, Sajid Husain, Nanhe Kumar Gupta, Soumyarup Hait, Sujeet Chaudhary

Abstract:

High perpendicular magnetic anisotropy (PMA) and low damping constant (α) in ferromagnets are one of the few necessary requirements for their potential applications in the field of spintronics. In this regards, ferromagnetic τ-phase of MnAl possesses the highest PMA (Ku > 107 erg/cc) at room temperature, high saturation magnetization (Ms~800 emu/cc) and a Curie temperature of ~395K. In this work, we have investigated the magnetotransport behaviour of this potentially useful binary system MnₓAl₁₋ₓ films were synthesized by co-sputtering (pulsed DC magnetron sputtering) on Si/SiO₂ (where SiO₂ is native oxide layer) substrate using 99.99% pure Mn and Al sputtering targets. Films of constant thickness (~25 nm) were deposited at the different growth temperature (Tₛ) viz. 30, 300, 400, 500, and 600 ºC with a deposition rate of ~5 nm/min. Prior to deposition, the chamber was pumped down to a base pressure of 2×10⁻⁷ Torr. During sputtering, the chamber was maintained at a pressure of 3.5×10⁻³ Torr with the 55 sccm Ar flow rate. Films were not capped for the purpose of electronic transport measurement, which leaves a possibility of metal oxide formation on the surface of MnAl (both Mn and Al have an affinity towards oxide formation). In-plane and out-of-plane transverse magnetoresistance (MR) measurements on films sputtered under optimized growth conditions revealed non-saturating behavior with MR values ~6% and 40% at 9T, respectively at 275 K. Resistivity shows a parabolic dependence on the field H, when the H is weak. At higher H, non-saturating positive MR that increases exponentially with the strength of magnetic field is observed, a typical character of hopping type conduction mechanism. An anomalous decrease in MR is observed on lowering the temperature. From the temperature dependence of reistivity, it is inferred that the two competing states are metallic and semiconducting, respectively and the energy scale of the phenomenon produces the most interesting effects, i.e., the metal-insulator transition and hence the maximum sensitivity to external fields, at room temperature. Theory of disordered 3D systems effectively explains the crossover temperature coefficient of resistivity from positive to negative with lowering of temperature. These preliminary findings on the MR behavior of MnAl thin films will be presented in detail. The anomalous large MR in mixed phase MnAl system is evidently useful for future spintronic applications.

Keywords: magnetoresistance, perpendicular magnetic anisotropy, spintronics, thin films

Procedia PDF Downloads 121
667 Possibility of Membrane Filtration to Treatment of Effluent from Digestate

Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska

Abstract:

The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.

Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.

Procedia PDF Downloads 349
666 Functionalized Spherical Aluminosilicates in Biomedically Grade Composites

Authors: Damian Stanislaw Nakonieczny, Grazyna Simha Martynkova, Marianna Hundakova, G. Kratosová, Karla Cech Barabaszova

Abstract:

The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA.

Keywords: bioceramics, composites, functionalization, surface development

Procedia PDF Downloads 112